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As is well known, each endomorphism of an Artinian, Noetherian and
indecomposable module is either nilpotent or an automorphism. C. I. Vin-
sonhaler has proved that each endomorphism of an indecomposable module
with a Noetherian injective hull is either nilpotent or an automorphism
(see [6], [7] and [5; p. 75]). In this note we shall verify that each end0-
morphism of an indecomposable module with an Artinian projective cover
is either nilpotent or an automorphism.

We will assume throughout that M denotes a nonzero unital left R-
module, where R is a nonzero ring with identity.

THEOREM. Let M be an indecomposable left R-module and let P be
an Artinian left R-module which is a projective cover of M with a mini-
mal epimorphism \varphi:Parrow M. Then each endomorphism \alpha of M is either
nilpotmt or an automorphism.

REMARK 1. M is called a semiperfect module iff every factor module
of M has a projective cover (cf. Mares [4]).

Let N be a submodule of M. A cocomplement N^{c} of N in M is
a minimal submodule of M such that N+N^{c}=M. M is called a cocomple-
mented module iff every submodule of M has a cocomplement in M.

As is easily proven, semiperfect modules are cocomplemented. Con-
versely, projective cocomplemented modules are semiperfect (see Kasch-
Mares [3] ) .

REMARK 2. In the following commutative diagram with left R-modules
M_{i} and homomorphisms \psi_{i} (i=1,2, 3) :

if \psi_{1} is an epimorphism and if \psi_{2} is a minimal epimorphism, then \psi_{3} is
necessarily an epimorphism.
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PROOF of THEOREM. Since also M is Artinian, there exists a positive
integer r such that M\alpha^{r}=M^{r+1}\alpha=\cdots . Evidently, every Artinian module
is cocomplemented, so that P is semiperfect (Remark 1). Then, so is M
since every factor module of a semiperfect module is semiperfect. Put M_{0}

=Ker\alpha^{r} and let P_{0} be a projective cover of M/M_{0} with a minimal epi-
morphism \varphi_{0} : P_{0}-M/M_{0} . If \pi:Marrow M/M_{0} is the natural epimorphism,
then there exists a homomorphism \psi_{0} : Parrow P_{0} such that \psi_{0}\varphi_{0}=\varphi\pi, by the
projectivity of P. But \psi_{0} is an epimorphism (Remark 2), whence P_{0} is
Artinian. Since M_{\beta}\subset M_{0} , \alpha induces the endomorphism \overline{\alpha} of M/M_{0} by
(a+M_{0})\overline{\alpha}=a\alpha+M_{0}(a\in M) . Moreover, M\alpha^{r}=M^{r+1}\alpha asserts that \overline{\alpha} is an
epimorphism. Then we have, by the projectivity of P_{0} , an endomorphism
\psi of P_{0} such that \psi\varphi_{0}=\varphi_{0}\overline{a}’ .

P_{0}

But \psi is an epimorphism (again by Remark 2), so that the projective P_{0}

has a splitting endomorphism \psi’ ; \psi’\psi is the identity mapping of P_{0} . Since
P_{0} is Artinian, there exists a positive integer s such that P_{0}\psi^{\prime s}=P_{0}\psi^{\prime s+1} .
Since \psi’ is monomorphic, we obtain P_{0}=P_{0}\psi’ , so that (\psi’ or) \psi is an
isomorphism.

Now, put K=Ker\varphi_{0}\overline{\alpha}. Considering that K\psi is included in K which
is also Artinian, we know the existence of a positive integer t satisfying
K\psi^{t}=K\psi^{t+1} . The monomorphism \psi deduces K=K\psi . Then, this yields
that \overline{\alpha} is a monomorphism. Next, let a be an arbitrary element of Ker
\alpha^{2r}. Then, a\alpha^{r} is in M_{0} and hence (a+M_{0})\overline{\alpha}^{r}=0 . Since \overline{\alpha} is monomorphic,
a is contained in M_{0} , showing that Ker \alpha^{r}=Ker\alpha^{2r} . This implies, together
with M_{\alpha}^{r}=M^{2r}\alpha, that M is the direct sum of M_{\alpha}^{r} and Ker \alpha^{r} . It follows
from the assumption of M to be indecomposable that M\alpha^{r}=0 or that
M_{\alpha}^{r}=M and Ker \alpha^{r}=0 . Consequently, \alpha is nilpotent or \alpha^{r} is, and hence,
\alpha is an automorphism, as required.
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