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Throughout the present note, K will represent an algebraically closed
field of characteristic p>0 . In case G is a p-solvable group of order p^{a}m

(a\geqq 1,p\parallel m), concerning the nilpotency index t(G) of the radical J(KG)
of the group algebra KG, D. S. Passman [4 ; Th. 1. 6], Y. Tsushima
[5; Th.2] and D. A. R. Wallace [7; Th. 3. 3] have obtained the following:

p^{a}\geqq t(G)\geqq a(p-1)+1 .
In \S \S 1 and 2 of the present note, we shall investigate when t(G)=p^{a}

or t(G)=a(p-1)+1, where G is a p-solvable group of order p^{a}m(a\geqq 1 ,
p\parallel m) . Furthermore, as an application of Th. 1, we shall present a char-
acterization of a finite group G with t(G)=[J(KG):K]+1 (Th. 2).

1. We shall begin our study with the following:
THEOREM 1. If G is a p group of order p^{a} , thm there holds the

following :
(1) t(G)=a(p-1)+1 if and only if G is elmentary abelian.
(2) t(G)=p^{a} if and only if G is cyclic.
PROOF. (1) Following [3], we consider the R-series of G :

G=R_{1}\supseteq R_{2}\supseteq\cdots\supseteq R_{t(G)}=1 ,

where R_{\lambda}=\{x\in G|1-x\in J(KG)^{\lambda}\} . Then, every R_{\lambda} is a characteristic sub-
group of G and R_{\lambda}/R_{\lambda+1} is an elementary abelian group of order p^{d_{\lambda}} . By
[3 ; Th. 3. 7], we have t(G)= \sum_{\lambda}\lambda d_{\lambda}(p-1)+1 . If t(G)=a(p-1)+1 then
\sum_{\lambda}\lambda d_{\lambda}=a . Combining this with \sum_{\lambda}d_{\lambda}=a, we readily obtain d_{1}=a and

d_{\lambda}=0(\lambda\neq 1), namely, G is elementary abelian. The converse is obvious by
[3 ; Th. 6. 2].

(2) Suppose t(G)=p^{a} . If \Phi(G) is the Frattini subgroup of G, then
[7 ; Th. 2. 4] yields |G|=t(G)\leqq t(\Phi(G))\cdot t(G/\Phi(G))\leqq|\Phi(G)|\cdot|G/\Phi(G)|=|G| ,
whence it follows t(G/\Phi(G))=|G/\Phi(G)|=p^{b}(b\leqq a) . Since G/\Phi(G) is ele-
mentary abelian, t(G/\Phi(G))=b(p-1)+1 by (1). Hence, p^{b}=|G/\Phi(G)|=

t(G/\Phi(G))=b(p-1)+1 , which means b=1 and G/\Phi(G) is cyclic. Now, as
is well-known, G is cyclic. Concerning the converse, there is nothing
to prove.

In what follows, G_{p} will represent a Sylow p subgroup of G.
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COROLLARY 1. Let G be a p-solvable group of order p^{a}m(a\geqq 1,pfm) .
Then there holds the following:

(1) If G has p-length 1 and t(G)=a(p-1)+1thm G_{p} is elementary
abelian, and conversely.

(2) If G has p-length 1 and t(G)=p^{a} then G_{p} is cyclic, and conversely.
PROOF. Since G is a p-solvable group of p-length 1, G_{p} is normal or

G contains a normal p-nilpotent subgroup H with pt(G : H). In either
case, we have t(G)=t(G_{p}) by [2; Th. 2]. Our assertions are therefore
obvious by Theorem 1.

The next contains [7; Th. 3. 4].

COROLLARY 2. Let G be a p-solvable group of order p^{a}m(a\geqq 1,pfm) .
If either p^{a}=3 or p^{a}=4 and G_{2} is elementary abelian, then t(G)=3, and
conversely.

2. Throughout the present section, G will represent the symmetric
group of degree 4, and K an algebraically closed field of characteristic 2.
Obviously, G is a solvable group whose 2-length>1 and whose any Sylow
2-subgroup is not elementary abelian. However, the proposition stated
below says that t(G)=4(=a(p-1)+1).

Let G_{i} be the stabilizer of a letter i and \hat{S}=\sum_{x\in 9}x(\in KG) for any
subset S of G.

Lemma 1. \hat{C_{J_{i}}}x\hat{G}_{f}=0 for every x\in G .
PROOF. Since \hat{G}_{i}x\hat{G}_{f}x^{-1}=\acute{C}_{7_{i}}\acute{\grave{C}}x_{x(f)} , it suffices to prove that \hat{G}_{i}\hat{C_{T_{f}}}=0 .

In case i=j,\hat{G}_{i}^{2}=6\hat{G}_{i}=0 . While, if i\neq j and \{1, 2, 3, 4\}=\{i,j\}\cup\{k, l\} , then
\hat{C_{Y_{i}}}=\hat{G}_{i}(k, l),\hat{G}_{i}(k, i)=\acute{\grave{C}}_{7_{i}}(k, l, i) and t_{\mathcal{J}_{i}}^{\hat{\gamma}}(l, i)=\hat{G}_{i}(k, i, l) . Hence \hat{c_{J_{i}}}e_{\tau_{j}}^{\hat{\neg}}=\hat{G}_{i}(1+

(k, l)+(k, i)+(k, l, i)+(l, i)+(k, i, l))=2\hat{G}_{i}+2\acute{t}_{J_{i}}^{\grave{\tau}}(k, i)+2\hat{C_{7_{i}}}(l, i)=0 .
PROPOSITION. (1) J(KG)=K\hat{G}_{1}\oplus J(KV)KG, where V is the Klein’s

four group contained in G.
(2) t(G)=4.
PROOF. (1) Since V is a normal 2-subgroup of G, J(K(G/V))\cong

J(KG)/J\{KV) KG. Now, G/V (naturally isomorphic to G_{1} ) is isomorphic

to the symmetric group of degree 3, and then J(K(G/V))=K\hat{G/V} by
[6; Th. 2]. Moreover, noting that \hat{G}_{1} is an element of J(KG) not contained
in J\{KV) KG, we readily obtain (1).

(2) Since J(KV)^{2}=K\hat{V}. we have J(KG)^{2}=(K\hat{G}_{1}+J(KV)KG)^{2}=(K\hat{G}_{1})^{2}

+J(KV)^{2}KG+\hat{G}_{1}J(KV)+J(KV)\hat{C_{Y_{1}}}=\hat{1^{\gamma}}KG+\hat{G}_{1}J(KV)+J(KV)\hat{G}_{1} . Noting
further that \hat{C_{J_{1}}}J(KV)\hat{G}_{1}=0,\hat{C_{T_{1}}}^{2}=0 (Lemma 1), \hat{V}J(KV)=0 and that \hat{V} is
a central element of KG, we obtain J(KG)^{4}=(\hat{V}KG+\hat{C_{J_{1}}}J(KV)+J(KV)\hat{G}_{1})^{2}
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=(\hat{V}KG)^{2}+(\acute{\grave{G}}_{1}J(KV))^{2}+(J(KV)\hat{C_{Y_{1}}})^{2}+\hat{V}\hat{G}_{1}J(KV)+\langle G_{1}J(KV)\hat{V})KG+

\hat{G}_{1}J(KV)^{2}\hat{G}_{1}+J(KV)\hat{G}_{1}^{2}J(KV)+\hat{V}KG(J(KV)_{J}^{\hat{\rho}_{1}})+(J(KV)\hat{G}_{1}t^{\hat{\Gamma}})KG=0 .
Hence, t(G)\leqq 4=3(2-1)+1 , whence it follows t(G)=4.

3. Let G be an arbitrary finite group such that p is a divisor of |G| ,
and \{e_{if}|1\leqq i\leqq s, 1\leqq j\leqq f(i)\} a set of orthogonal primitive idempotents of KG
with 1= \sum_{i,f}e_{if} such that KGe_{if}\cong KGe_{i’f’} if and only if i=i’. Let e_{i}=e_{i1}

(1\leqq i\leqq s), KGe_{1}/J(KG)e_{1} a trivial KG-module, and C=(c_{kl}) the Cartan matrix
of G. In this section, we shall investigate when t(G)=[J(KG):K]+1.
To our end, a couple of lemmas will be needed.

LEMMA 2. t(G) \leqq\max_{k}\{\sum_{l}c_{kl}\}\leqq\max_{k}\{[J(KG)e_{1},\cdot : K]+1\rangle\leqq[J(KG):K]

+1 .
PROOF. Since \sum_{l}c_{kl} coincides with the length of the composition

series of an indecomposable KG-module KGek, \sum {}_{l}C_{kl}\leqq[J(KG)e_{k} : K]+1 .
Thus, t(G) \leqq\max_{k}\{\sum {}_{l}C_{kl}\}\leqq\max_{k}\{[J(KG)e_{k} : K]+1\}\leqq[J(KG) : K]+1 (cf.
[7; Lemma 4.2] ).

LEMMA 3. The following conditions are equivalmt:
(1) [J(KG) : K]= \max_{k}\{\sum_{l}c_{kl}\}--1 .
(2) C=diag(p^{a}, 1, \cdots, 1) .
(3) [J(KG):K]=p^{a}-1 .
(4) G is either a p-group or a Frobenius group with a complement

G_{p} .
PROOF. (2), (3) and (4) are equivalent by the proof of [6; Th. 2]. Hence,

it remains only to prove that (1) implies (2). Assume that [J(KG):K]
= \max_{k} \langle \sum {}_{l}C_{\lambda l}\}-1 . Then, by Lemma 2, 1+ \sum_{k,j}[J(KG)e_{kf}:^{K]=1}+[J(KG):K]
= \max_{k}\{[J(KG)e_{k} : K]+1\} . Since [J(KG)e_{1} : K]\geqq p^{a}-1 (cf. [1 ; p. 562]),
it follows that J(KG)=J(KG)e_{1} and J\{KG)e1 for k\neq 1 . Therfore, C=
diag (c_{11},1, \cdots, 1) . This means that the first block contains only one irre-
ducible modular character, and hence c_{11}=[J(KG)e_{1} : K]=p^{a} (cf. [1 ; p. 587]).

Now, we shall conclude our study with the following:
THEOREM 2. t(G)=[J(KG):K]+1 if and only if G is either a cyclic

p-group or a Frobenius group with a cyclic complment G_{p} .
PROOF. If G is either a cyclic p-group or a Frobenius group with

a cyclic complement G_{p} , then t(G)=t(G_{p})=|G_{p}|=[J(KG):K]+1 (cf.
[2 ; Th. 2] and [6 ; Th. 2] ). Conversely, if t(G)=[J_{(}’KG) : K]+1 then, by
Lemmas 2 and 3, G is either a p-group or a Frobenius group with a comple-
ment G_{p} . Moreover, we have t(G_{p})=t(G)=[J(KG) : K]+1=|G_{p}| , so that
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G_{p} is cyclic by Theorem 1.
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