On the nilpotency index of the radical of a group algebra

By Kaoru Motose and Yasushi Ninomiya

Throughout the present note, K will represent an algebraically closed field of characteristic $p>0$. In case G is a p-solvable group of order $p^{a} m$ $(a \geqq 1, p \nmid m)$, concerning the nilpotency index $t(G)$ of the radical $J(K G)$ of the group algebra $K G$, D. S. Passman [4; Th. 1.6], Y. Tsushima [5; Th.2] and D. A. R. Wallace [7; Th. 3.3] have obtained the following :

$$
p^{a} \geqq t(G) \geqq a(p-1)+1
$$

In $\S \S 1$ and 2 of the present note, we shall investigate when $t(G)=p^{a}$ or $t(G)=a(p-1)+1$, where G is a p-solvable group of order $p^{a} m(a \geqq 1$, $p \nmid m)$. Furthermore, as an application of Th. 1, we shall present a characterization of a finite group G with $t(G)=[J(K G): K]+1$ (Th. 2).

1. We shall begin our study with the following:

Theorem 1. If G is a p-group of order p^{a}, then there holds the following:
(1) $t(G)=a(p-1)+1$ if and only if G is elementary abelian.
(2) $t(G)=p^{a}$ if and only if G is cyclic.

Proof. (1) Following [3], we consider the Ω-series of G :

$$
G=\Re_{1} \supseteq \Re_{2} \supseteq \cdots \supseteq \Re_{t(G)}=1
$$

where $\Re_{2}=\left\{x \in G \mid 1-x \in J(K G)^{\lambda}\right\}$. Then, every \Re_{2} is a characteristic subgroup of G and $\Omega_{2} / \Omega_{2+1}$ is an elementary abelian group of order $p^{a_{2}}$. By [3; Th. 3.7], we have $t(G)=\sum_{2} \lambda d_{2}(p-1)+1$. If $t(G)=a(p-1)+1$ then $\sum_{2} \lambda d_{\lambda}=a$. Combining this with $\sum_{2} d_{2}=a$, we readily obtain $d_{1}=a$ and $d_{\lambda}=0(\lambda \neq 1)$, namely, G is elementary abelian. The converse is obvious by [3; Th. 6.2].
(2) Suppose $t(G)=p^{a}$. If $\Phi(G)$ is the Frattini subgroup of G, then $[7$; Th. 2. 4] yields $|G|=t(G) \leqq t(\Phi(G)) \cdot t(G / \Phi(G)) \leqq|\Phi(G)| \cdot|G / \Phi(G)|=|G|$, whence it follows $t(G / \Phi(G))=|G / \Phi(G)|=p^{b}(b \leqq a)$. Since $G / \Phi(G)$ is elementary abelian, $t(G / \Phi(G))=b(p-1)+1$ by (1). Hence, $p^{b}=|G / \Phi(G)|=$ $t(G / \Phi(G))=b(p-1)+1$, which means $b=1$ and $G / \Phi(G)$ is cyclic. Now, as is well-known, G is cyclic. Concerning the converse, there is nothing to prove.

In what follows, G_{p} will represent a Sylow p-subgroup of G.

Corollary 1. Let G be a p-solvable group of order $p^{\boldsymbol{a} m}(a \geqq 1, p \nmid m)$. Then there holds the following:
(1) If G has p-length 1 and $t(G)=a(p-1)+1$ then G_{p} is elementary abelian, and conversely.
(2) If G has p-length 1 and $t(G)=p^{a}$ then G_{p} is cyclic, and conversely.

Proof. Since G is a p-solvable group of p-length $1, G_{p}$ is normal or G contains a normal p-nilpotent subgroup H with $p \nmid(G: H)$. In either case, we have $t(G)=t\left(G_{p}\right)$ by [2; Th. 2]. Our assertions are therefore obvious by Theorem 1 .

The next contains [7; Th. 3.4].
Corollary 2. Let G be a p-solvable group of order $p^{\pi} m(a \geqq 1, p \nmid m)$. If either $p^{a}=3$ or $p^{a}=4$ and G_{2} is elementary abelian, then $t(G)=3$, and conversely.
2. Throughout the present section, G will represent the symmetric group of degree 4, and K an algebraically closed field of characteristic 2. Obviously, G is a solvable group whose 2 -length >1 and whose any Sylow 2-subgroup is not elementary abelian. However, the proposition stated below says that $t(G)=4(=a(p-1)+1)$.

Let G_{i} be the stabilizer of a letter i and $\hat{S}=\sum_{x \in S} x(\in K G)$ for any subset S of G.

Lemma 1. $\quad \widehat{\boldsymbol{G}}_{i} x \widehat{G}_{j}=0$ for every $x \in G$.
Proof. Since $\widehat{G}_{i} x \widehat{G}_{j} x^{-1}=\hat{\boldsymbol{G}}_{i} \hat{G}_{x(j)}$, it suffices to prove that $\widehat{G}_{i} \widehat{G}_{j}=0$. In case $i=j, \hat{G}_{i}^{2}=6 \widehat{G}_{i}=0$. While, if $i \neq j$ and $\{1,2,3,4\}=\{i, j\} \cup\{k, l\}$, then $\widehat{\boldsymbol{G}}_{i}=\widehat{\boldsymbol{G}}_{i}(k, l), \widehat{\boldsymbol{G}}_{i}(k, i)=\widehat{\boldsymbol{G}}_{i}(k, l, i)$ and $\widehat{\boldsymbol{G}}_{i}(l, i)=\widehat{\boldsymbol{G}}_{i}(k, i, l)$. Hence $\widehat{G}_{i} \widehat{\boldsymbol{G}}_{j}=\widehat{\boldsymbol{G}}_{i}(1+$ $(k, l)+(k, i)+(k, l, i)+(l, i)+(k, i, l))=2 \widehat{G}_{i}+2 \widehat{\boldsymbol{G}}_{i}(k, i)+2 \widehat{\boldsymbol{G}}_{i}(l, i)=0$.

Proposition. (1) $J(K G)=K \widehat{G}_{1} \oplus J(K V) K G$, where V is the Klein's four group contained in G.
(2) $t(G)=4$.

Proof. (1) Since V is a normal 2-subgroup of $G, J(K(G / V)) \cong$ $J(K G) / J(K V) K G$. Now, G / V (naturally isomorphic to G_{1}) is isomorphic to the symmetric group of degree 3, and then $J(K(G / V))=K \widehat{G / V}$ by [6; Th. 2]. Moreover, noting that \widehat{G}_{1} is an element of $J(K G)$ not contained in $J(K V) K G$, we readily obtain (1).
(2) Since $J(K V)^{2}=K \hat{V}$, we have $J(K G)^{2}=\left(K \widehat{G}_{1}+J(K V) K G\right)^{2}=\left(K \widehat{G}_{1}\right)^{2}$ $+J(K V)^{2} K G+\widehat{G}_{1} J(K V)+J(K V) \widehat{\boldsymbol{G}}_{1}=\hat{V} K G+\widehat{G}_{1} J(K V)+J(K V) \widehat{G}_{1}$. Noting further that $\widehat{G}_{1} J(K V) \widehat{G}_{1}=0, \hat{G}_{1}^{2}=0$ (Lemma 1), $\hat{V} J(K V)=0$ and that \hat{V} is a central element of $K G$, we obtain $J(K G)^{4}=\left(\hat{V} K G+\widehat{G}_{1} J(K V)+J(K V) \widehat{G}_{1}\right)^{2}$
$=(\hat{V} K G)^{2}+\left(\hat{G}_{1} J(K V)\right)^{2}+\left(J(K V) \hat{\boldsymbol{G}}_{1}\right)^{2}+\hat{V} \hat{G}_{1} J(K V)+\left(\hat{G}_{1} J(K V) \hat{V}\right) K G+$ $\widehat{G}_{1} J(K V)^{2} \widehat{G}_{1}+J(K V) \widehat{G}_{1}^{2} J(K V)+\hat{V} K G\left(J(K V) \widehat{G}_{1}\right)+\left(J(K V) \widehat{G}_{1} \hat{V}\right) K G=0$. Hence, $t(G) \leqq 4=3(2-1)+1$, whence it follows $t(G)=4$.
3. Let G be an arbitrary finite group such that p is a divisor of $|G|$, and $\left\{e_{i j} \mid 1 \leqq i \leqq s, 1 \leqq j \leqq f(i)\right\}$ a set of orthogonal primitive idempotents of $K G$ with $1=\sum_{i, j} e_{i j}$ such that $K G e_{i j} \cong K G e_{i^{\prime} j^{\prime}}$ if and only if $i=i^{\prime}$. Let $e_{i}=e_{i 1}$ $(1 \leqq i \leqq s), K G e_{1} / J(K G) e_{1}$ a trivial $K G$-module, and $C=\left(c_{k l}\right)$ the Cartan matrix of G. In this section, we shall investigate when $t(G)=[J(K G): K]+1$. To our end, a couple of lemmas will be needed.

Lemma 2. $\quad t(G) \leqq \max _{k}\left\{\sum_{l} c_{k l}\right\} \leqq \max _{k}\left\{\left[J(K G) e_{k}: K\right]+1\right\} \leqq[J(K G): K]$ +1 .

Proof. Since $\sum_{l} c_{k l}$ coincides with the length of the composition series of an indecomposable $K G$-module $K G e_{k}, \sum_{l} c_{k l} \leqq\left[J(K G) e_{k}: K\right]+1$. Thus, $t(G) \leqq \max _{k}\left\{\sum_{l} c_{k l}\right\} \leqq \max _{k}\left\{\left[J(K G) e_{k}: K\right]+1\right\} \leqq[J(K G): K]+1$ (cf. [7; Lemma 4.2]).

Lemma 3. The following conditions are equivalent:
(1) $[J(K G): K]=\max _{k}\left\{\sum_{l} c_{k l}\right\}-1$.
(2) $C=\operatorname{diag}\left(p^{a}, 1, \cdots, 1\right)$.
(3) $[J(K G): K]=p^{a}-1$.
(4) G is either a p-group or a Frobenius group with a complement G_{p}.
Proof. (2), (3) and (4) are equivalent by the proof of [6; Th. 2]. Hence, it remains only to prove that (1) implies (2). Assume that $[J(K G): K]$ $=\max _{k}\left\{\sum_{l} c_{k l}\right\}-1$. Then, by Lemma 2, $1+\sum_{k, j}\left[J(K G) e_{k j}: K\right]=1+[J(K G): K]$ $=\max _{k}\left\{\left[J(K G) e_{k}: K\right]+1\right\}$. Since $\left[J(K G) e_{1}: K\right] \geqq p^{a}-1$ (cf. [1; p. 562]) , it follows that $J(K G)=J(K G) e_{1}$ and $J(K G) e_{k}=0$ for $k \neq 1$. Therfore, $C=$ $\operatorname{diag}\left(c_{11}, 1, \cdots, 1\right)$. This means that the first block contains only one irreducible modular character, and hence $c_{11}=\left[J(K G) e_{1}: K\right]=p^{a}$ (cf. [1; p. 587]).

Now, we shall conclude our study with the following:
Theorem 2. $t(G)=[J(K G): K]+1$ if and only if G is either a cyclic p-group or a Frobenius group with a cyclic complement G_{p}.

Proof. If G is either a cyclic p-group or a Frobenius group with a cyclic complement G_{p}, then $t(G)=t\left(G_{p}\right)=\left|G_{p}\right|=[J(K G): K]+1$ (cf. [2; Th. 2] and [6; Th. 2]). Conversely, if $t(G)=[J(K G): K]+1$ then, by Lemmas 2 and $3, G$ is either a p-group or a Frobenius group with a complement G_{p}. Moreover, we have $t\left(G_{p}\right)=t(G)=[J(K G): K]+1=\left|G_{p}\right|$, so that
G_{p} is cyclic by Theorem 1.
Shinshu University
Okayama University

References

[1] R. Brauer and C. Nesbitt: On the modular characters of groups, Ann. of Math. 42 (1941), 556-590.
[2] R. J. Clarke: On the radical of the group algebra of a p-nilpotent group, J. Australian Math. Soc. 13 (1972), 119-123.
[3] S. A. Jennings: The structure of the group ring of a p-group over a modular field, Trans. Amer. Math. Soc. 50 (1941), 175-185.
[4] D. S. Passman: Radicals of twisted group rings, Proc. London Math. Soc. 20 (1970), 409-437.
[5] Y. Tsushima: Radicals of group algebras, Osaka J. Math. 4 (1967), 179-182.
[6] D. A. R. Wallace: Note on the radical of a group algebra, Proc. Cambridge Phil. Soc. 54 (1958), 128-130.
[7] D. A. R. Wallace: Lower bounds for the radical of the group algebra of a finite p-soluble group, Proc. Edinburgh Math. Soc. 16 (1968/69), 127-134.
(Received June 4, 1974)

