Notes on relatively hdfrmonic immersions

By Shigeru IsHIHARA and Susumu ISHIKAWA
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The. notion; of haymonic mappings was introduced and such mappings
were studied by Eells and Sampson [1]. Recently, such mappings have
been- discussed by several authors (See [1], [2], [3], [4] and [5};: for- example)
and many interesting results have been obtained.- - Yano -and one of the
present authors - [5}* have proved, concerning harmoni¢ mippings, some
theorems in which sufficient conditions for a harmonic mapping to be
affine or homothetic are stated.. To prove these theorems, they computed
Laplacian 4||df||® of the square of the differential mapping df for a har-
monic mapping f of a compact Riemannian space (}/, ¢) into a Riemannian
space (N, §) and pinched in a certain sense the sum of eigenvalues of the
tensor ¢* induced in M from g by f. In the present paper, we define
relatively harmonic immersions of a compact Riemannian space (M, §) of
dimension 7 into a Riemannian space (N, §) of dimension n+1 (See §1)
and obtain some sufficient conditions for such an immersion to be relatively
affine or homothetic by a similar way to that taken in [5] The results
will be stated in Theorems 4.I~4.5.

In §1, notations and some concepts concerning immersions and rela-
tively harmonic immersions will be defined and some propositions will be
proved. In §2 Laplacian 4||df]|® will be computed and in §3 some ine-
qualities will be given for later use. The last §4 is devoted to prove
Theorems [4.1~4.5.

§1. Differentiable immersions of a Riemannian space into
another

Let (M, g) and (V, g) be two Riemannian spaces of dimension n and
n+1 respectively, where n=2. Let there be given a differentiable immer-
sion f:M—N, that is, a differentiable mapping f: M—N whose rank is
equal to n everywhere. Such an immersion will be sometimes denoted by
f:(M, g)—(N, 9). Manifolds, mappings and geometric objects we discuss
are assumed to be differentiable and of class C®. Take a coordinate
neighborhoods {U, x'} of M and {U, ¥°} of N in such a way that AAU)CU,

where local coordinates of M are denoted by (x*)=(&, -+ 2*) and those of

N by (¥)=(¥% +--, ¥**"). The indices h, i, j, &, [, m, r, s run over the range
{1, .-+, n} and the indices a, 8, 7, 8, 4, p, v over the range {1, ---,n+1}. The
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summation convention will>be used with respect to these two systems of
indices. Suppose that the mapping f is represented by equations

RN o T~

) v =y (e, )
with respect to {U, x*} and {U, y°}. Differentiating (1. 1), we now put in U
(]" 2) Ag = az'ya (xly ) xn) ’

where 9,=0/0x". Then the differential m‘a‘ppingydf of fis represented by the
matrix (A%) with respect to local coordinates (z*) of M and those {3*) of N.

When a function @, local or global, is given in N, we shall throughout
this paper identify @ with the function @<f induced in M. We denote by
g, components of the Riemannian rhg:tric g in M and by @, those of the
Ri¢mannian metric § in N.  We now put (¢%)=(g,)"* and (§")= (g » . Then

(1.3) ' 05 =GuAj AL

are components of the Riemannian metric g*=/f*g induced in M from §
*

by f: M—N. The Christoffel’s symbols {h} {Tﬁ} and {h} are formed

with g, 9, and g}, respectively.

~ In this and the next sections, we denote by X, Y -and Z arbitrary
vector fields in M with local expressions X=X"3/dx", Y=Y"d/ox" and Z=
Z"3]ox", respectively. Then (A2X?)8/dy” is the local expression of the vector
field (df)X defined along f(M). If we put in U S

(1. 4) _ 5% =V;A%,
where we have defined 7 ;A% by

ws) o rar=aan+{fplaja— {7,

7o

then (A% X?Y*)9/dy" is the local expression of a vector field B ﬂeﬁned along
Ff(M). Denoting by C®9/dy* a local vector field along U which is unit and

normal to f(M), we can put b k-
(1.6) %= Dy A+ HyC*,

where D), are components of a tensor field D of type (1, 2) in M and H
components of the second fundamental tensor H of the isometric immer-
sion f:(M, g ) (N, §). Thus we can easily verify -

5

I we put ~
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V,O=8,C“+{7%}A§C‘,

then, using A7C*g; =0, we obtain

(1. 8) Vjca= _k.,;AZ,
where
(1.9) 3m =Hy .

Summing up (1.6) and (1. 8), we now have

VjA: = D?.,;AZ""ngCG
P,Ce= —kt Az,

Consider a curve 7:I->M in M, I being an interval, and denote.by
T=for : I--N the image of 7 by f. Then we have easily

F=(dNi+A@, 1),

where A(7, 7)=(A%1/7%)d/dy", #* being components of 7. Thus we see that
S (M, g)>(N, §) is affine, i.e., for any geodesic 7 in (M, g) (for any curve
7 satisfying #=0) its image 7 is also a geodesic in (N, g), if and only if
Aj=0. We say that f: (M, g)—>(N, ) is relatively affine when any geodesic
7 in (M, g) is also a geodesic in (M, g/*. When g¢*=p% with function
P*>0, f:+(M, g)—(N, ) is called a relatively conformal immersion. When
g* =0’ with constant #*>0, f:(M, g)—(N, §) is said to be relatively homo-
thetic. We now have by using (1. 7)

PropoSITION 1.1 f:(M, g)—>(N, §) is relatively affine if and only if
D=0, i. e., D.,’;i:()'

ProPOSITION 1.2 f:(M, g)—(N, 9) is relatively homothetic if and only
if it is relatively affine and at the same time relatively conformal.

)

(1. 10)

On putting
(1.11) A*=g* A3,
we have
(1.12) A*=E*A3+hCe,
where
(1.13) | E*=g*Dly, h=H,g* .

Then we can easily see that A* are components of a vector field 7" defined
along f(M), E* are components of a vector field E in M and A is a local
function defined in each coordinate neighborhood and globally defined up
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to sign. The vector fields 7, E and the function h are called the tension
field, the relative tension field and the relative mean curvature of f:(M, g)
—(N, g), respectively. By the way, the local function

(1.14) k= H, g**,

where (g*#)=(g%)™}, is the mean curvature of the isometric immersion

b

f: (M, ¢*)—(N, 9. We now put for later use
(1. 15) 7,A"=9,A"+ {TB}AfA’

Let I=(—a, a) be an interval. Consider a mapping F: M x =N such
that F(p, 0)=f(p) for any peM. Such a mapping F is called a variation
of f. If we suppose that F has the local expression

y* =y (2 ¢), (tel),
then v*=(dy*(x* ,1)/3t),-, define a vector field v=1v9/dy"* along f(M), which is
called the wariation vector of the variation F. For f: (M, g)—(N, §) we put

E(f, D)= | llaf do,,

D being a compact domain with boundary aD in M, where do, the volume
element of (M, g) and

(1. 16) |df || = A5 A g% Gp = 95,07 .

On putting

SE(f, D)=L EE, D) _,

=0

where F,(p)=F(p, t) for any p€M, we can easily verify
50 (f, D)= ZL[(V, o) A3 g% Gy da,
where
\ a
Viv* = 0,0+ {w}A;v’,
and hence, because of
(Vjv,)A: gﬁgﬁa = gﬂ Vj ('Uﬁ A; gﬂc)—vﬂAa.gﬁa ’

we have

117 3E(f, D) = 2| [v*A*d,.)do,
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or
(1.18) "aFE(ﬁ'p)=—sz[vaig;ﬁvm]daa-,

where v*=v°A+v°C%, when the variation vector v vanishes along f(@b).
When 6zE(f, D)=0 for any variation F and f whose variation vector
vanishes along f(0D) and for any D, f is called a harmomc mapping.
Thus, from (1.17), it follows that f is harmonic if and only if T=0
(i.e, A*=0) (See [1]. When 6,E(f, D)=0 for any D and for any variation
F whose variation vector vanishes along f(dD) and is tangent to f(M) f
is called a relatively harmonic immersion. Thus we have from (1.18)

-ProrosITION 1.3. f:(M, g)—>(N, §) is relatively harmonic if and only
if E=0, i.e., E"= :
ProposITION 1.4. f:(M, g)—>(N, §)-is harmonic if and only if it is

relatively harmonic (i. e. E=0) and relatwely minimum (i.e. h=0) at the
same time. 7

§2. Laplacian of ||af]?
We now put in U

2.1 A% =0, A5 {rﬁ}A Aj— {k }A:” {kz}

Then (V. A%X*Y'Z")3/0y" is the local expression of a vector field defined
along f(M). Taking accound of (I.4), (1.5) and (2.1), we obtain the fol-
lowing formula of Ricci-type : '

(2.2) Vil A5—V ;7 Af = Ry AL AT Al — Ryt A

where R, and R,,* are components of the curvature tensors of § and g,

respectively. We are now going to compute the Laplacian 4||df]2. We
here have

(2.3) -—Andfuz 5 07,7 (A5 A3 "G,
:%g”‘(Vz 7, A)Asg" G+ | BI7,

where
|B* = A';kA;z 9" 9%Ge ="IIDI" + | H|",
(2.4) '|DI* = DgDig g g,  ||H|? = szHﬂg 79"
Thus, using (2.2) and putting
Riw=Risi,
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we obtain from (2. 3)
1
- dldf|* =V ;A%) Af g% G, + || BJ®
+RarpaAzAtA'z A5¢* g+ R} gri9,
where V;A* was defined by (1.15), and then
1
o d|\df|*—aS = —| T+ B|*
+ Ry AJATAL A5G 9%+ RS g%,

where R;* = R;,g% are components of the Ricci tensor of ¢ and

(2. 5) 0S =g%V,(AA%G,,), | T|? = A?A=g,, .
. = g%V ;(E*gs) '
Substituting (2. 5) into the equation’ above, we have
1
(2. 6) lldfllz—t?S— ~'|El*=r*+ [ H|*+"| DI

+RrﬁaAzA¢ApA¢glkgﬂ+Rhghig ’
where we have used
| T|?="I|E|*+h*, '|E|*=g¢RE'E*.

Since E=0 implies 6S=0 as a consequence of (2.5), we have by using (2.
we have

1
2.7) L a1afi = "|Dip+ | HIP—

+ R, AL AT AL ASg g%+ R gk 0% .
Next, putting

1
(2. 8) L.ﬂ = Hﬁ— ‘;hgﬁ ’ “LHZ = leL,ﬂgugH ’
we obtain
1
(2.9) Il L|* = | H>— ——h2

Thus, substituting (2. 9) into (2. 7), we have -

we have

6)

LEMMA 2.1. For a relatively harmonic immersion f:(M, g)—(N, 9),

LEMMA 2.2 For a relatively harmonic immersion f: (M g) (N, 9),
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n—1 Iz

1
(2. 10) 5 dlldfl* ="|D|*+ || L|}*-
+Ryp AL AT AL A5g™ g% + R g
§3. Some inequalities

We shall, in this section, give some inequalities for later use, assumeing
that M is compact. At each point of (M, g), we take n orthonormal vectors
€uy ***y € such that

(3.1) 97 = heqys€uy+ +3@e(n>ye(n)z ’

where ¢,y are components of e, and eu;=€e} g and hence we have 2,
-+, 4,>0 because (g;) is positive definite.

On putting &, =(df)ew), &y ***, & are linearly independent and tangent
to f(M). Denoting by ¢f,, components of ¢,, we obtain

(3.2) el = Aj €y

and hence _

(3.3) IEXIS Toe em &lox <g(,), é<.>> G &l €5
=4 =0, (r+#s)

because of (3.1). On the other hand, we have
A ALg™ = ALALT ety = el 2l
becau;‘édlof (3. 2). | Thus, using the equation above, we find
Rune ALATALASG™ 0% = 3 R byl 2l %

from which, using (3. 3),

(3. 4) Ry AJ AT AL A5 g7 = — éﬁ (80ys 80)) A s s
where (X, Y) denotes the sectional curvature of (N, g). = ="

We now consider the following condition :
(C) There exists a constant c¢ such that

c26(X,Y)

at any point peN for any two linearly independent vectors X and Y at 2
Under the condition (C), since 4,>0, we have from (3. 4)

(3.5) R AL AT AL A3 g = —c 3 2,4, .

r#s

On putting
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= 1
(3. 6) A= Py ; As s
we easily obtain
(3.7) D4k =— DA—IF+an—1)2,
r¥8 8

where we can easily verify

(3.8) nd = g3;¢% = ||df||* = Trace ¢*.
Thus, substituting (3. 7) into (3.5), we have
(3.9) Rypa AJAT AL ASg* g% 2 ¢ T (A — A —n(n—1)ck

when the condition (C) is satisfied.
We take n orthonormal vectors e, satisfying (3.1) at each point of

(M, g). Then we have
(3. 10) h= Hﬁ g¥ = 2 Hjte(js) e1(;a) .

Next let a,(p), -+, a.(p) be eigenvalues of H with respect to g* at peM.
Then we can put

(3.11) A =Max Max{|&(p)l, - |4.(p)|} 20,

provided that M is compact. Then for any vector field X=X"3/0x", we get
|H; X' X < A(gr: X X¥), .

from which, using (3. 10),

(3.12) |h| £ nAl i.e, Rt AR,

when M is compact.
In the last step, using (3. 1), we have

(3.13) R} g3:9% = h(Ryehyely)+ - + 1, (Ryelny€ln) »
where R;, = R} ¢,;, and hence
(3.14) ir< R gng”,

where we have put
(3. 15) —=Min R, A’ A',

A=A"[6z" running over the unit sphere bundle over (M, g), provided
that M is compact.
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Using (3.9), (3.12) and (3.14) and taking account of we
have |

LEmMMA 3.1. Assume that the conditions (C) is satisfied for a relatively
harmonic immersion f:(M, g)—(N, §) and that M is compact. Then we
have ‘

3.16 F A 2 DI+ L+ e 5 3
| —n(n—1)(A+ )T+ 1.

We now put, assuming that M is compact,

(3.17) A= —712—Max Ih(p)].

Then, ‘substituting (3. 9), (3. 14) and (3. 17) into (2. 10) given in
we have

LEMMA 3.2. Assume that the condition (C) is satisfied for a relatively
harmonic immersion f:(M, g)—(N, §) and that M is compact. Then we
have

3.18 S AN 2 DI+ LI+ e DA77

—n(n—1)cl+ri—n(n—1)A".
§4. Theorems.

First we shall give some remarks. The condition ’|D|?=0 implies
D=0, which means that f: (M, g)—>(N, g) is relatively affine. The condition
2 (4—2F=0 implies g*=p%. Thus, if /|D|*=0 and Y}(2,—1)=0, then f:
(M, g)—>(N, 9) is relatively homothetic. The condition ||L|*=0 implies
L;,=0, ie, Hj,;:%gﬁ. When the condition H,q;:—if—gﬂ is satisfied, f:
(M, g)—>(N, 9) is said to be relatively umbilic. If f:(M, g->(N, §) is rela-
tively homothetic and relatively umbilic at the same time, then the isome-
tric immersion f: (M, ¢*)—(J, g) is umbilic, i.e., H= %g*. Taking account
of remarks given above and [Lemma 3.1, we now have

THEOREM 4.1. Let f:(M, g)—(N, 9) be a relatively harmonic immer-
sion of a Riemannian space (M, g) of dimension n into another (N, §) of
dimension n+1 and M be compact. Then,

(1) f:(M, 9)—(N,9) is relatively homothetic and the isometric immersion
Si{M, g*)—>(N, 9) is umbilic or totally geodesic if the following condition
(A,) is satisfied : R =
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’
(Al) Trace g* é (n'—].) (AZ"I‘C)
when there is a constant c>0 such that ¢=6, 6 being the sectwnal curva-
~ture of (N, 9), and (M, g) has positive definite Ricci tensor ;

(2) f: (M 9)—(N, 9) -is relatively affine and relatzvely umbilic zf the fol-
lowing condition (A,) is satisfied :

(A,) Trace g* < m

when <0, A>0 and (M, g) has positive definite Ricci tensor; w{iere A
and r are defined respectively by (3.11) and (3.15). In case (2), Trace g¢*
is necessarily constant.

Assume now that 6<c=0 and A=0 in Lemma 3.1. Then, M being
compact, the condition =0 implies D=0, L=0 and r=0. Thus, using
(2.10), (3. 4) and (3.14), we find

ZU(%), &) A2 = RS g2 9”>0
On the other hand since a<0 we obtain o
:é‘a (e Ea) A2 =0.
Therefore, we have
(4.1) R gig”=0 ;

when 7=0. The condition =0 is satisfied if and only if the Ricci tensor
of (M, g) is positive semi-definite. Then, using (3. 13) and (4.1), we have
Ry eyehy=--=Rj el é,,=0, which means that the Ricci tensor of (M, g)
vanishes. Summing up, we have

THEOREM 4.2. If, in Theorem 4.1, the following condition A; is
satisfied, then f: (M, g*)—(N, 9) is relatively affine and (M, g) has vanishing
Ricci tensor: ,
(Ay) 60, f:(M, g*)—=(N, g) is totally geodesic and (M, g) has positive
semidefinite Ricci tensor. In this case, Trace g* is necessarily constant. -

If in case (1) of 1 (N, g) is a sphere (S™*, §,) with constant
curvature ¢, then (M, g) is necessarily a sphere (S”, g,) with constant curva-
ture. If in case (2) of [Theorem 4.1 (N, g) is a Euclidean space (E™*, g,),
then (M, g) becomes a sphere (S*, g,) of constant curvature and f: (M, g)—
(N, g) is-a relatively homothetic immersion;, because in this case. (}, g) is
an irreducible Riemannian space. S

If in [Theorem 4.2 (N, g) is a flat torus, then (M, g) is necessanly

a flat torus.
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Taking account of we have

THEOREM 4.3. Let f:(M, g)—(N, 9) be a relatively harmonic immer-
sion \of a Riemannian space (M, g).of dimension n into another (N, §) of
dimension n+1 and M be compact. Then,

(1) f:(M, g)=(N, 9) is relatively homothetic and the isometric immersion
f: (M, g*)—(N, §) is umbilic if the JSollowing condition (B,) is satisfied

(B, 0<na < Trace g*<nf,

a and B being roots of the quadratic equation n(n—1)ct—rt+n(n—1)A"
=0, when there is a constant c¢ such that

7'2

An*(n—1PA" =c>0,

G being the sectional curvature of (N, g), where A'>0 and (M, g) has
positive definite Ricci tensor

(2) f:(M, g)—(N, 9) is relatively homothetic and f (M g ) (N, g) is to-
tally geodesic, if the following condition (B,) is satis ﬁed

c20,

"

(71-.-1)‘(:

when there is a constant ¢>0 such that c26, where f:(M, g)—(N, g) is

relatively minimum, (i. e., h=0) and (M, g) has positive definite Ricci tensor ;
(3) f:(M, g)—=(N, 9) is relatively affine and relatively umbilic if the

following condition (B;) is satisfied :

(B2) Trace g¢*

w2 (n—1)A”

(By) Trace ¢g* = .

when 650, A'>0 and (M, g) has positive definite Ricci tensor; where A’
and r are defined respectively by (3.17) and (3.15). In each case, Trace
g* is mecessarily constant.

- We can easily prove the following [Theorem 4.4 in the same way as
taken in the proof of [Theorem 4. 2.

THEOREM 4.4. If, in Theorem 4.3, the following condition (B,) is
satisfied, then f:(M, g)—(N, g) is relatively affine, f:(M, g*)—(N, 9) is to-
tally geodesic and (M, g) has vanishing Ricci tensor :

By 6=0, f:(M, 9)—(N, 9) is relatively minimum (i.e, h=0), (M, g) has
positive semi-definite Ricci tensor. In this case, Trace g* is necessarily
constant.

In the last step, we assume that f: (M, g)—(1V, g) is relatively harmonic
and f:(M, g*)—>(IV, g) is umbilical (or totally geodesic), i.e., H=ag* with
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a#0 (or H=0). Suppose moreover that (N, g) is of constant curvature é.
Then, in the present case, we have

(4. 2) |HIP—h = (L &—(Z )
=—a Y Ah=aY(A,—f—n(n—1)a*2,
(4. 3) Ry AJATAL A3 g = —C Y A 4,

because of (3.7), where we have used
|H|?—h* = Hy Hyg" g% —(Hyu g,
ﬁarﬁa =C (gap gra —grp gaa) .
(3.15), (4. 2) and (4. 3) into (2.7), we have in the present case
S A1df1 2 "|DI+ e +d) E (-

Substituting

(4.4)

n—1
n

(¢ +a*) (Trace ¢g*f+ %(Trace g*).

Taking account of (4. 4), we have

THEOREM 4.5. Let (N, 9) be a Riemannian space of dimension n+1
with constant curvature ¢ and (M, g) a compact Riemannian space of
dimension n. Assume that f:(M, g)—(N, 9) is a relatively harmonic im-
mersion and f:(M, g)—(N, 9) is an umbilic (or totally geodesic) immersion,
i.e., H=ag* with a#0 (or H=0). Then,

(1) f:(M, g—(N, g) is relatively homothetic if the following condition
(Dy) is satisfred

,
n—1)(¢+ad°

(D) Trace ¢* < (

when ¢+a*>0 and (M, g) has positive definite Ricci tensor ;

(2) f:(M, g)—(N, 9) is relatively affine and (M, g) has vanishing Ricci
tensor if the following condition (D,) is satisfied :
(D,) ¢+a*=0, (M, g) has positive semi-definite Ricci tensor. Where r is
defined by (3.15.) In the case (2), Trace ¢g* is necessarily constant.
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