Some remarks on nonlinear differential equations in Banach spaces

By Shigeo KATO

§1. Introduction and results.

Let E be a Banach space with the dual space E^* . The norms in E and E^* are denoted by || ||. We denote by S(u, r) the closed sphere of center u with radius r.

In this paper we are concerned with nonlinear abstract Cauchy problems of the forms

$$(D_1) \qquad \frac{d}{dt} u(t) = f(t, u(t)), \qquad u(0) = u_0 \in E,$$

and

$$(D_2) \qquad \qquad \frac{d}{dt} u(t) = Au(t) + f(t, u(t)), \qquad u(0) = u_0 \in D(A).$$

Here A is a nonlinear operator with domain D(A) and range R(A) in E, and f is a E-valued mapping defined on $[0, T] \times S(u_0, r)$ or on $[0, \infty) \times E$.

It is well known that in the case of $E=R^n$, the *n*-dimensional Euclidean space, the continuity of f in a neighbourhood of $(0, u_0)$ alone implies the existence of a local solution of (D_1) . This is the classical Peano's theorem. However, this theorem cannot be generalized to the infinitedimensional case (see [3], [16]).

It is our object in this paper to give sufficient conditions for the existence of the unique solutions to the Cauchy problems of the forms (D_1) and (D_2) .

Let the functionals \langle , \rangle_1 and \langle , \rangle_2 be defined as follows (cf. M. Hasegawa [6]):

$$\langle u, v \rangle_1 = \lim_{h \downarrow 0} \frac{1}{h} (\|u+hv\|-\|u\|),$$

and

$$\langle u, v \rangle_2 = \frac{1}{2} (\langle u, v \rangle_1 - \langle u, -v \rangle_1)$$

for u, v in E.

In order to prove the existence of the unique solution of the equation

 (D_1) we consider the following scalar equation

(1.1)
$$w'(t) = g(t, w(t)),$$

where $g(t, \tau)$ is a scalar-valued function defined on $(0, a] \times [0, b]$ which is measurable in t for fixed τ , and continuous nondecreasing in τ for fixed t.

We say w is a solution of (1, 1) on an interval I contained in [0, a] if w is absolutely continuous on I and if

$$w'(t) = g(t, w(t))$$
 for a.e. $t \in I^0$,

where I^0 is the set of all interior points of I.

We assume furthermore that g satisfies the following conditions: (i_a) There exists a function m defined on (0, a) such that

$$|g(t,\tau)| \leq m(t) \qquad \text{for } (t,\tau) \in (0,a] \times [0,b]$$

and for which *m* is Lebesgue integrable on (ε, a) for every $\varepsilon > 0$. (ii_a) For each $t_0 \in (0, a]$, $w \equiv 0$ is the only solution of the equation (1.1) on $[0, t_0]$ satisfying the conditions that $w(0)=(D^+w)(0)=0$, where D^+w denotes the right-sided derivative of w.

First, we can state the following result.

THEOREM 1. Let f be a strongly continuous mapping of $[0, T] \times S(u_0, r)$ into E such that

(1.2)
$$\langle u-v, f(t, u)-f(t, v)\rangle_2 \leq g(t, ||u-v||)$$

for all (t, u), $(t, v) \in (0, T] \times S(u_0, r)$, where g satisfies (i_a) , (ii_a) with a = T and b = 2r.

Then (D_1) has a unique strongly continuously differentiable solution u defined on some interval $[0, T_0]$.

We next consider a global analogue of Theorem 1, and we assume that $g(t, \tau)$ is a scalar-valued function defined on $(0, \infty) \times [0, \infty)$ which is measurable in t for fixed τ , and continuous nondecreasing in τ for fixed t. We assume furthermore that g satisfies the following conditions: (i_b) g(t,0)=0 for all $t \in (0, \infty)$, and for every bounded subset B of $(0, \infty) \times [0, \infty)$ let there exist a locally Lebesgue integrable function m_{E} defined on $(0, \infty)$ such that

$$|g(t,\tau)| \leq m_B(t)$$
 for $(t,\tau) \in B$.

(ii_b) There exists a strictly increasing continuous function α defined on $[0, \infty)$ satisfying $\alpha(0)=0$ and

$$|g(t,\tau)-g(t,\tilde{\tau})| \leq m_B(t)\,\alpha(|\tau-\tilde{\tau}|)$$

for (t, τ) , $(t, \tilde{\tau}) \in B$.

(iii_b) For every
$$\delta > 0$$
, $\int_0^{\delta} d\tau / \alpha(\tau) = \infty$

Under these conditions we can prove the following

THEOREM 2. Let f be a strongly continuous mapping of $[0, \infty) \times E$ into E, carring bounded sets in $[0, \infty) \times E$ into bounded sets in E. Suppose furthermore that

(1.3)
$$\langle u-v, f(t,u)-f(t,v)\rangle_2 \leq g(t, ||u-v||)$$

for (t, u), $(t, v) \in (0, \infty) \times E$.

Then (D_1) has a unique strongly continuously differentiable solution u defined on $[0, \infty)$.

Finally, we consider the equation (D_2) in a Banach space E whose dual space E^* is uniformly convex.

We say u is a solution of (D_2) on $[0, \infty)$ with $u(0)=u_0$ if u is strongly absolutely continuous on any finite interval of $[0, \infty)$ and if

$$u(t)\in D(A), \qquad \frac{d}{dt} u(t) = Au(t) + f(t, u(t))$$

for a. e. $t \in [0, \infty)$.

We assume that A satisfies

(1.4)
$$\langle u-v, Au-Av \rangle_2 \leq 0$$
 for $u, v \in D(A)$,

and $R(I-\lambda_0 A) = E$ for some $\lambda_0 > 0$.

If the strongly continuous mapping f of $[0, \infty) \times E$ into E has the strongly continuous derivative f_t with respect to t and if both f and f_t carry bounded sets in $[0, \infty) \times E$ into bounded sets in E, then we have

THEOREM 3. Let A, f and f_t satisfy the assumptions mentioned above. Furthermore, if f satisfies

(1.5)
$$\langle u-v, f(t,u)-f(t,v)\rangle_1 \leq \beta(t) \|u-v\|$$

for (t, u), $(t, v) \in (0, \infty) \times E$, where β is a locally Lebesgue integrable function defined on $(0, \infty)$.

Then (D_2) has a unique solution u on $[0, \infty)$ for each $u_0 \in D(A)$.

In the paper [1] F. E. Browder proved the global existence in a Hilbert space of the unique solution of (D_i) under the monotonicity condition.

Recently T. M. Flett ([4], [5]) has given the sufficient conditions for both local and global existence in Banach and Hilbert spaces of the unique solution of (D_1) .

The contents of this paper are as follows: Some lemmas concerning the scalar differential equation (1, 1) are given in §2. Theorems 1, 2 and 3 are proved in §3, 4 and 5, respectively. In §6 we shall give a simple example and some remarks about the relations between our results and those of F. E. Browder and T. M. Flett.

§2. Some lemmas.

In the following Lemmas 2.1, 2.2 and 2.3 we assume that g satisfies the assumptions (i_a) and (ii_a) stated in § 1.

LEMMA 2.1. Let $\{w_n\}$ be a sequence of functions from [0, a] into [0, b] converging uniformly on [0, a] to a function w_0 . Let M > 0 such that

$$|w_n(t) - w_n(s)| \leq M|t-s| \quad \text{for } s, t \in [0, a] \text{ and } n \geq 1.$$

Suppose furthermore that for each $n \ge 1$

$$w'_n(t) \leq g(t, w_n(t))$$
 for $t \in (0, a)$ such that $w'_n(t)$ exists.

Then

$$w'_0(t) \leq g(t, w_0(t))$$
 for a.e. $t \in (0, a)$.

PROOF. Since $|w_0(t) - w_0(s)| \leq M|t-s|$ for $s, t \in [0, a]$, $w'_0(t)$ exists for a.e. $t \in [0, a]$.

Let $A_n = \{t \in [0, a]; w'_n(t) \text{ does not exist}\}$ and let $A = \bigcup_{n=0}^{\infty} A_n$, then mes (A) = 0. Set

3-3.

. |-

$$B = \{t \in (0, a]; \lim_{h \to 0} \frac{1}{h} \int_{t}^{t+h} g(s, w_0(s)) \, ds = g(t, w_0(t))\}.$$

Then, by (i_a) , we have mes ([0, a] - B) = 0. For each $t \in \{[0, a] - A\} \cap B$, $n \ge 1$ and for sufficiently small h > 0

$$w_n(t+h)-w_n(t) \leq \int_t^{t+h} g(s, w_n(s)) \, ds.$$

By the Lebesgue's dominated convergence theorem, we have

$$w_0(t+h)-w_0(t)\leq \int_t^{t+h}g(s,w_0(s))\,ds.$$

Dividing both sides by h>0 and letting $h\to 0$, we have $w'_0(t) \leq g(t, w_0(t))$. Thus we have the inequality

$$w'_0(t) \leq g(t, w_0(t))$$
 for a.e. $t \in (0, a)$.

 $\mathbf{208}$

LEMMA 2.2. Let M>0 and Φ be a set of functions from [0, a] into [0, b] with the property that for all $s, t \in [0, a]$ and $w \in \Phi$

$$|w(t) - w(s)| \leq M|t-s|.$$

Let $z = \sup \{w : w \in \Phi\}$, and suppose that for each $w \in \Phi$

(2.2)
$$w'(t) \leq g(t, w(t))$$
 for $t \in (0, a)$ such that $w'(t)$ exists.

Then

$$z'(t) \leq g(t, z(t))$$
 for a.e. $t \in (0, a)$.

PROOF. We follow an argument essentially given in T. M. Flett [4]. By the definition of z and (2, 1), z satisfies

$$|z(t) - z(s)| \leq M|t - s|$$

and

$$0 \leq \boldsymbol{z}(t) - \boldsymbol{w}(t) \leq \boldsymbol{z}(s) - \boldsymbol{w}(s) + 2M|t - s|$$

for all $s, t \in [0, a]$ and all $w \in \Phi$. From this it follows that for each positive integer n we can find a positive integer k, a partition of [0, a] into k subintervals of equal length, and k functions $w_1, \dots, w_k \in \Phi$ such that in the jth subinterval

$$0 \leq z(t) - w_j(t) \leq 1/n.$$

We put $w^{(n)} = Max \{w_1, \dots, w_k\}$. Then $w^{(n)}$ satisfies (2.1) and (2.2). Since

$$0 \leq z(t) - w^{(n)}(t) \leq 1/n$$

for all $t \in [0, a]$, the sequence $\{w^{(n)}\}$ converges uniformly to z on [0, a], and the required result follows from Lemma 2.1.

LEMMA 2.3. Let w be an absolutely continuous function from [0, a]into [0, b] such that $w(0)=(D^+w)(0)=0$ and

$$w'(t) \leq g(t, w(t))$$
 for a.e. $t(0, a)$.

Then $w \equiv 0$ on [0, a].

PROOF. The method of the following proof is essentially due to that of Theorem 2.2 in [2].

Suppose that there exists a σ , $0 < \sigma \leq a$ such that $w(\sigma) > 0$. Then there exists a solution z of (1, 1) with $z(\sigma) = w(\sigma)$ on some interval to the left of σ . As far to the left of σ as z exists, it satisfies the inequality $z(t) \leq w(t)$, for if this were not the case there would exist a positive σ_1 to the left of σ where $z(\sigma_1) = w(\sigma_1)$, and z(t) > w(t) for $t < \sigma_1$, and sufficiently near σ .

; ·•

By the assumptions on w we have for sufficiently small h>0

$$w(\sigma_1) - w(\sigma_1 - h) \leq \int_{\sigma_1 - h}^{\sigma_1} g(t, w(t)) dt.$$

On the other hand, from the definition of z we have, since $z(\sigma_1) = w(\sigma_1)$,

$$w(\sigma_1)-z(\sigma_1-h)=\int_{\sigma_1-h}^{\sigma_1}g(t,z(t))\,dt,$$

where h is assumed so small that z exists on $[\sigma_1-h, \sigma_1]$. Thus

$$z(\sigma_1-h)-w(\sigma_1-h) \leq \int_{\sigma_1-h}^{\sigma_1} \left[g(t,w(t))-g(t,z(t))\right] dt.$$

Since g is nondecreasing in τ and z(t) > w(t) on $[\sigma_1 - h, \sigma_1)$ we have the contradiction $z(\sigma_1 - h) \leq w(\sigma_1 - h)$.

We shall next show that z(t)>0 on $0 < t \le \sigma$, as far as it exists. Otherwise $z(t_0)=0$ for some t_0 , $0 < t_0 < \sigma$, and the function \tilde{z} defined by

$$\tilde{z}(t) = \begin{cases} 0 & (0 \leq t \leq t_0) \\ z(t) & (t_0 \leq t \leq \sigma) \end{cases}$$

would be a function on $[0, \sigma]$ not identically zero, which satisfies

$$\tilde{z}'(t) = g(t, \tilde{z}(t)), \qquad \tilde{z}(0) = (D^+ \tilde{z})(0) = 0.$$

This contradicts the assumption (ii_a). Therefore

 $0 < z(t) \leq w(t)$

as far to the left of σ as z exists.

It therefore follows that z can be continued as a solution, call it z again, on the whole interval $0 < t \le \sigma$. Since $\lim_{t \to 0} z(t) = 0$, we define z(0) = 0. Since

$$0 < z(t)/t \leq w(t)/t$$
 for $0 < t \leq \sigma$

and $(D^+w)(0)=0$, we have $(D^+z)(0)=0$. From (ii_a) it follows $z\equiv 0$ on $[0, \sigma]$, but this contradicts the fact $z(\sigma)=w(\sigma)>0$.

LEMMA 2.4. If g satisfies the assumptions (i_b) , (ii_b) and (iii_b) stated in § 1, then for each T>0 and $d\geq 0$ there exists a unique solution w of (1, 1)on [0, T] with the initial condition w(0)=d.

PROOF. Suppose that there are two solutions w_1 and w_2 of (1.1) on [0, T] satisfying $w_1(0) = w_2(0) = d$. Let z be the function defined by

$$z(t) = |w_1(t) - w_2(t)|$$
 for $t \in [0, T]$.

Then there exist $\sigma \in (0, T]$ and $\sigma_0 \in [0, \sigma)$ such that $z(\sigma_0)=0$ and z(t)>0 for $t \in (\sigma_0, \sigma]$.

Since z is absolutely continuous, z'(t) exists for a. e. $t \in [\sigma_0, \sigma]$ and, by (ii_b) , we have

$$z'(t) \leq |w_1'(t) - w_2'(t)| = |g(t, w_1(t)) - g(t, w_2(t))|$$

$$\leq m_B(t) \alpha(z(t)),$$

where $B = \{(t, w_1(t)), (t, w_2(t)); t \in [\sigma_0, \sigma]\}.$

Since α is continuous and z is absolutely continuous, we have for sufficiently small $\varepsilon > 0$

$$\int_{\sigma_0+\epsilon}^{\sigma} z'(t)/\alpha\Big(z(t)\Big)dt = \int_{z(\sigma_0+\epsilon)}^{z(\sigma)} d\tau/\alpha(\tau) \leq \int_{\sigma_0+\epsilon}^{\sigma} m_B(\tau) d\tau$$

(see [13], p. 211).

By (iii_b) and by letting $\varepsilon \downarrow 0$, we have a contradiction.

§3. Proof of Theorem 1.

Let the functionals \langle , \rangle_1 and \langle , \rangle_2 be as in §1. We shall give the following two lemmas which are used throughout this paper.

LEMMA 3.1. (cf. M. Hasegawa [6]). For u, v and w in E,

(1)
$$|\langle u, v \rangle_1| \leq ||v||,$$

(2)
$$\langle u, v + w \rangle_1 \leq \langle u, v \rangle_1 + \langle u, w \rangle$$

(3) $\langle u, du + v \rangle_2 = d ||u|| + \langle u, v \rangle_2$ for real number d,

$$(4) \qquad \langle u, v \rangle_2 \leq \langle u, v \rangle_1$$

(5)
$$\langle u, v+w \rangle_2 \leq \langle u, v \rangle_2 + \langle u, w \rangle_1,$$

(6)
$$\langle u, v \rangle_2 \leq \langle u, v - w \rangle_2 + ||w||$$

PROOF. (1) and (2) are easy consequences of the definition. For any real number d we have

$$\langle u, du + v \rangle_{2} = \frac{1}{2} \lim_{h \downarrow 0} \frac{1}{h} \left(\|u + h(du + v)\| - \|u - h(du + v)\| \right)$$

$$= \frac{1}{2} \left\{ \lim_{h \downarrow 0} \frac{1 + dh}{h} \left(\|u + \frac{1}{1 + dh} v\| - \|u\| \right)$$

$$-\lim_{h \downarrow 0} \frac{1 - dh}{h} \left(\|u - \frac{h}{1 - dh} v\| - \|u\| \right) \right\} + d\|u\|$$

$$= d\|u\| + \frac{1}{2} \left(\langle u, v \rangle_{1} - \langle u, -v \rangle_{1} \right) = d\|u\| + \langle u, v \rangle_{2},$$

÷.

which proves (3).

(4) follows readily from (2). By the definitions and (2) we have

$$\langle u, v \rangle_2 + \langle u, w \rangle_1 - \langle u, v + w \rangle_2 \geq \frac{1}{2} \Big(\langle u, w \rangle_1 + \langle u, -(v + w) \rangle_1 - \langle u, -v \rangle_1 \Big) \geq \frac{1}{2} \Big(\langle u, -v \rangle_1 - \langle u, -v \rangle_1 \Big) = 0,$$

which implies (5).

To prove (6) we note that

$$\langle u, v \rangle_{2} = \frac{1}{2} \lim_{h \downarrow 0} \frac{1}{h} \Big(\|u + hv\| - \|u - hv\| \Big)$$

= $\frac{1}{2} \lim_{h \downarrow 0} \frac{1}{h} \Big(\|u + h(v - w) + hw\| - \|u - h(v - w) - hw\| \Big)$
 $\leq \frac{1}{2} \lim_{h \downarrow 0} \frac{1}{h} \Big(\|u + h(v - w)\| - \|u - h(v - w\| + 2h\|w\| \Big)$
= $\langle u, v - w \rangle_{2} + \|w\|.$

LEMMA 3.2. Let u(t) be a E-valued function defined on a real interval I such that u'(t) and $\frac{d}{dt} ||u(t)||$ exist for a.e. $t \in I$. Then

$$\frac{d}{dt} \|u(t)\| = \langle u(t), u'(t) \rangle_2 \quad \text{for a. e. } t \in I.$$

PROOF. If we denote $D^+u(t)$ and $D^-u(t)$ respectively the right and left derivatives of u(t). Then

$$\begin{split} \left| \frac{1}{h} \Big(\|u(t+h)\| - \|u(t-h)\| \Big) - \frac{1}{h} \Big(\|u(t) + hD^+u(t)\| - \|u(t)\| \Big) \\ &+ \frac{1}{h} \Big(\|u(t) - hD^-u(t)\| - \|u(t)\| \Big) \right| \\ = \frac{1}{h} \bigg| \|u(t+h)\| - \|u(t-h)\| - \|u(t) + hD^+u(t)\| + \|u(t) - hD^-u(t)\| \bigg| \\ &\leq \|\frac{1}{h} \Big(u(t+h) - u(t) \Big) - D^+u(t)\| + \|\frac{1}{h} \Big(u(t-h) - u(t) \Big) + D^-u(t)\| \\ &\to 0 \text{ as } h \downarrow 0 \qquad \text{for a. e. } t \in I. \end{split}$$

Thus we have

$$D^+ \|u(t)\| + D^- \|u(t)\| = \langle u(t), D^+ u(t) \rangle_1 - \langle u(t), -D^- u(t) \rangle_1$$

for a. e. $t \in I$.

It follows from the assumptions that

$$\frac{d}{dt} \|u(t)\| = \langle u(t), u'(t) \rangle_2 \quad \text{for a. e. } t \in I.$$

PROOF of THEOREM 1. Since f is strongly continuous on $[0, T] \times S$ (u_0, r) there exist constants $0 < r_0 \le r$, $0 < T_1 \le T$ and M > 0 such that

 $||f(t, u)|| \leq M$ for $(t, u) \in [0, T_1] \times S(u_0, r_0)$.

Let $T_0 = \text{Min } \{r_0/M, T_1\}$ and let *n* be a positive integer. We set $t_0^n = 0$, and $u_n(t_0^n) = u_0$. Inductively for each positive integer *i*, define δ_i^n , t_i^n , $u_n(t_{i-1}^n)$ as follows (cf. G. Webb [14]):

 $(3.1) \delta_{i}^{n} \ge 0, t_{i-1}^{n} + \delta_{i}^{n} \le T_{0};$

(3.2) If
$$||v - u_n(t_{i-1}^n)|| \leq M \delta_i^n$$
 and $t_{i-1}^n \leq t \leq t_{i-1}^n + \delta_i^n$, then $||f(t, v) - f(t_{i-1}^n, u_n(t_{i-1}^n))|| \leq 1/n$;

$$(3.3) \|u_n(t_{i-1}^n) - u_0\| \leq r_0,$$

and δ_i^n is the largest number such that (3.1), (3.2) and (3.3) hold. Let $t_i^n = t_{i-1}^n + \delta_i^n$. We set

$$u_n(t) = u_n(t_{i-1}^n) + \int_{t_{i-1}^n}^t f(s, u_n(t_{i-1}^n)) ds$$
 for each $t \in [t_{i-1}^n, t_i^n]$.

Then for each $t \in [t_{k-1}^n, t_k^n]$

$$u_{n}(t) = u_{n}(t_{k-1}^{n}) + \int_{t_{k-1}^{n}}^{t} f\left(s, u_{n}(t_{k-1}^{n})\right) ds$$

= $u_{n}(t_{k-1}^{n}) + \int_{t_{k-2}^{n}}^{t_{k-1}^{n}} f\left(s, u_{n}(t_{k-2}^{n})\right) ds + \int_{t_{k-1}^{n}}^{t} f\left(s, u_{n}(t_{k-1}^{n})\right) ds$
= $\cdots = u_{0} + \sum_{j=1}^{k-1} \int_{t_{j-1}^{n}}^{t_{j}^{n}} f\left(s, u_{n}(t_{j-1}^{n})\right) ds + \int_{t_{k-1}^{n}}^{t} f\left(s, u_{n}(t_{k-1}^{n})\right) ds.$

For each t, s (say t > s) in $[0, T_0]$ there exist i, k such that $t \in [t_{i-1}^n, t_i^n]$ and $s \in [t_{k-1}^n, t_k^n]$. Then

$$\begin{aligned} \|u_n(t) - u_n(s)\| &\leq \int_s^{t_k^n} \|f\left(s, u_n(t_{k-1}^n)\right)\| \, ds + \sum_{j=k+1}^{i-1} \int_{t_{j-1}^n}^{t_j^n} \|f\left(s, u_n(t_{j-1}^n)\right)\| \, ds \\ &+ \int_{t_{i-1}^n}^t \|f\left(s, u_n(t_{i-1}^n)\right)\| \, ds \end{aligned}$$

$$\leq M(t_k^n - s) + \sum_{j=k+1}^{i-1} M(t_j^n - t_{j-1}^n) + M(t - t_{i-1}^n)$$

= $M(t-s).$

On the other hand

$$\begin{aligned} \|u_n(t) - u_0\| &\leq \sum_{j=1}^{i-1} \int_{t_{j-1}}^{t_j^n} \|f\left(s, u_n(t_{j-1}^n)\right)\| \, ds + \int_{t_{i-1}^n}^t \|f\left(s, u_n(t_{i-1}^n)\right)\| \, ds \\ &\leq Mt \leq r_0. \end{aligned}$$

We shall show that there exists some positive integer N=N(n) such that $t_N^n = T_0$. Suppose, on the contrary, that this were not true. Then, since $\{t_i^n\}$ is a nondecreasing sequence bounded from above, there is a t_0 in $(0, T_0]$ such that $\lim_{t \to \infty} t_i^n = t_0$.

Since $||u_n(t_i^n) - u_n(t_k^n)|| \le M |t_i^n - t_k^n| \to 0$ as $i, k \to \infty$, $\lim_{i \to \infty} u_n(t_i^n) = v_0$ exists. Let $\sigma_1 > 0$ such that

(3.5)
$$||f(t, v) - f(t_0, v_0)|| \le 1/2n$$

whenever $||v-v_0|| \leq 2\sigma_1$ and $|t-t_0| \leq 2\sigma_1$.

Since $\lim_{k\to\infty} f(t_k^n, u_n(t_k^n)) = f(t_0, v_0)$ there exist $\sigma_2 > 0$ and sufficiently large positive integer *i* such that

(3.6)
$$||f(t_0, v_0) - f(t_{i-1}^n, u_n(t_{i-1}^n))|| \leq 1/2n$$

whenever $t_0 - t_{i-1}^n \leq \sigma_2$ and $||v_0 - u_n(t_{i-1}^n))|| \leq \sigma_2$.

Set $\sigma = Min \{\sigma_1, \sigma_2\}$. Then there exists a positive integer j such that

(3.7)
$$\delta_j^n < \operatorname{Min} \{\sigma/2M, \sigma\}.$$

Thus (3.5), (3.6) and (3.7) hold for σ and $k = \text{Max} \{i, j\}$. Consequently, if $||v - u_n(t_{k-1}^n)|| \leq M(\delta_k^n + \sigma/4M)$ and $t_{k-1}^n \leq t \leq t_{k-1}^n + \sigma$, then

$$||v-v_0|| \leq ||v-u_n(t_{k-1}^n)|| + ||u_n(t_{k-1}^n)-v_0|| \leq 3\sigma/4 + \sigma < 2\sigma,$$

and

$$|t-t_0| \leq |t-t_{k-1}^n| + |t_0-t_{k-1}^n| \leq 2\sigma$$
.

It therefore follows that

$$\begin{split} \|f(t,v) - f\left(t_{k-1}^{n}, u_{n}(t_{k-1}^{n})\right)\| &\leq \|f(t,v) - f(t_{0},v_{0})\| \\ &+ \|f(t_{0},v_{0}) - f\left(t_{k-1}^{n}, u_{n}(t_{k-1}^{n})\right)\| \\ &\leq 1/2n + 1/2n = 1/n. \end{split}$$

This is a contradiction to the choice of δ_k^n .

214

We next show that the sequence of continuous functions $\{u_n(t)\}$ converges uniformly to a E-valued function u(t) on $[0, T_0]$. For this we set $w_{mn}(t) = ||u_m(t) - u_n(t)||$ for $m > n \ge 1$ and $t \in [0, T_0]$, and remark first that, since

(3.8) $|w_{mn}(t) - w_{mn}(s)| \le 2M|t-s|$ for $s, t \in [0, T_0]$, $w'_{mn}(t)$ exists for a. e. $t \in [0, T_0]$.

For each $t \in (0, T_0)$ such that $w'_{mn}(t)$ exists there exist positive integers *i* and *j* such that $t \in (t_{i-1}^n, t_i^n)$ and $t \in (t_{j-1}^m, t_j^m)$.

By Lemma 3.1 (1), (6) and Lemma 3.2 we have

(3.9)
$$w'_{mn}(t) = \langle u_m(t) - u_n(t), f(t, u_m(t_{j-1}^m)) - f(t, u_n(t_{i-1}^n)) \rangle_2$$
$$\leq g(t, w_{mn}(t)) + ||f(t, u_m(t)) - f(t, u_m(t_{j-1}^m))||$$
$$+ ||f(t, u_n(t)) - f(t, u_n(t_{i-1}^m))||.$$

On the other hand

 $\|u_{m}(t) - u_{m}(t_{j-1}^{m})\| \leq M|t - t_{j-1}^{m}| \leq M\delta_{j}^{m} \text{ and } \|u_{n}(t) - u_{n}(t_{i-1}^{n})\| \leq M\delta_{i}^{n}.$ Thus we have by (3.2)

(3.10)
$$w'_{mn}(t) \leq g\left(t, w_{mn}(t)\right) + 1/m + 1/n \leq g\left(t, w_{mn}(t)\right) + 2/n$$

for a. e. $t \in (0, T_0)$. Let $w_n(t) = \sup_{m > n} \{w_{mn}(t)\}$ for $t \in [0, T_0]$. Then $w_n(0) = (0)$ for all *n*. It thus follows from (3.8), (3.10) and Lemma 2.2 that

(3.11)
$$|w_n(t) - w_n(s)| \leq 2M|t-s|$$
 for $s, t \in [0, T_0]$,

and

(3.12)
$$w'_n(t) \leq g(t, w_n(t)) + 2/n$$
 for a.e. $t \in (0, T_0)$.

Since

$$0 \leq w_n(t) \leq w_n(0) + 2Mt \leq 2MT_0 \quad \text{for } n \geq 1 \text{ and } t \in [0, T_0]$$

the sequence $\{w_n\}$ is equicontinuous and uniformly bounded, and hence it has a subsequence converging uniformly on $[0, T_0]$ to a function w, and obviously w(0)=0. From (3.12) and the proof of Lemma 2.1 we have

$$w'(t) \leq g(t, w(t))$$
 for a.e. $t \in (0, T_0)$.

We show next that $(D^+w)(0)=0$. Since f is continuous at $(0, u_0)$, given $\varepsilon > 0$ we can find $\delta > 0$ such that $||f(t, u) - f(t, u_0)|| < \varepsilon$ whenever $0 \le t \le \delta$ and $||u-u_0|| \le \delta$. Let $\delta_0 = \text{Min } \{\delta, \delta/M\}$. Since $||u_n(t)-u_0|| \le Mt \le \delta$, $||f(t, u_m(t)) - f(t, u_n(t))|| < 2\varepsilon$ whenever $m > n \ge 1$ and $t \in [0, \delta_0]$. By Lemma 3.1 (1) and (3.9) we have

$$w'_{mn}(t) = \langle u_m(t) - u_n(t), f(t, u_m(t_{j-1}^m)) - f(t, u_n(t_{i-1}^n)) \rangle_2$$

$$\leq \| f(t, u_m(t_{j-1}^m)) - f(t, u_m(t_{i-1}^n)) \|$$

$$\leq \| f(t, u_m(t)) - f(t, u_n(t)) \| + 2/n \leq 2(\varepsilon + 1/n)$$

for a. e $t \in (0, \delta_0)$, and hence, by integrating the above inequality,

 $0 \leq w_{mn}(t) \leq 2(\varepsilon + 1/n) t,$

whence $(D^+w)(0) = 0$.

From Lemma 2.3 we deduce now that $w \equiv 0$, and this implies that the sequence $\{u_n\}$ is uniformly convergent on $[0, T_0]$. The limit u of this sequence satisfies

$$u(t) = u_0 + \int_0^t f(s, u(s)) ds \quad \text{for } t \in [0, T_0].$$

To show this, note that

$$\int_{0}^{t} f(s, u(s)) ds = \sum_{j=1}^{k-1} \int_{t_{j-1}}^{t_{j}^{n}} f(s, u(s)) ds + \int_{t_{k-1}}^{t} f(s, u(s)) ds$$

for $t \in [t_{k-1}^n, t_k^n]$. Then we have by (3.4)

$$\begin{split} \left\| u_{n}(t) - \left(u_{0} + \int_{0}^{t} f\left(s, u(s)\right) ds \right) \right\| \\ & \leq \sum_{j=1}^{k-1} \int_{t_{j-1}}^{t_{j}^{n}} \left\| f\left(s, u_{n}(t_{j-1}^{n})\right) - f\left(s, u(s)\right) \right\| ds \\ & + \int_{t_{k-1}}^{t} \left\| f\left(s, u_{n}(t_{k-1}^{n})\right) - f\left(s, u(s)\right) \right\| ds \\ & \leq \left[1/n + \max_{0 \leq s \leq T_{0}} \left\| f\left(s, u_{n}(s)\right) - f\left(s, u(s)\right) \right\| \right] T. \end{split}$$

Because of the uniform convergence of $\{u_n\}$ to u on $[0, T_0]$, $C = \{u_n(t), u(t); 0 \le t \le T_0, n = 1, 2, \cdots\}$ is a compact set in E. Since f(t, u) is uniformly continuous on $[0, T_0] \times C$ we have

$$\underset{0\leq s\leq T_{0}}{\operatorname{Max}}\left\|f\left(s, u_{n}(s)\right) - f\left(s, u(s)\right)\right\| \to 0 \text{ as } n \to \infty,$$

and hence the required result follows.

Thus u is a strongly continuously differentiable solution of (D_1) on $[0, T_0]$.

Let v be another strongly continuously differentiable solution of (D_1) on $[0, T_0]$ and let z(t) = ||u(t) - v(t)||. Then z(0) = 0, and

$$\boldsymbol{z}'(t) = \langle \boldsymbol{u}(t) - \boldsymbol{v}(t), f(t, \boldsymbol{u}(t)) - f(t, \boldsymbol{v}(t)) \rangle_2 \leq \boldsymbol{g}(t, \boldsymbol{z}(t))$$

for a. e. $t \in (0, T_0)$. The fact $(D^+z) (0) = 0$ follows from

$$0 \leq z(t)/t = \|(u(t) - v(t))/t\| \rightarrow 0 \text{ as } t \rightarrow 0.$$

It therefore follows from Lemma 2.3 that $z \equiv 0$. The proof is complete.

§4. Proof of Theorem 2.

PROOF of THEOREM 2. It follows from Lemma 2.4 and Theorem 1 that there exists a unique local solution u of (D_1) on some interval $[0, T_0^*)$. We assume that $[0, T_0^*)$ is a maximal interval of existence of u. We have only to show that $T_0^* < \infty$ leads to a contradiction.

Let $w(t) = ||u(t) - u_0||$ for $t \in [0, T_0^*)$. Then, by Lemma 3.1 (6), we have

C(M)

(4.1)

$$w'(t) = \langle u(t) - u_0, f(t, u(t)) \rangle_2$$

$$\leq \langle u(t) - u_0, f(t, u(t)) - f(t, u_0) \rangle_2 + ||f(t, u_0)| \rangle_2$$

$$\leq a(t, w(t)) + L$$

 $\leq g(t, w(t)) + L$ for a. e. $t \in (0, T_0^*)$, where $L = \max_{0 \leq t \leq T_0^*} ||f(t, u_0)||$.

In virtue of (i_b) , (ii_b) and (iii_b) the differential equation

has a unique solution z on $[0, T_0^*]$ with the initial condition z(0)=0. It therefore follows from (4.1) that

(4.3)
$$w(t) \leq z(t) \quad \text{for all } t \in [0, T_0^*).$$

In fact, if we assume that there exists a $\sigma \in (0, T_0^*)$ such that $w(\sigma) > z(\sigma)$. Then there exists a $\sigma_0 \in [0, \sigma)$ such that $w(\sigma_0) = z(\sigma_0)$ and w(t) > z(t) for $t \in (\sigma_0, \sigma]$.

Let
$$\theta(t) = w(t) - z(t)$$
. Then, by (4.1), (4.2) and (ii_b), we have $\theta'(t) = w'(t) - z'(t) \leq g(t, w(t)) - g(t, z(t)) \leq m_B(t)\alpha(\theta(t))$

for a. e. $t \in [\sigma_0, \sigma]$, where $B = \{(t, w(t)), (t, z(t)); \sigma_0 \leq t \leq \sigma\}$.

Since α is continuous and θ is absolutely continuous, we have for sufficiently small $\varepsilon > 0$

$$\int_{\sigma_0+\epsilon}^{\sigma} \theta'(t)/\alpha\Big(\theta(t)\Big)dt = \int_{\theta(\sigma_0+\epsilon)}^{\theta(\sigma)} d\tau/\alpha(\tau) \leq \int_{\sigma_0+\epsilon}^{\sigma} m_B(t) dt.$$

By (iii_b) and by letting $\varepsilon \downarrow 0$, we have a contradiction.

(4.3) implies that

$$||u(t)|| \leq ||u_0|| + \underset{0 \leq t \leq T_0^*}{\operatorname{Max}} \{z(t)\} \text{ for } t \in [0, T_0^*).$$

Since $\{f(t, u(t)); t \in [0, T_0^*)\}$ is a bounded set in E, we have

$$\|u(t)-u(s)\| \leq \left|\int_{s}^{t} \|f(\tau, u(\tau))\| d\tau\right| \to 0 \text{ as } s, t \uparrow T_{0}^{*}.$$

Let $v_0 = \lim_{t \uparrow T_{0^*}} u(t)$, then we can apply Theorem 1 once more with the initial condition $u(T_0^*) = v_0$, and obtain a unique continuation of the solution u beyond T_0^* , which contradicts the assumption on T_0^* .

§5. Proof of Theorem 3.

Throughout this section we assume that the dual space E^* is uniformly convex.

We say that F is a duality mapping of E into E^* if to each u in E it assigns (in general a set) F(u) in E^* determined by

$$F(u) = \{x^*; x^* \in E^* \text{ such that } (u, x^*) = ||u||^2 = ||x^*||^2\},$$

where (u, x^*) denotes the value of x^* at u.

Since E^* is uniformly convex F is single-valued and uniformly continuous on any bounded subset of E (see [9]).

LEMMA 5.1. For each $u \neq 0$ and v in E

$$\langle u, v \rangle_2 = Re(v, F(u))/||u||.$$

PROOF. Since $\langle u, v \rangle_1 = \operatorname{Re}(v, F(u))/||u||$ for each $u \neq 0$ and v in E (see the proof of Proposition 2.5 in [11]),

$$\langle u, v \rangle_2 = \frac{1}{2} \operatorname{Re}\left(v, F(u)\right) - \operatorname{Re}\left(-v, F(u)\right) = \operatorname{Re}\left(v, F(u)\right).$$

We recall that A satisfies

(5.1)
$$\langle u-v, Au-Av \rangle_2 \leq 0$$
 for $u, v \in D(A)$,

and $R(I-\lambda_0 A) = E$ for some $\lambda_0 > 0$. For such an operator A we have

LEMMA 5.2. $(I - \lambda A)^{-1}$ exists for any $\lambda > 0$. Set $J_n = (I - \frac{1}{n} A)^{-1}$ and $A_n = A \ J_n = n (J_n - I)$ for $n = 1, 2, \dots, .$ Then

(1)
$$||J_n u - J_n v|| \leq ||u - v|| \quad for \ u, v \in E,$$

(2)
$$||A_n u|| \leq A u|| \quad for \ u \in D(A),$$

(3)
$$\langle u-v, A_nu-A_nv \rangle_2 \leq 0$$
 for $u, v \in E$,

and

(4) A is demiclosed, that is, if $u_n \in DA$, $n=1, 2, \dots, u_n \rightarrow u$ (strongly in E) and $Au_n \rightarrow v$ (weakly in E), then $u \in D(A)$ and v = Au.

PROOF. In virtue of Lemma 5.1, -A is m-monotonic in the sense of T. Kato [9], and hence, the existence of $(I - \lambda A)^{-1}$ and (1), (2) and (4) follows from Lemma 2.5 in [9]. To prove (3) note that

$$\langle u-v, A_n u-A_n v \rangle_2 = n \langle u-v, J_n u-J_n v-(u-v) \rangle_2$$

= $n (\langle u-v, J_n u-J_n v \rangle_2 - ||u-v||)$
 $\leq n (||J_n u-J_n v|| - ||u-v||) \leq 0,$

where we used (1) and Lemma 3.1(1), (4).

In Theorem 2, if $g(t, \tau) = \beta(t) \tau$, where β is a locally Lebesgue integrable function defined on $(0, \infty)$, then the conclusion of Theorem 2 remains valid. In fact, it is obvious that this function $\beta(t)\tau$ satisfies the conditions (i_b) , (ii_b) and (iii_b) except that $\beta(t)\tau$ need not be nondecreasing in τ for fixed t. However, the nondecreasing nature of g in τ was used in establishing Lemma 2.3 which is valid for this $\beta(t)\tau$.

LEMMA 5.3. Under the hypothesis of Theorem 3 the differential equation

$$\frac{d}{dt}u_n(t) = A_nu_n(t) + f(t, u_n(t)), \qquad u_n(0) = u_0 \in E,$$

has a unique strongly continuously differentiable solution u_n defined on $[0, \infty)$.

PROOF. Since $||A_n u - A_n v|| \leq 2n ||u - v||$ for u, v in $E, A_n u + f(t, u)$ carries bounded sets in $[0, \infty) \times E$ into bounded sets in E. By Lemma 3.1 (5) and Lemma 5.2(3) we have

$$\langle u - v, A_n u + f(t, u) - (A_n v + f(t, v)) \rangle_2$$

$$\leq \langle u - v, A_n u - A_n v \rangle_2 + \langle u - v, f(t, u) - f(t, v) \rangle_1$$

$$\leq \beta(t) \| u - v \|$$

for (t, u), $(t, v) \in [0, \infty) \times E$.

Hence the assertion follows directly from Theorem 2 and the above mentioned remark.

We shall now deduce some estimates for $u_n(t)$.

LEMMA 5.4. Let $u_0 \in D(A)$. Then $\{u_n(t)\}$ and $\{u'_n t\}$ are bounded on any finite interval of $[0, \infty)$.

PROOF. By Lemma 3.1 (3) and Lemma 5.2 (2), (3)

S. Kato

$$\begin{aligned} \frac{d}{dt} \|u_n(t) - u_0\| &= \langle u_n(t) - u_0, \ A_n u_n(t) + f(t, u_n(t)) \rangle_2 \\ &\leq \langle u_n(t) - u_0, \ A_n u_n(t) \rangle_2 + \langle u_n(t) - u_0, \ f(t, u_n(t)) \rangle_1 \\ &\leq \langle u_n(t) - u_0, \ f(t, u_n(t)) - f(t, u_0) \rangle_1 + \|f(t, u_0)\| + \|A_n u_0\| \\ &\leq \beta(t) \|u_n(t) - u_0\| + \|f(t, u_0)\| + \|A u_0\|. \end{aligned}$$

Thus we have

$$||u_n(t) - u_0|| \leq \int_0^t \exp\left(\int_s^t \beta(\tau) \, d\tau\right) \left(||f(s, u_0)|| + ||A \, u_0||\right) ds$$

for $n=1, 2, \cdots$. This implies

9 **9** 9 9

(5.2)
$$||u_n(t)|| \leq ||u_0|| + \int_0^t \exp\left(\int_s^t \beta(\tau) \, d\tau\right) \left(||f(s, u_0)|| + ||A| \, u_0||\right) ds$$

for $t \in [0, \infty)$ and $n=1, 2, \cdots$.

For each fixed h>0 we have, by Lemma 3.1(5) and Lemma 5.2(3),

$$\begin{split} \frac{d}{dt} \|u_n(t+h) - u_n(t)\| &= \langle u_n(t+h) - u_n(t), \ A_n u_n(t+h) - A_n u_n(t) \\ &+ f(t+h, \ u_n(t+h)) - f(t, \ u_n(t)) \rangle \\ &\leq \langle u_n(t+h) - u_n(t), \ f(t+h, \ u_n(t+h)) - f(t, \ u_n(t)) \rangle_1 \\ &\leq \langle u_n(t+h) - u_n(t), \ f(t+h, \ u_n(t+h)) - f(t, \ u_n(t)) \rangle_1 \\ &+ \|f(t+h, \ u_n(t)) - f(t, \ u_n(t))\| \\ &\leq \beta(t+h) \|u_n(t+h) - u_n(t)\| + \|f(t+h, \ u_n(t)) - f(t, \ u_n(t))\| . \end{split}$$

It follows that

$$\|u_{n}(t+h) - u_{n}(t)\| \leq \|u_{n}(h) - u_{n}(0)\| + \int_{0}^{t} \exp\left(\int_{s}^{t} \beta(\tau+h) d\tau\right) \|f(s+h, u_{n}(s)) - f(s, u_{n}(s))\| ds$$

By dividing the above inquality by h and letting $h \downarrow 0$, we have

(5.3)
$$||u'_n(t)|| \leq ||u'_n(0)|| + \int_0^t \exp\left(\int_s^t \beta(\tau) \, d\tau\right) ||f_s(s, u_n(s))|| \, ds$$

for $n=1, 2, \cdots$. This completes the proof.

We shall now give the proof of Theorem 3.

PROOF of THEOREM 3. By (5.2) and (5.3) there exists constant $M_r > 0$ for each T > 0 such that

(5.4) $||u'_n(t)|| + ||f(t, u_n(t))|| \le M_r$ for $t \in [0, T]$ and $n \ge 1$.

By Lemma 3.1(5) and Lemma 5.1, for each $t \in [0, T]$ such that

220

÷.

$$\frac{d}{dt} \|u_n(t) - u_m(t)\| \text{ exists and } u_n(t) - u_m(t) \neq 0,$$

$$\frac{d}{dt} \|u_n(t) - u_m(t)\| = \langle u_n(t) - u_m(t), A_n u_n(t) - A_m u_m(t) + f(t, u_n(t)) - f(t, u_m(t)) \rangle_2$$

$$\leq \beta(t) \| u_n(t) - u_m(t) \| \\ + 2M_r \| F(u_n(t) - u_m(t)) - F(J_n u_n(t) - J_m u_m(t)) \| / \| u_n(t) - u_m t) \| .$$

It follows that

$$\begin{aligned} \frac{d}{dt} \|u_n(t) - u_m(t)\|^2 &\leq 2\beta(t) \|u_n(t) - u_m(t)\|^2 \\ &+ 4M_T \|F(u_n(t) - u_m(t)) - F(J_n u_n(t) - J_m u_m(t))\|. \end{aligned}$$

On the other hand, for each $t \in [0, T]$ such that $\frac{d}{dt} ||u_n(t) - u_m(t)||$ exists and $u_n(t) - u_m(t) = 0$,

$$\frac{d}{dt} \|u_n(t)-u_m(t)\| = \langle 0, A_n u_n(t)-A_m u_m(t) \rangle_2 = 0.$$

Thus we have

$$\frac{d}{dt} \|u_n(t) - u_m(t)\|^2 \leq 2\beta(t) \|u_n(t) - u_m(t)\|^2 + 4M_r \|F(u_n(t) - u_m(t)) - F(J_n u_n(t) - J_m u_m(t))\|$$

for a. e. $t \in [0, T]$ and $n, m \ge 1$. Consequently

$$\|u_{n}(t) - u_{m}(t)\|^{2} \leq 4M_{T} \int_{0}^{t} \exp\left(\int_{s}^{t} 2\beta(\tau) d\tau\right) \|F(u_{n}(s) - u_{m}(s)) - F(J_{n}u_{n}(s)) - J_{m}u_{m}(s)\| ds$$

for $t \in [0, T]$ and $n, m \ge 1$. In virtue of (5.4) and the definition of A_n

$$\begin{aligned} \|u_n(s) - u_m(s) - (J_n u_n(s) - J_m u_m(s))\| &\leq \frac{1}{n} \|A_n u_n(s)\| + \frac{1}{m} \|A_m u_m(s)\| \\ &\leq M_r (1/n + 1/m) \to 0 \text{ as } n, m \to \infty. \end{aligned}$$

Since F(u) is uniformly continuous on any bounded set in E, $\{u_n(t)\}$ converges uniformly to a continuous function u(t) on [0, T] for each T>0. The absolute continuity of u(t) on [0, T] follows from the inequality

$$||u_n(t) - u_n(s)|| \le \left| \int_s^t ||u_n'(\tau)|| d\tau \right| \le M_T |t-s| \quad \text{for } t, s \in [0, T].$$

We show next that u(t) is a solution of (D_1) .

<u>,</u> 1

By (5.4) we have

(5.5)
$$||A_n u_n(t)|| \le ||u_n'(t)|| + ||f(t, u_n(t))|| \le M_T$$

for $t \in [0, T]$ and $n \ge 1$.

This implies that $\{A_n u_n(t)\}$ is a bounded set in $L^2_E[0, T]$ for each T>0, where $L^2_E[0, T]$ denotes the set of all square integrable E-valued strongly measurable functions on [0, T].

Thus some subsequence of $\{A_n u_n(t)\}$ converges to an element z weakly in L^2_E [0, T]. For notational convenience we assume that $\{A_n u_n(t)\}$ itself converges to z weakly in L^2_E [0, T].

Let C[t] be the set of all weak limit in E of a subsequence of $\{A_n u_n(t)\}$ for each fixed $t \in [0, T]$.

We will show that $u(t) \in D(A)$ for all $t \in [0, T]$ and z(t) = A u(t) for a. e. $t \in [0, T]$ (cf. T. Kato [10]).

To show this we note that for each $v \in C[t]$ there exists a subsequence $\{A_{nm}u_{nm}(t)\}$ such that $w-\lim_{m \downarrow \infty} A_{nm}u_{nm}(t)=v$, where w-lim denotes weak limit in *E*. Since $J_{nm}u_{nm}(t) \rightarrow u(t)$, $J_{nm}u_{nm}(t) \in D(A)$ and $A_{nm}u_{nm}(t)=A$ $J_{nm}u_{nm}(t)$, it follows from the demiclosedness of *A* that

$$u(t) \in D(A)$$
 and $v = A u(t)$.

Hence C[t] consists of only one element for each $t \in [0, T]$. Since any subsequence of $\{A_n u_n(t)\}$ has a subsequence converging weakly to the same element v = v(t), $\{A_n u_n(t)\}$ itself converges weakly to v(t) for each $t \in [0, T]$. Since $\{A_n u_n(t)\}$ converges to z weakly in $L^2_E[0, T]$, z is the strong limit of the type $\sum_i a_i A_{n+i} u_{n+i}$. Here $\{a_i\}$ is a finite set of nonnegative numbers such that $\sum_i a_i = 1$.

Thus we can find a subsequence of the above sequence converging to z(t) strongly in E for a.e. $t \in [0, T]$.

Let U be any open convex neighbourhood of 0 in the weak topology of E. Then there exists an open convex neighbourhood V of 0 in the same topology of E such that $V+V \subset U$.

Since v(t) + V is open convex in the weak topolopy of E, there is a n_0 such that

$$A_n u_u(t) \in v(t) + V$$
 for $n \ge n_0$.

Thus the convex combination of the type $\sum_{i} a_i A_{n+i} u_{n+i}(t)$ belongs to v(t) + Vfor $n \ge n_0$. Hence $z(t) \in (v(t) + V)^{-\omega}$, where $(v(t) + V)^{-\omega}$ denotes the closure of v(t) + V with respect to the weak topology of E. Since $(v(t)+V)^{-\omega} \subset (v(t)+V)+V \subset v(t)+U,$

it follows that $z(t) - v(t) \in U$. This implies that

z(t) = v(t) for a.e. $t \in [0, T]$.

Since $||A_n u_n(t)|| \leq M_T$ the norm of a convex combination of $A_n u_n(t)$'s is also $\leq M_T$. It follows that $||z(t)|| \leq M_T$ for a. e. $t \in [0, T]$ and that z(t) is Bochner integrable on [0, T]. Since $L_E^2[0, T]^* = L_{E^*}^2[0, T]$ and since

$$(u_n(t), x^*) = (u_0, x^*) + \int_0^t \left(A_n u_n(s) + f(s, u_n(s)), x^* \right) ds$$

for each $x^* \in E^*$ and $t \in [0, T]$, we have by going to $n \to \infty$

$$(u(t), x^*) = (u_0, x^*) + \int_0^t (z(s) + f(s, u(s)), x^*) ds.$$

Thus we obtain that $\frac{d}{dt}u(t)$ exists for a. e. $t \in [0, T]$ and

$$\frac{d}{dt} u(t) = z(t) + f(t, u(t)) = A u(t) + f(t, u(t)) \quad \text{for a. e. } t \in [0, T].$$

Since T is arbitrary, the proof is complete.

§6. Remarks and an example.

In this section we give some remarks about the relations between our results and those of F. E. Browder and T. M. Flett. We give also a simple example to which our Theorem 2 applies.

REMARK 1. In the papers [4] and [5] T. M. Flett has given sufficient conditions for the existence in Banach and Hilbert spaces of the unique local solution of (D_1) on some interval $[0, T_0]$ under the following conditions: (A) E is a Banach space and f is a continuous mapping of $[0, T] \times S(u_0, r)$ into E such that for all $(t, u), (t, v) \in (0, T] \times S(u_0, r)$

(6.1)
$$||f(t, u) - f(t, v)|| \le g(t, ||u - v||);$$

(B) E is a Hilbert space with inner product (,) and f is a continuous mapping of $[0, T] \times S(u_0, r)$ into E such that for all $(t, u), (t, v) \in (0, T] \times S(u_0, r)$ (u_0, r)

(6.2)
$$\operatorname{Re}(f(t, u) - f(t, v), u - v) \leq ||u - v||g(t, ||u - v||),$$

where g is a continuous function defined on $(0, T] \times [0, 2r]$ satisfying the condition (ii_a) in §1 in this paper.

In Theorem 1 if we assume that $g(t, \tau)$ is continuous on $(0, T] \times [0, 2r]$,

then we can drop the assumption that $g(t, \tau)$ is nondecreasing in τ for fixed t (cf. [2]).

In virtue of this fact and Lemma 3.1(1), (4) our result is an extension of (A). If E is a Hilbert space with inner product (,), then we can easily see that

$$\langle u, v \rangle_2 = \operatorname{Re}(v, u) / ||u||$$
 for $u \neq 0$ and v in E ,

and hence, our condition of Theorem 1 becomes

$$\operatorname{Re}(f(t, u) - f(t, v), u - v) \leq ||u - v||g(t, ||u - v||)$$

for all (t, u) $(t, v) \in (0, T] \times S(u_0, r)$. Thus our result is also an extension of (B).

Let F(u) be the duality mapping of E into E^* defined in § 5. Then for each $u \neq 0$ and v in E

$$\langle u, v \rangle_2 \leq \operatorname{Re}(v, x^*) / ||u||$$
 for some $x^* \in F(u)$

(see the proof of Proposition 2.5 in [11]).

Thus we can replace the condition of Theorem 1 by the following one.

$$\operatorname{Re}(f(t, u) - f(t, v), x^*) \leq ||u - v||g(t, ||u - v||)$$

for (t, u), $(t, v) \in (0, T] \times S(u_0, r)$ and for all $x^* \in F(u-v)$.

Hence our result is a generalization of (B) into a general Banach space.

Remark 2. In [1] F. E. Browder proved the existence and uniqueness of a strongly continuously differentiable solution of (D_1) on $[0, \infty)$ under the following conditions:

(I) E is a Hilbert space with inner product (,) and f is a continuous mapping of $[0, \infty) \times E$ into E, carring bounded sets in $[0, \infty) \times E$ into bounded sets in E.

(II) There exists a real-valued continuous function c(t) defined on $[0, \infty)$ such that

(6.3)
$$\operatorname{Re}(f(t, u) - f(t, v), u - v) \leq c(t) ||u - v||^2$$

for all (t, u), $(t, v) \in [0, \infty) \times E$.

By the same argument as in Remark 1 we see that Theorem 2 is a generalization into a general Banach space of the above result of F. E. Browder.

The following example shows that the conditions of Theorem 2 are more general than those of F. E. Browder. EXAMPLE. Let $E = R^1$ and let a(t) be the function defined by

$$a(t) = \begin{cases} t (0 \leq t \leq \varepsilon) \\ \varepsilon (t > \varepsilon) \end{cases}$$

where ε is a positive constant. We consider the differential equation

$$\frac{d}{dt} u = f(t, u) = \begin{cases} 1 + \frac{1}{1 + \sqrt{u}} & (t \ge 0, \ u > a(t)) \\ 1 + \frac{1}{1 + \sqrt{a(t)}} & (t \ge 0, \ u \le a(t)). \end{cases}$$

Obviously, the function f(t, u) is continuous from $[0, \infty) \times R^1$ into R. However the function f(t, u) does not satisfy the monotonicity condition (6.3) but does satisfy all our conditions of Theorem 2.

In fact, for $u \neq v$ and t > 0

$$\begin{split} &\langle u - v, f(t, u) - f(t, v) \rangle_2 = (f(t, u) - f(t, v)) \ (u - v) / |u - v| \\ &= \pm (f(t, u) - f(t, v)) \\ &\leq \begin{cases} (1/2\sqrt{a(t)}) |u - v| & (u, v > a(t), t > 0) \\ (1/2\sqrt{a(t)}) |u - v| & (u > a(t), 0 \le v \le a(t), t > 0) \\ (1/2\sqrt{a(t)}) |u - v| & (u > a(t), v < 0, t > 0) \\ 0 & (u, v \le a(t), t > 0). \end{cases}$$

Thus we have

$$\langle u-v, f(t, u)-f(t, v) \rangle_2 \leq (1/2\sqrt{a(t)})|u-v|$$

for all (t, u), $(t, v) \in (0, \infty) \times R^1$.

Set $g(t, \tau) = (1/2\sqrt{a(t)}) \tau$ and $\alpha(t) = t$, then it follows easily that g and α satisfy all our conditions of Theorem 2.

On the other hand we have

$$(f(t, u) - f(t, v), u - v) \leq (1/2\sqrt{a(t)})|u - v|^2$$

for all (t, u), $(t, v) \in (0, \infty) \times \mathbb{R}^1$.

Since $1/2\sqrt{a(t)}$ is discontinuous at 0, the condition (6.3) does not hold.

REMARK 3. In Theorem 3 if A is linear and D(A) is dense in E, then A is the infinitesimal generator of a strongly continuous contraction semi-group $\{T(t); t \ge 0\}$ (see M. Hasegawa [6]). In this case the integral equation

225

$$v(t) = u_0 + \int_0^t T(t-s) f(s, v(s)) ds$$

has a unique solution for each $u_0 \in D(A)$ by the same argument as G. Webb [15]. We don't know whether the solution of the above integral equation is a solution of (D_2) .

Department of Liberal Arts, Kitami Institute of Technology

<u>`</u>

References

- [1] F. E. BROWDER: Nonlinear equations of evolution, Ann. of Math. 8 (1964), 485-523.
- [2] E. CODDINGTON and N. LEVINSON: Theory of ordinary differential equations, New York. 1955.
- [3] J. DIEUDONNE: Foundations of Modern analysis, Academic Press, New york and London, 1960.
- [4] T. M. FLETT: Some applications of Zygmund's lemma to nonlinear differential equations in Banach and Hilbert spaces, Studia Mathematica. Vol. XLIV. (1972), 335-344.
- [5] T. M. FLETT: Addendum and corrigendum to the paper "Some applications of Zygmund's lemma to nonlinear differential equations in Banach and Hilbert spaces", Studia Mathematica. Vol. XLIV (1972). 649-659.
- [6] M. HASEGAWA: On contraction semi-groups and (di)-operator, J. Math. Soc. Japan 18 (1966), 290-302.
- [7] S. KATO: A Remark on a differential equation in Banach space, Mem. Kitami. Inst. Tec. 3 (1972), 505-508.
- [8] S. KATO: A Note on nonlinear differential equation in a Banach space, Proc. Japan Acad. 50 (1974), 313-316.
- [9] T. KATO: Nonlinear semi-groups and evolution equations, J. Math. Soc. Japan. 19 (1967), 508-520.
- [10] T. KATO: Accretive operators and nonlinear evolution equations in Banach spaces, Proc. Symp. Pure Math. Soc. Providence, R. I. (1970), 138-161.
- [11] R. MARTIN: The logarythmic derivative and equations of evolution in a Banach space, J. Math. Soc. Japan. 22 (1970), 411-429.
- [12] E. J. MCSHNE: Integration, Princeton University Press, 1944.
- [13] H. MURAKAMI: On nonlinear ordinary and evolution equations, Funkcial. Ekvac.
 9 (1966), 151-162.
- [14] G. WEBB: Continuous nonlinear perturbation of linear accretive operators in Banach spaces, J. Func. Anal. 10 (1972), 191–203.
- [15] J. A. YORK: A continuous differential equation in Hilbert space without existence, Funccial. Ekvac. 13 (1970), 19-21.

(Received February 7, 1974)

(Revised June 15, 1974)