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\S 1. Introduction and results.

Let E be a Banach space with the dual space E^{*} . The norms in
E and E^{*} are denoted by |||| . We denote by S(u, r) the closed sphere of
center u with radius r.

In this paper we are concerned with nonlinear abstract Cauchy prob-
lems of the forms

(D_{1}) \frac{d}{dt}u(t)=f(t, u(t)) , u(0)=u_{0}\in E ,

and

(D_{2}) \frac{d}{dt}u(t)=Au(t)+f(t, u(t)) , u(0)=u_{0}\in D(A) .

Here A is a nonlinear operator with domain D(A) and range R(A) in E,

and f is a E-valued mapping defined on [0, T]\cross S(u_{0}, r) or on [0, \infty)\cross E.
It is well known that in the case of E=R^{n}, the n-dimensional Euclid-

ean space, the continuity of f in a neighbourhood of (0, u_{0}) alone implies
the existence of a local solution of (D_{1}) . This is the classical Peano’s
theorem. However, this theorem cannot be generalized to the infinite-
dimensional case (see [3], [16]).

It is our object in this paper to give sufficient conditions for the
existence of the unique solutions to the Cauchy problems of the forms (D_{1})

and (D_{2}) .
Let the functionals \langle,\rangle_{1} and \langle,\rangle_{2} be defined as follows (cf. M. Hasegawa

[6] ) :

\langle u, v\rangle_{1}=\lim_{h\downarrow 0}\frac{1}{h}(||u+hv||-||u||) ,

and

\langle u, v\rangle_{2}=\frac{1}{2}(\langle u, v\rangle_{1}-\langle u, -v\rangle_{1})

for u, v in E.
In order to prove the existence of the unique solution of the equation



206 S. Kato

(D_{1}) we consider the following scalar equation

(1. 1) w’(t)=g(t, w(t)) ,

where g(t, \tau) is a scalar-valued function defined on (0, a]\cross[0, b] which is
measurable in t for fixed \tau, and continuous nondecreasing in \tau for fixed t.

We say w is a solution of (1. 1) on an interval I contained in [0, a] if
w is absolutely continuous on I and if

w’(t)=g(t, w(t)) for a. e. t\in I^{0} ,

where I^{0} is the set of all interior points of I.
We assume furthermore that g satisfies the following conditions: (i_{a})

There exists a function m defined on (0, a) such that
|g(t, \tau)|\leqq m(t) for (t, \tau)\in(0, a]\cross[0, b]

and for which m is Lebesgue integrable on (\epsilon, a) for every \epsilon\rangle0. (ii_{a}) For
each t_{0}\in(0, a] , w\equiv 0 is the only solution of the equation (1.1) on [0, t_{0}]

satisfying the conditions that w(0)=(D^{+}w)(0)=0, where D^{+}w denotes the
right-sided derivative of w.

First, we can state the following result.
THEOREM 1. Let f be a strongly continuous mapping of [0, T]\cross S(u_{0},

r) into E such that

(1. 2) \langle u-- v, f(t, u)-f(t, v)\rangle_{2}\leqq g(t, ||u-v||)

for dl(t, u), (t, v)\in(0, T]\cross S(u_{0}, r), where g satisfifies (i_{a}), (ii_{a}) with a=T and
b=2r.
Then (D_{1}) has a unique strongly continuously dijferentiable solution u defifined
on some interval [0, T_{0}] .

We next consider a global analogue of Theorem 1, and we assume
that g(t, \tau) is a scalar-valued function defined on (0, \infty)\cross[0, \infty) which is
measurable in t for fixed \tau, and continuous nondecreasing in \tau for fixed t.
We assume furthermore that g satisfies the following conditions: (i_{b})g(t,
0)=0 for all t\in(0, \infty) , and for every bounded subset B of (0, \infty)\cross[0, \infty)

let there exist a locally Lebesgue integrable function m_{B} defined on (0, \infty)

such that
|g(t, \tau)|\leqq m_{B}(t) for (t, \tau)\in B .

(ii_{b}) There exists a strictly increasing continuous function \alpha defined on
[0, \infty) satisfying \alpha(0)=0 and

|g(t_{\lambda}\tau)-g(t, \tilde{\tau})|\leqq m_{B}(t)\alpha(|\tau-\tilde{\tau}|)
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for (t, \tau), (t,\tilde{\tau})\in B .
(iii_{b}) For every \delta>0, \int_{0}^{\delta}d\tau/\alpha(\tau)=\infty .

Under these conditions we can prove the following

THEOREM 2. Let f be a strongly continuous mapping of [0, \infty)\cross E

into E, earring bounded sets in [0, \infty)\cross E into bounded sets in E. Suppose
furthermore that

(1. 3) \langle u-v, f(t, u)-f(t, v)\rangle_{2}\leqq g(t, ||u-v||)

for (t, u), (t, v)\in(0, \infty)\cross E.
Then (D_{1}) has a unique strongly continuously dijfferentiable solution u defifined
on [0, \infty) .

Finally, we consider the equation (D_{2}) in a Banach space E whose dual
space E^{*} is uniformly convex.

We say u is a solution of (D_{2}) on [0, \infty) with u(0)=u_{0} if u is strongly
absolutely continuous on any finite interval of [0, \infty) and if

u(t)\in D(A) , \frac{d}{dt}u(t)=Au(t).+f(t, u(t))

for a. e. t\in[0, \infty) .
We assume that A satisfies

(1. 4) \langle u-- v, Au-Av\rangle_{2}\leqq 0 for u, v\in D(A) ,

and R(I-\lambda_{0}A)=E for some \lambda_{0}>0 .
If the strongly continuous mapping f of [0, \infty)\cross E into E has the strongly
continuous derivative f_{t} with respect to t and if both f and f_{t} carry
bounded sets in [0, \infty)\cross E into bounded sets in E, then we have

THEOREM 3. Let A, f and f_{t} satisfy the assumptions mentioned above.
Furthermore, iff satisfies
(1. 5) \langle u-v, f(t, u)-f(t, v)\rangle_{1}\leqq\beta(t)||u-v||

for (t, u), (t, v)\in(0, \infty)\cross E, where \beta is a locally Lebesgue integrable function
defifined on (0, \infty) .
Then (D_{2}) has a unique solution u on [0, \infty) for each u_{0}\in D(A) .

In the paper [1] F. E. Browder proved the global existence in a Hilbert
space of the unique solution of (D_{1}) under the monotonicity conditiori.

Recently T. M. Flett ([4], [5]) has given the sufficient conditions. for
both local and global existence in Banach and Hilbert spaces of the unique
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solution of (D_{1}) .
The contents of this paper are as follows: Some lemmas concerning

the scalar differential equation (1. 1) are given in \S 2. Theorems 1, 2 and
3 are proved in \S 3, 4 and 5, respectively. In \S 6 we shall give a simple
example and some remarks about the relations between our results and
those of F. E. Browder and T. M. Flett.

\S 2. Some lemmas.
In the following Lemmas 2. 1, 2. 2 and 2. 3 we assume that g satisfies

the assumptions (i_{a}) and (ii_{a}) stated in \S 1.
LEMMA 2. 1. Let \{w_{n}\} be a sequence offunctions from [0, a] into [0, b]

converging uniformly on [0, a] to a function w_{0}. Let M>0 such that
|w_{n}(t)-w_{n}(s)|\leqq M|t-s| for s, t\in[0, a] and n\geqq 1 .

Suppose furthermore that for each n\geqq 1

w_{n}’(t)\leqq g(t, w_{n}(t)) for t\in(0, a) such that w_{n}’(t) exists.
Then

w_{0}’(t)\leqq g(t, w_{0}(t)) for a. e. t\in(0, a) .
PROOF. Since |w_{0}(t)-w_{0}(s)|\leqq M|t-s| for s, t\in[0, a] , w_{0}’(t) exists for

a. e. t\in[0, a] .
Let A_{n}= {t\in[0, a];w_{n}’(t) does not exist} and let A= \bigcup_{n=0}^{\infty}A_{n}, then mes (A)=0.
Set

B= \{t\in(0, a] ; ,\lim_{\ellarrow 0}\frac{1}{h}\int_{t}^{t+h}g(s, w_{0}(s))ds=g(t, w_{0}(t))\} .
Then, by (i_{a}), we have mes ([0, a]-B)=0.
For each t\in\{[0;a]-A\}_{\cap}B, n\geqq 1 and for sufficiently small h>0

w_{n}(t+h)-w_{n}(t) \leqq\int_{t}^{t+h}g(s, w_{n}(s))ds .
By the Lebesgue’s dominated convergence theorem, we have

w_{0}(t+h)-w_{0}(t) \leqq\int_{t}^{t+h}g(s, w_{0}(s))ds .

Dividing both sides by h>0 and letting harrow 0, we have w_{0}’(t)\leqq g(t, w_{0}(t)) .
Thus we have the inequality

w_{0}’(t)\leqq g(t, w_{0}(t)) for a. e. t\in(0, a) .
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LEMMA 2. 2. Let M>0 and \Phi be a set of functions from [0, a] into
[0, b] with the property that for all s, t\in[0, a] and w\in\Phi

(2. 1) |w(t)-w(s)|\leqq M|t-s|1

Let z= \sup\{w;w\in\Phi\} , and suppose that for each w\in\Phi

(2. 2) w’(t)\leqq g(t, w(t)) for t\in(0, a) such that w’(t) exists.

Then
z’(t)\leqq g(t, z(t)) for a. e. t\in(0, a) .

PROOF. We follow an argument essentially given in T. M. Flett [4].
By the definition of z and (2. 1), z satisfies

|z(t)-z(s)|\leqq M|t-s|

and
0\leqq z(t)-w(t)\leqq z(s)-w(s)+2M|t-s|

for all s, t\in[0, a] and all w\in\Phi . From this it follows that for each positive
integer n we can find a positive integer k, a partition of [0, a] into k

subintervals of equal length, and k functions w_{1} , \cdots , w_{k}\in\Phi such that in
the jth subinterval

0\leqq z(t)-w_{f}(t)\leqq 1/n .
We put w^{(n)}={\rm Max}\{w_{1}, \cdots, w_{k}\} . Then w^{(n)} satisfies (2. 1) and (2. 2).
Since

0\leqq z(t)-w^{(n)}(t)\leqq 1/n

for all t\in[0, a] , the sequence \{w^{(n)}\} converges uniformly to z on [0, a] , and
the required result follows from Lemma 2. 1.

LEMMA 2. 3. Let w be an absolutely continuous function from [0, a]
into [0, b] such that w(0)=(D^{+}w)(0)=0 and

w’(t)\leqq g(t, w(t)) for a. e. t(0, a) .

Then w\equiv 0 on [0, a] .
PROOF. The method of the following proof is essentially due to that

of Theorem 2. 2 in [2].
Suppose that there exists a \sigma, 0<\sigma\backslash ’= a such that w(\sigma)>0 . Then there

exists a solution z of (1. 1) with z(\sigma)=w(\sigma) on some interval to the left
of \sigma. As far to the left of \sigma as z exists, it satisfies the inequality z(t)\leqq

w(t), for if this were not the case there would exist a positive \sigma_{1} to the
left of \sigma where z(\sigma_{1})=w(\sigma_{1}), and z(t)>w(t) for t<\sigma_{1} , and sufficiently near \sigma .
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By the assumptions on w we have for sufficiently small h>0

w( \sigma_{1})-w(\sigma_{1}-h)\leqq\int_{\sigma_{1}-h}^{\sigma_{1}}g(t, w(t))dt .

On the other hand, from the definition of z we have, since z(\sigma_{1})=w(\sigma_{1}) ,

w( \sigma_{1})-z(\sigma_{1}-h)=\int_{\sigma_{1}-h}^{\sigma_{1}}g(t, z(t))dt ,

where h is assumed so small that z exists on [\sigma_{1}-h, \sigma_{1}] .
Thus

z( \sigma_{1}-h)-w(\sigma_{1}-h)\leqq\int_{\sigma_{1}-h}^{\sigma_{1}}[g(t, w(t))-g(t, z(t))]dt.

Since g is nondecreasing in \tau and z(t)>w(t) on [\sigma_{1}-h, \sigma_{1}) we have the
contradiction z(\sigma_{1}-h)\leqq w(\sigma_{1}-h) .

We shall next show that z(t)>0 on 0<t\leqq\sigma, as far as it exists.
Otherwise z(t_{0})=0 for some t_{0},0<t_{0}<\sigma, and\backslash the function \tilde{z} defined by

\tilde{z}(t)=\{

0 (0\leqq t\leqq t_{0})

z(t) (t_{0}\leqq t\leqq\sigma)

would be a function on [0, \sigma] not identically zero, which satisfies
\tilde{z}’(t)=g(t,\tilde{z}(t)) , \check{z}(0)=(D^{+}\tilde{z})(0)=0 .

This contradicts the assumption (ii_{a}) . Therefore
0<z(t)\leqq w(t)

as far to the left of \sigma as z exists.
It therefore follows that z can be continued as a solution, call it z again,
on the whole interval 0<t\leqq\sigma . Since \lim_{t\downarrow 0}z(t)=0 , we define z(0)=0. Since

0<z(t)/t\leqq w(t)/t for 0<t\leqq\sigma

and (D^{+}w)(0)=0, we have (D^{+}z)(0)=0 .
From (ii_{a}) it follows z\equiv 0 on [0, \sigma] , but this contradicts the fact z(\sigma)=

w(\sigma)>0 .
LEMMA 2. 4. If g satisfifies the assumptions (i_{b}), (ii_{b}) and (iii_{b}) stated in

\S 1, then for each T>0 and d\geqq 0 there exists a unique solution w of (1. 1)
on [0, T] with the initial condition w(0)=d.

PROOF. Suppose that there are two solutions w_{1} and w_{2} of (1. 1) on
[0, T] satisfying w_{1}(0)=w_{2}(0)=d. Let z be the function defined by

z(t)=|w_{1}(t)-w_{2}(t)| for t\in[0, T] .
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Then there exist \sigma\in (0, T] and \sigma_{0}\in[0, \sigma) such that z(\sigma_{0})=0 and z(t)>0 for
t\in(\sigma_{0}, \sigma] .
Since z is absolutely continuous, z’(t) exists for a. e. t\in[\sigma_{0}, \sigma] and, by (ii_{b}),
we have

z’(t)\leqq|w_{1}’(t)-w_{2}’(t)|=|g(t, w_{1}(t))-g(t, w_{2}(t))|

\leqq m_{B}(t)\alpha(z(t)) ,

where B=\{(t, w_{1}(t)), (t, w_{2}(t));t\in[\sigma_{0}, \sigma]\} .
Since \alpha is continuous and z is absolutely continuous, we have for sufficiently
small \epsilon>0

\int_{\sigma_{0}+e}^{\sigma}z’(t)/\alpha(z(t))dt=\int_{z(\sigma_{0}+\cdot)}^{\iota(\sigma)}d\tau/\alpha(\tau)\leqq\int_{\sigma_{0}+}^{\sigma}.m_{B}(\tau)d\tau

(see [13], p. 211).

By (iii_{b}) and by letting \epsilon\downarrow 0 , we have a contradiction.

\S 3. Proof of Theorem 1.

Let the functionals \langle,\rangle_{1} and \langle,\rangle_{2} be as in \S 1.
We shall give the following two lemmas which are used throughout this
paper.

LEMMA 3. 1. (cf. M. Hasegawa [6]). For u, v and w in E,

(1) |\langle u,v\rangle_{1}|\leqq||v|| ,

(2) \langle u, v+w\rangle_{1}\leqq\langle u, v\rangle_{1}+\langle u, w\rangle_{1}

(3) \langle u, du+v\rangle_{2}=d||u||+\langle u, v\rangle_{2} for real number d,

(4) \langle u, v\rangle_{2}\leqq\langle u, v\rangle_{1} ,

(5) \langle u, v+w\rangle_{2}\leqq\langle u, v\rangle_{2}+\langle u, w\rangle_{1} ,

(6) \langle u, v\rangle_{2}\leqq\langle u, v-w\rangle_{2}+||w|| .
PROOF. (1) and (2) are easy consequences of the definition. For any

real number d we have

\langle u, du+v\rangle_{2}=\frac{1}{2}\lim_{h\downarrow 0}\frac{1}{h}(||u+h(du+v)||-||u-h(du+v)||)

= \frac{1}{2}\{\lim_{h\downarrow 0}\frac{1+dh}{h}(||u+\frac{1}{1+dh}v||-||u||)

- \lim_{h\downarrow 0}\frac{1-dh}{h}(||u-\frac{h}{1-dh}v||-||u||)\}+d||u||

=d||u||+ \frac{1}{2}(\langle u,v\rangle_{1}-\langle u, -v\rangle_{1})=d||u||+\langle u, v\rangle_{2} ,
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which proves (3).
(4) follows readily from (2). By the definitions and (2) we have

\langle u, v\rangle_{2}+\langle u, w\rangle_{1}-\langle u, v+w\rangle_{2}

\geqq\frac{1}{2}(\langle u, w\rangle_{1}+\langle u, _{-(v+w)\rangle_{1}-\langle u}, -v\rangle_{\iota})

\geqq\frac{1}{2}(\langle u, _{-v\rangle_{1}-\langle u}, -v\rangle_{1})=0 ,

which implies (5).
To prove (6) we note that

\langle u, v\rangle_{2}=\frac{1}{2}\lim_{4\downarrow 0}\frac{1}{h}(||u+hv||-||u-hv||)

= \frac{1}{2}\lim_{h\downarrow 0}\frac{1}{h}(||u+h(v-w)+hw||-||u-h(v-w)-hw||)

\leqq\frac{1}{2}\lim_{h\downarrow 0}\frac{1}{h}(||u+h(v-w)||-||u-h(v-w||+2h||w||)

=\langle u, v-w\rangle_{2}+||w|| .
LEMMA3.2. Let u(t) be a E-valued function defifined on a real interval

I such that u’(t) and \frac{d}{dt}||u(t)|| exist for a. e. t\in I. Then

\frac{d}{dt}||u(t)||=\langle u(t), u’(t)\rangle_{2} for a. e. t\in I .

PROOF. If we denote D^{+}u(t) and D^{-}u(t) respectively the right and left
derivatives of u(t). Then

| \frac{1}{h}(||u(t+h)||-||u(t-h)||)-\frac{1}{h}(||u(t)+hD^{+}u(t)||-||u(t)||)

+ \frac{1}{h}(||u(t)-hD^{-}u(t)||-||u(t)||)|

= \frac{1}{h}|||u(t+h)||-||u(t-h)||-||u(t)+hD^{+}u(t)||+||u(t)-hD^{-}u(t)|||

\leqq||\frac{1}{h}(u(t+h)-u(t))-D^{+}u(t)||+||\frac{1}{h}(u(t-h)-u(t))+D^{-}u(t)||

arrow 0 as h\downarrow 0 for a. e. t\in I .
Thus we have

D^{+}||u(t)||+D^{-}||u(t)||=\langle u(t) ,

for a. e. t\in I .
D^{+}u(t)\rangle_{1}-\langle u(t), -D^{-}u(t)\rangle_{1}
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It follows from the assumptions that

\frac{d}{dt}||u(t)||=\langle u(t), u’(t)\rangle_{2} for a. e . t\in I.

PROOF of THEOREM 1. Since f is strongly continuous on [0, 7^{l}]\cross S

(u_{0}, r) there exist constants 0<r_{0}\leqq r, 0<T_{1}\leqq T and M>0 such that
||f(t, u)||\leqq M for (t, u)\in[0, T_{1}]\cross S(u_{0}, r_{0}) .

Let T_{0}={\rm Min}\{r_{0}/M, T_{1}\} and let n be a positive integer.
We set t_{0}^{n}=0, and u_{n}(t_{0}^{n})=u_{0} . Inductively for each positive integer i, define
\delta_{i}^{n}, t_{i}^{n}, u_{n}(t_{i-1}^{n}) as follows (cf. G. Webb [14]) :

(3. 1) \delta_{i}^{n}\geqq 0 , t_{i-1}^{n}+\delta_{i}^{n}\leqq T_{0} ;

(3. 2) If ||v-u_{n}(t_{i-1}^{n})||\leqq M\delta_{i}^{n} and t_{i-1}^{n}\leqq t\leqq t_{i-1}^{n}+\delta_{i}^{n} , then
||f(t, v)-f(t_{i-1}^{n}, u_{n}(t_{i-1}^{n})||\leqq 1/n ;

(3. 3) ||u_{n}(t_{-1}^{n}‘)-u_{0}||\leqq r_{0} ,

and \delta_{i}^{n} is the largest number such that (3. 1), (3. 2) and (3. 3) hold.
Let t_{\dot{l}}^{n}=t_{i-1}^{n}+\delta_{i}^{n} . We set

u_{n}(t)=u_{n}(t_{i-1}^{n})+ \int_{t_{i-1}^{n}}^{t}f(s, u_{n}(t_{i-1}^{n}))ds for each t\in[t_{i-1}^{n}, t_{\dot{f}}^{n}] .

Then for each t\in[t_{k-1}^{n}, t_{k}^{n}]

u_{n}(t)=u_{n}(t_{k-1}^{n})+ \int_{t_{k-1}^{n}}^{t}f(s, u_{n}(t_{k-1}^{n}))ds

=u_{n}(t_{k-1}^{n})+ \int_{t_{k-2}^{n}}^{t_{k-1}^{n}}f(s, u_{n}(t_{k-2}^{n}))ds+ \int_{t_{k-1}^{n}}^{t}f(s, u_{n}(t_{k-1}^{n}))ds

= \cdots=u_{0}+\sum_{f=1}^{k-1}\int_{t_{f-1}^{n}}^{t_{f}^{n}}f (s, u_{n}(t_{f-1}^{n})) ds+ \int_{t_{k-1}^{n}}^{t}f(s, u_{n}(t_{k-1}^{n}))ds .

For each t, s (say t>s) in [0, T_{0}] there exist i, k such that t\in[t_{i-1}^{n}, t_{i}^{n}] and
s\in[t_{k-1}^{n}, t_{k}^{n}] . Then

| \{u_{n}(t)-u_{n}(s)||\leqq\int_{s}^{t_{k}^{n}}||f(s, u_{n}(t_{k-1}^{n}))||ds+ \sum_{f\overline{--}k+1}^{i-1}\int_{t_{j-1}^{7l}}^{t_{f}^{n}}||f(s, u_{n}(t_{f-1}^{n}))||ds

+ \int_{t_{i-1}^{n}}^{t}||f (s, u_{n}(t_{i-1}^{n})) ||ds



214 S. Kato

\leqq M(t_{k}^{n}-s)+\sum_{f=k+1}^{i-1}M(t_{f}^{7l}-t_{f-1}^{n})+M(t-t_{i-1}^{n})

=M(t-s) .
On the other hand

||u_{n}(t)-u_{0}|| \leqq\sum_{f=1}^{i-1}\int_{t_{j-1}^{n}}^{t_{j}^{n}}||f(s, u_{n}(t_{f-1}^{n}))||ds+ \int_{t_{i-1}^{n}}^{t}||f(s, u_{n}(t_{i-1}^{n}))||ds

\leqq Mt\leqq r_{0} .
We shall show that there exists some positive integer N=N(n) such

that t_{N}^{n}=T_{0} . Suppose, on the contrary, that this were not true. Then,
since \{t_{i}^{n}\} is a nondecreasing sequence bounded from above, there is a t_{0} in
(0, ^{T_{0}}] such that \lim_{iarrow\infty}t_{i}^{n}=t_{0} .
Since ||u_{n}(t_{\dot{\iota}}^{n})-u_{\iota}.,\cdot(t_{k}^{n})||\leqq M|t_{i}^{n}-t_{k}^{n}|arrow 0 as i, karrow\infty , \lim_{iarrow\infty}u_{n}(t_{\dot{l}}^{n})=v_{0} exists. Let
\sigma_{1}>0 such that

(3. 5) ||f(t, v)-f(t_{0}, v_{0})||\leqq 1/2n

whenever ||v-v_{0}||\leqq 2\sigma_{1}
. and |t-h|\leqq 2\sigma_{1} .

Since \lim_{karrow\infty}f(t_{k}^{n}, u_{n}(t_{k}^{n}))=f(t_{\omega}v_{0}) there exist \sigma_{2}>0 and sufficiently large

positive integer i such that

(3. 6) ||f(t_{0}, v_{0})-f(t_{i-1}^{n}, u_{n}(t_{l-1}^{n}))||\leqq 1/2n

whenever t_{0}-t_{i-1}^{n}\leqq\sigma_{2} and ||v_{0}-u_{n}(t_{i-1}^{n}))||\leqq\sigma_{2} .
Set \sigma={\rm Min}\{\sigma_{1}, \sigma_{2}\} . Then there exists a positive integer j such that

(3. 7) \delta_{f}^{n}<{\rm Min}\{\sigma/2M, \sigma\} .
Thus (3. 5), (3. 6) and (3. 7) hold for \sigma and k={\rm Max}\{i, j\} .
Consequently, if ||v-u_{n}(t_{k-1}^{n})||\leqq M(\delta_{k}^{n}+\sigma/4M) and t_{k-1}^{n}\leqq t\leqq t_{k-1}^{n}+\sigma,
then

||v-v_{o}||\leqq||v-u_{n}(t_{k-1}^{n})||+||u_{n}(t_{k-1}^{n}.)-v_{0}||\leqq 3\sigma/4+\sigma<2\sigma ,
and

|t-t_{0}|\leqq|t-t_{k-1}^{n}|+|t_{0}-t_{k-1}^{n}|\leqq 2\sigma .
It therefore follows that

.
||f(t, v)-f(t_{k-1}^{n}., u_{n}(t_{R-1}^{n}))||\leqq||f(t, v)-f(t_{0}, v_{0})||

.

+||f(t_{b}v_{0})-f(t_{k-1}^{n}, u_{n}(t_{k-1}^{n}))||

\leqq 1/2n+1/2n=1/n .

This is a contradiction to the choice of \delta_{k}^{n} .
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We next show that the sequence of continuous functions \{u_{n}(t)\} con-
verges uniformly to a E-valued function u(t) on [0, T_{0}] .
For this we set w_{mn}(t)=||u_{m}(t)-u_{n}(t)|| for m>n\geqq 1 and t\in[0, T_{0}] , and
remark first that, since
(3. 8) |w_{mn}(t)-w_{mn}(s)|\leqq 2M|t-s| for s, t\in[0, T_{0}] ,
w_{mn}’(t) exists for a. e . t\in[0, T_{0}] .

For each t\in(0, T_{0}) such that w_{mn}’(t) exists there exist positive integers
i and j such that t\in(t_{i-1}^{n}, t_{i}^{n}) and t\in(t_{f-1}^{m}, t_{f}^{m}) .
By Lemma 3. 1 (1), (6) and Lemma 3. 2 we have
(3. 9) w_{mn}’(t)=\langle u_{m}(t)-u_{n}(t), f(t, u_{m}(t_{f-1}^{m}))-f(t, u_{n}(t_{i-1}^{n}))\rangle_{2}

\leqq g(t, w_{mn}(t))+||f(t, u_{m}.\langle t))-f(t, u_{m}(t_{f-1}^{m}))||

+||f(t, u_{n}(t))-f(t, u_{n}(t_{i-1}^{n}))|| .
On the other hand

||u_{m}(t)-u_{m}(t_{f-1}^{m})||\leqq M|t-t_{f-1}^{m}|\leqq M\delta_{f}^{m} and ||u_{n}(t)-u_{n}(t_{i-1}^{n})||\leqq M\delta_{i}^{n} .
Thus we have by (3. 2)

(3. 10) w_{\acute{m}n}(.t)\leqq g(t, w_{mn}(t))+1/m+1/n\leqq g(t, w_{mn}(t))+2/n

for a. e. t\in(0, T_{0}) . Let w_{n}(t)= \sup_{m>n}\{w_{mn}(t)\} for t\in[0, T_{0}] .
Then w_{n}(0)=(0) for all n. It thus follows from (3. 8), (3. 10) and Lemma
2. 2 that
(3. 11) |w_{n}(t)-w_{n}(s)|\leqq 2M|t-s| for s, t\in[0, T_{0}] ,
and
(3. 12) w_{n}’(t)\leqq g(t, w_{n}(t))+2/n for a. e. t\in(0, T_{0}) .
Since

0\leqq w_{n}(t)\leqq w_{n}(0)+2Mt\leqq 2MT_{0} for n\geqq 1 and t\in[0, T_{0}]

the sequence \{w_{n}\} is equicontinuous and uniformly bounded, and hence it
has a subsequence converging uniformly on [0, T_{0}] to a function w, and
obviously w(0)=0. From (3. 12) and the proof of Lemma 2. 1 we have

w’(t)\leqq g(t, w(t)) for a. e . t\in(0, T_{0}) .
We show next that (D^{+}w)(0)=0 . Since f is continuous at (0, u_{0}),

given \epsilon>0 we can find \delta>0 such that ||f(t, u)-f(t, u_{0})||<\epsilon whenever 0\leqq

t\leqq\delta and ||u-u_{0}||\leqq\delta . Let \delta_{0}={\rm Min}\{\delta, \delta/M\} . Since ||u_{n}(t)-u_{0}||\leqq Mt\leqq\delta, ||f

(t, u_{m}(t))-f(t, u_{n}(t))||<2\epsilon whenever m>n\geqq 1 and t\in[0, \delta_{0}] . By Lemma 3. 1
(1) and (3. 9) we have
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w_{mn}’(t)=\langle u_{m}(t)-u_{n}(t), f(t, u_{m}(t_{f-1}^{m}))-f(t, u_{n}(t_{i-1}^{n}))\rangle_{2}

\leqq||f(t, u_{m}(t_{f-1}^{m}))-f(t, u_{m}(t_{-1}^{n}‘))||

\leqq||f(t, u_{m}(t))-f(t, u_{n}(t))||+2/n\leqq 2(\epsilon+1/n)

for a. et\in(0, \delta_{0}), and hence, by integrating the above inequality,

0\leqq w_{mn}(t)\leqq 2(\epsilon+1/n)t ,

whence (D^{+}w)(0)=0 .
From Lemma 2. 3 we deduce now that w\equiv 0 , and this implies that the
sequence \{u_{n}\} is uniformly convergent on [0, T_{0}] . The limit u of this
sequence satisfies

u(t)=u_{0}+ \int_{0}^{t}f(s, u(s))ds for t\in[0, T_{0}] .

To show this, note that

\downarrow_{0}^{t}.f (s, u(s)) ds= \sum_{f=1}^{k-1}\int_{t_{f-1}^{n}}^{t_{f}^{n}}f(s, u(s))ds+ \int_{t_{k-1}^{n}}^{t}f(s, u(s))ds

for t\in[t_{k-1}^{n}, t_{k}^{n}] . Then we have by (3. 4)

||u_{n}(t)-(u_{0}+ \int_{0}^{t}f (s, u(s)) ds)||

\leqq\sum_{f=1}^{k-1}\int_{t_{f-1}^{n}}^{t_{f}^{n}}||f (s, u_{n}(t_{f-1}^{n}))-f(s, u(s))||ds

+ \int_{t_{k-1}^{n}}^{t}||f (s, u_{n}(t_{k-1}^{n}))-f(s, u(s))||ds

\leqq[1/n+Max0\leqq s\leq T_{0}||f (s, u_{n}(s))-f(s, u(s))||]T

Because of the unifom convergence of \{u_{n}\} to u on [0, T_{0}] ,
C=\langle u_{n}(t), u(t);0\leqq t\leqq T_{0}, n=1,2, \cdots\} is a compact set in E.
Since f(t, u) is uniformly continuous on [0, T_{0}]\cross C we have

0\leqq s\leq T_{0}Max||f (s, u_{n}(s))-f(s, u(s))||arrow 0 as narrow\infty ,

and hence the required result follows.
Thus u is a strongly continuously differentiable solution of (D_{1}) on [0, T_{0}] .

Let v be another strongly continuously differentiable solution of (D_{1})

on [0, T_{0}] and let z(t)=||u(t)-v(t)|| . Then z(0)=0,
and

z’(t)=\langle u(t)-v(t), f(t, u(t))-f(bv(t))\rangle_{2}\leqq g(t, z(t))
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for a. e. t\in(0, T_{0}) . The fact (D^{+}z)(0_{\backslash })=_{tb}0 follows from
t^{h}

0\leqq z(t)/t=||(u(t)-v(t.))[t||arrow 0 as tarrow 0 .
!/

It therefore follows from Lemma 2. 3 that z\equiv 0-\cdot The proof is complete.

\S 4. Proof of Theorem 2.

PROOF of THEOREM 2. It follows from Lemma 2. 4 and Theorem 1
that there exists a unique local solution u of (D_{1}) on some interval [0, T_{0}^{*}) .
We assume that [0, T_{0}^{*}) is a maximal interval of existence of u. We have
only to show that T_{0}^{*}<\infty leads to a contradiction.

Let w(t)=||u(t)-u_{0}|| for t\in[0^{\prec},T_{0}^{*}) . Then, by Lemma 3. 1 (6), we have
w’(t)=\langle u(t)-u_{0}, f(t, u(t))\rangle_{2}

(4. 1) \leqq\langle u(t)-u_{0}, f(t, u(t))-f(t, u_{0})\rangle_{2}+||f(t, u_{0})||

\leqq g(t, w(t))+L

for a. e. t\in(0, T_{0}^{*}), wh\dot{e}re L={\rm Max}||f(t, u_{0})||0\leqq t\leq\tau_{0}*\cdot

In virtue of (i_{b}), (ii_{b}) and (iii_{b}) the differential equation

(4. 2) z’(t)=g(t, z(t))+L

has a unique solution z on [0, T_{0}^{*}] with the initial condition z(0)=0.
It therefore follows from (4. 1) that
(4. 3) w(t)\leqq z(t) for all t\in[0, T_{0}^{*}) .
In fact, if we assume that there exists a \sigma\in(0, T_{0}^{*}) such that w(\sigma)>z(\sigma) .
Then there exists a \sigma_{0}\in[0, \sigma) such that w(\sigma_{0})=z(\sigma_{0}) and w(t)>z(t) for t\in

(\sigma_{0}, \sigma] .
Let \theta(t)=w(t)-z(t) . Then, by (4. 1), (4. 2) and (ii_{b}), we have

\theta’(t)=w’(t)-z’(t)\leqq g(t, w(t))-g(t, z(t))\leqq m_{B}(t)\alpha(\theta(t))

for a. e . t\in[\sigma_{0}, \sigma] , where B=\{(t, w(t)), (t, z(t)) ; \sigma_{0}\leqq t\leqq\sigma\}.\epsilon

Since \alpha is continuous and \theta is absolutely continuous, we have for sufficiently
small \epsilon>0

\int_{\sigma_{0}+e}^{\sigma}\theta’(t)/\alpha(\theta(t))dt=\int_{(\sigma_{0}+\epsilon)}^{|(\sigma)},d\tau/\alpha(\tau)\leqq\downarrow_{\sigma_{0}+}^{\sigma}..m_{B}(t)dt .

By (iii_{b}) and by letting \epsilon\downarrow 0, we have a contradiction.
(4. 3) implies that

||u(t)||\leqq||u_{0}||+{\rm Max} 0\leq t\leq T_{0}^{*}\{z(t)\} for t\in[0, T_{0}^{*}) .
Since \{f(t, u(t));t\in[0, T_{0}^{*})\} is a bounded set in E, we have
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||u(t)-u(s)|| \leqq|\int:||f(\tau, u(\tau))||d\tau|arrow 0 as s, t\uparrow T_{0}^{*}r

Let v_{0}= \lim u(t), then we can apply Theorem 1 once more with the initial
conditionu^{0^{*}}(T_{0}^{*})=v_{0}t\uparrow T, and obtain a unique continuation of the solution u
beyond T_{0}^{*} , which contradicts the assumption on T_{0}^{*} .

\S 5. Proof of Theorem 3.

Throughout this section we assume that the dual space E^{*} is uniformly
convex.

We say that F is a duality mapping of E into E^{*} if to each u in E
it assigns (in general a set) F(u) in E^{*} determined by

F(u)=\{x^{*}; x^{*}\in E^{*} such that (u, x^{*})=||u||^{2}=||x^{*}||^{2}\} ,

where (u, x^{*}) denotes the value of x^{*} at u.
Since E^{*} is uniformly convex F is single-valued and uniformly con-

tinuous on any bounded subset of E (see [9]).

LEMMA 5. 1. For each u\neq 0 and v in E

\langle u, v\rangle_{2}=Re(v, F(u))/||u|| .
PROOF. Since \langle u, v\rangle_{1}={\rm Re}(v, F(u))/||u|| for each u\neq 0 and v in E (see

the proof of Proposition 2. 5 in [11] ) ,

\langle u, v\rangle_{2}=\frac{1}{2} Re(v, F(u))-Re(-v, F(u))={\rm Re}(v, F(u)) .

We recall that A satisfies

(5. 1) \langle u-v, Au-Av\rangle_{2}\leqq 0 for u,v \in D(A) ,

and R(I-\lambda_{0}A)=E for some \lambda_{0}>0 .
For such an operator A we have

LEMMA 5. 2. (I-\lambda A)^{-1} exists for any \lambda>0 .

Set J_{n}=(I- \frac{1}{n}A)^{-1} and A_{n}=AJ_{n}=n(J_{n}-I) for n=1,2, \cdots ,.

Then
(1) ||J_{n}u-J_{n}v||\leqq||u-v|| for u, v\in E ,

(2) ||A_{n}u||\leqq Au|| for u\in D(A) ,

(3) \langle u-v, A_{n}u-A_{n}v\rangle_{2}\leqq 0 for u, v\in E ,

and



Some remarks on nonlinear differential equations in Banach spaces 219

(4) A is dmiclosed, that is, if u_{n}\in DA ), n=1,2, \cdots , u_{n}arrow u

{strongly in E) and Au_{n}arrow v {weakly in E), then u\in D(A) and v=Au.
PROOF. In virtue of Lemma 5. 1, -A is m-monotonic in the sense of

T. Kato [9], and hence, the existence of (I-\lambda A)^{-1} and (1), (2) and (4) follows
from Lemma 2. 5 in [9]. To prove (3) note that

\langle u-v, A_{n}u-A_{n}v\rangle_{2}=n\langle u-- v, J_{n}u-J_{n}v-(u-v)\rangle_{2}

=n(\langle u-v, J_{n}u-J_{n}v\rangle_{2}-||u-v||)

\leqq n(||J_{n}u-J_{n}v||-||u-v||)\leqq 0 ,

where we used (1) and Lemma 3. 1 (1), (4).

In Theorem 2, if g(t, \tau)=\beta(t)\tau, where \beta is a locally Lebesgue integrable
function defined on (0, \infty), then the conclusion of Theorem 2 remains valid.
In fact, it is obvious that this function \beta(t)\tau satisfies the conditions (i_{b}),
(ii_{b}) and (iii_{b}) except that \beta(t)\tau need not be nondecreasing in \tau for fixed t.
However, the nondecreasing nature of g in \tau was used in establishing
Lemma 2. 3 which is valid for this \beta(t)\tau .

Lemma 5. 3. Under the hypothesis of Theorem 3 the differentid equa-
tion

\frac{d}{dt}u_{n}(t)=A_{n}u_{n}(t)+f(t, u_{n}(t)) , u_{n}(0)=u_{0}\in E ,

has a unique strongly continuously differentia te solution u_{n} &fifined on
[0, \infty) .

PROOF. Since ||A_{n}u-A_{n}v||\leqq 2n||u-v|| for u, v in E, A_{n}u+f(t, u)

carries bounded sets in [0, \infty)\cross E into bounded sets in E. By Lemma 3. 1
(5) and Lemma 5. 2 (3) we have

\langle u-v, A_{n}u+f(t, u)-(A_{n}v+f(t, v))\rangle_{2}

\leqq\langle u-v, A_{n}u-A_{n}v\rangle_{2}+(u-v, f(t, u)-f(t, v)\rangle_{1}

\leqq\beta(t)||u-v||

for (t, u), (t, v)\in[0, \infty)\cross E .
Hence the assertion follows directly from Theorem 2 and the above men-
tioned remark.

We shall now deduce some estimates for u_{n}(t) .
LEMMA 5. 4. Let u_{0}\in D(A) . Thm \{u_{n}(t)\} and \{u_{n}’t)\} are boun&d on

any fifinite interval of [0, \infty) .
PROOF. By Lemma 3. 1 (3) and Lemma 5. 2 (2), (3)
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\frac{d}{dt}||u_{n}(t)-u_{0}||=\langle u_{n}(t)-u_{0}, A_{n}u_{n}(t)+f(t, u_{n}(t))\rangle_{2}

\leqq\langle u_{n}(t)-u_{0}, A_{n}u_{n}(t)\rangle_{2}+\langle u_{n}(t)-u_{0}, f(t, u_{n}(t))\rangle_{1}

\leqq\langle u_{\eta}(t)-u_{0}, f(t, u_{n}(t))-f(t, u_{0})\rangle_{1}+||f(t, u_{0})||+||A_{n}u_{0}||

\leqq\beta(t)||u_{n}(t)-u_{0}||+||f(t, u_{0})||+||Au_{0}|| .
Thus we have

||u_{n}(t)-u_{0}|| \leqq\int_{0}^{t} exp ( \int_{s}^{t}. \beta(\tau)d\tau)(||f(s, u_{0})||+||Au_{0}||)ds

for n=1,2 , \cdots . This implies

(5. 2) ||u_{n}(t)|| \leqq||u_{0}||+\int_{0}^{t} exp ( \int_{s}^{t}\beta(\tau)d\tau)(||f(s, u_{0})||+||Au_{0}||)ds

for t\in[0, \infty) and n=1,2, \cdots .
For each fixed h>0 we have, by Lemma 3. 1 (5) and Lemma 5. 2 (3),

\frac{d}{dt}||u_{n}(t+h)-u_{n}(t)||=\langle u_{n}(t+h)-u_{n}(t), A_{n}u_{n}(t+h)-A_{n}u_{n}(t)

+f(t+h, u_{n}(t+h))-f(t, u_{n}(t))\rangle_{2}

\leqq\langle n_{n}(t+h)-u_{n}(t), f(t+h, u_{n}(t+h))-f(t, u_{n}(t))\rangle_{1}

\leqq\langle u_{n}(t+h)-u_{n}(t), f(t+h, u_{n}(t+h))-f(t, u_{n}(t))\rangle_{1}

+||f(t+h, u_{n}(t))-f(t, u_{n}(t))||

\leqq\beta(t+h)||u_{n}(t+h)-u_{n}(t)||+||f(t+h, u_{n}(t))-f(t, u_{n}(t))|| .
It follows that

||u_{n}(t+h)-u_{n}(t)||\leqq||u_{n}(h)-u_{n}(0)||

+ \int_{0}^{t} exp ( \int_{s}^{t}\beta(\tau+h)d\tau)||f(s+h, u_{n}(s))-f(s, u_{n}(s))||ds

By dividing the above inquality by h and letting h\downarrow 0, we have

(5. 3) ||u_{n}’(t)|| \leqq||u_{n}’(0)||+\int_{0}^{t} exp ( \int_{s}^{t}\beta(\tau)d\tau)||f_{s}(s, u_{n}(s\rangle)||ds

for n=1,2, \cdots . This completes the proof.

We shall now give the proof of Theorem 3.

PROOF of THEOREM 3. By (5. 2) and (5. 3) there exists constant M_{T}>0

for each T>0 such that
(5. 4) ||u_{n}’(t)||+||f(t, u_{n}(t))||\leqq M_{T} for t\in[0, T] and n\geqq 1 .

By Lemma 3. 1 (5) and Lemma 5. 1, for each t\in[0, T]. such that
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\frac{d}{dt}||u_{n}(t)-u_{m}(t)|| exists and u_{n}(t)-u_{m}(t)\neq 0,

\frac{d}{dt}||u_{n}(t)-u_{m}(t)||=\langle u_{n}(t)-u_{m}(t), A_{n}u_{n}(t)-A_{m}u_{m}(t)

+f(t, u_{n}(t))-f(t, u_{m}(t))\rangle_{2}

\leqq\beta(t)||u_{n}(t)-u_{m}(t)||

+2M_{T}||F(u_{n}(t)-u_{n}(t))-F(J_{n}u_{n}(t)-J_{m}u_{m}(t))||/||u_{n}(t)-u_{2n}t)||1

It follows that

\frac{d}{dt}||u_{n}(t)-u_{m}(t)||^{2}\leqq 2\beta(t)||u_{n}(t)-u_{m}(t)||^{2}

+4M_{T}||F(u_{n}(t)-u_{m}(t))-F(J_{n}u_{n}(t)-J_{m}u_{m}(t))|| .
On the other hand, for each t\in[0, T] such that \frac{d}{dt}||u_{n}(t)-u_{m}(t)|| exists
and u_{n}(t)-u_{n}(t)=0,

\frac{d}{dt}||u_{n}(t)-u_{m}(t)||=\langle 0, A_{n}u_{n}(t)-A_{n}u_{m}(t)\rangle_{2}=0 .
Thus we have

\frac{d}{dt}||u_{n}(t)-u_{m}(t)||^{2}\leqq 2\beta(t)||u_{n}(t)-u_{m}(t)||^{2}

+4M_{T}||F(u_{n}(t)-u_{m}(t))-F(J_{n}u_{n}(t)-J_{m}u_{n}(t))||

for a. e. t\in[0, T] and n, m\geqq 1 .
Consequently

||u_{n}(t)-u_{m}(t)||^{2} \leqq 4M_{T}\int_{0}^{t} exp ( \int_{s}^{t}2\beta(\tau)d\tau)||F(u_{n}(s)-u_{m}(s))-F(J_{n}u_{n}(s)

-J_{m}u_{m}(s))||ds

for t\in[0, T] and n, m\geqq 1 .
In virtue of (5. 4) and the definition of A_{n}

||u_{n}(s)-u_{m}(s)-(J_{n}u_{n}(s)-J_{n}u_{m}(s))|| \leqq\frac{1}{n}||A_{n}u_{n}(s)||+\frac{1}{m}||A_{m}u_{m}(s)||

\leqq M_{T}(1/n+1/m)arrow 0 as n, marrow\infty .
Since F(u) is uniformly continuous on any bounded set in E, \{u_{n}(t)\} con-
verges uniformly to a continuous function u(t) on [0, T] for each T>0 .
The absolute continuity of u(t) on [0, T] follows from the inequality

||u_{n}(t)-u_{n}(s)|| \leqq|\int_{s}^{t}||u_{n}’(\tau)||d\tau|\leqq M_{T}|t-s| for t, s\in[0, T] .



222 S. Kato

We show next that u(t) is a solution of (D_{1}) .
By (5. 4) we have
(5. 5) ||A_{n}u_{n}(t)||\leqq||u_{n}’(t)||+||f(t,.\cdot u_{n}(t))||\leqq M_{T}

for t\in[0, T] and n\geqq 1 .
This implies that \{A_{n}u_{n}(t)\} is a bounded set in L_{E}^{2}[0, T] for each T>0 ,
where L_{E}^{2}[0, T] denotes the set of all square integrable E-valued strongly
measurable functions on [0, T] .

Thus some subsequence of \{A_{n}u_{n}(t)\} converges to an element z weakly
in L_{E}^{2}[0, T] . For notational convenience we assume that \{A_{n}u_{n}(t)\} itself
converges to z weakly in L_{E}^{2}[0, T] .

Let C[t] be the set of all weak limit in E of a subsequence of \{A_{n}u_{n}(t)\}

for each fixed t\in[0, T] .
We will show that u(t)\in D(A) for all t\in[0,7^{\urcorner}] and z(t)=Au(t)

for a. e . t\in[0, T] (cf. T. Kato [10]).
To show this we note that for each v\in C[t] there exists a subsequence
\{A_{nm}u_{nm}(t)\} such that w- \lim_{m\downarrow\infty}A_{nm}u_{nm}(t)=v, where w-lim denotes weak limit
in E. Since J_{nm}u_{nm}(t)arrow u(t), J_{nm}u_{nm}(t)\in D(A) and A_{nm}u_{7\iota m}(t)=AJ_{nm}u_{nm}(t), it
follows from the demiclosedness of A that

u(t)\in D(A) and v=Au(t) .
Hence C[t] consists of only one element for each t\in[0, T] . Since any
subsequence of \{A_{n}u_{n}(t)\} has a subsequence converging weakly to the same
element v=v(t), \{A_{n}u_{n}(t)\} itself converges weakly to v(t) for each t\in[0, T] .
Since \{A_{n}u_{n}(t)\} converges to z weakly in L_{E}^{2}[0, T] , z is the strong limit
of the type \sum_{i}a_{i}A_{n+_{\Phi}}iu_{n+i} . Here \{a_{i}\} is a finite set of nonnegative numbers
such that \sum_{i}a_{i}=1 .
Thus we can find a subsequence of the above sequence converging to z(t)
strongly in E for a. e . t\in[0, T] .

Let U be any open convex neighbourhood of 0 in the weak topology
of E. Then there exists an open convex neighbourhood V of 0 in the
same topology of E such that V+V\subset U.
Since v(t)+V is open convex in the weak topolopy of E, there is a n_{0} such
that

A_{n}u_{u}(t)\in v(t)+V for n\geqq n_{0} .
Thus the convex combination of the type \sum_{i},a_{i}A_{n+i}u_{n+i}(t) belongs to v(t)+V

for n\geqq n_{0} . Hence z(t)\in(v(t)+V)^{-u}‘, where (v(t)+V)^{-\omega} denotes the closure
of v(t)+V with respect to the weak topology of E. Since
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(v(t)+V)^{-\omega}\subset(v(t)+V)+V\subset.v(t).+U,

it follows that z(t)-v(t)\in U. This implies that

z(t)=v(t) for a. e . t\in[0, T] .

Since ||A_{n}u_{n}(t)||\leqq M_{T} the norm of a convex combination of Anun(t)’s
is also \leqq M_{T}. It follows that ||z(t)||\leqq M_{T} for a. e. t\in[0, T] and that z(t) is
Bochner integrable on [0, T] . Since L_{E}^{2}[0, T]^{*}=L_{E^{k}}^{2}[O,T]\backslash ’and sin. ce

(u_{n}(t), x^{*})= \backslash (u_{0}, x^{*})+\int_{0}^{t}(A_{n}u_{n}(s)+f(s, u_{n}(s)) , x^{*})ds

for each x^{*}\in E^{*} and t\in[0, T] , we have by going to narrow\infty

A(u(t), x^{*})=(u_{0}, x^{*})+ \int_{0}^{t}(z(s)+f(s, u(s)) , x^{*})ds .

Thus we obtain that \frac{d}{dt}u(t) exists for a. e. t\in[0, T] and

\frac{d}{dt}u(t)=z(t)+f(t, u(t)=Au(t)+f(t, u(t)) for a. e. t\in.[0, T] .

Since T is arbitrary, the proof is complete.

\S 6. Remarks and an example.

In this section we give some remarks about the relations between our
results and those of F. E. Browder and T. M. Flett. We give also a simple
example to which our Theorem 2 applies.

REMARK 1. In the papers [4] and [5] T. M. Flett has given sufficient
conditions for the existence in Banach and Hilbert spaces of the unique
local solution of (D_{1}) on some interval [0, T_{0}] under the following conditions:
(A) F_{x} is a Banach space and f is a continuous mapping of [0, T]\cross S(u_{0}, r)

into E such that for all (t, u), (t., v)\in(\backslash 0_{\lambda}T]\cross S(u_{0}, r)

(6. 1) ||f(t, u)-f(t, v)||\leqq g(t, ||u-v||) ;

(B) E is a Hilbert space with inner pr.oduct (,) and f is a continuous
mapping of [0, T]\cross S(u_{0}, r) into E such that for all [tyu), . (t, v)\in(0, T] \cross S

(u_{0}, r)

(6. 2) Re (f(t, u)-f(t, v)\sim’ u-v)\leqq\backslash ||u-v||g(t, ||u-v||) ,

where g is a continuous function defined on (0, T]\cross[0,2r] satisfying the
condition (ii_{a}) in \S 1 in this paper.

In Theorem 1 if we assume that g(t, \tau) is continuous us. on (0, T]\cross[0,-2r] ,
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then we can drop the assumption that g(t, \tau) is nondecreasing in \tau for fixed
t (cf. [2]).
In virtue of this fact and Lemma 3. 1 (1), (4) our result is an extension of
(A). If E is a Hilbert space with inner product (,), then we can easily see
that

\langle u, v\rangle_{2}={\rm Re}(v, u)/||u|| for u\neq 0 and v in E,

and hence, our condition of Theorem 1 becomes

Re (f(t, u)-f(t, v), u-v)\leqq||u-v||g(t, ||u-v||)

for all (t, u)(t, v)\in(0, T]\cross S(u_{b}r) . Thus our result is also an extension
of (B).

Lt F(u) be the duality mapping of E into E^{*} defined in \S 5. Then
for each u\neq 0 and v in E

\langle u, v\rangle_{2}\leqq{\rm Re}(v, x^{*})/||u|| for some X^{*}\in F(u)

(see the proof of Proposition 2. 5 in [11]).

Thus we can replace the condition of Theorem 1 by the following one.

Re (f(t, u)-f(t, v), x^{*})\leqq||u-v||g(t, ||u-v||)

for (t, u), (t, v)\in(0, T]\cross S(u_{0}, r) and for all x^{*}\in F(u-v) .
Hence our result is a generalization of (B) into a general Banach space.

Remark 2. In [1] F. E. Browder proved the existence and uniqueness
of a strongly continuously differentiate solution of (D_{1}) on [0, \infty) under the
following conditions:
(I) E is a Hilbert space with inner product (,) and f is a continuous
mapping of [0, \infty)\cross E into E, earring bounded sets in [0, \infty)\cross E into
bounded sets in E.
(II) There exists a real-valued continuous function c(t) defined on [0, \infty)

such that
(6. 3) Re (f(t, u)-f(t, v), u-v)\leqq c(t)||u-v||^{2}

for all (t, u), (t, v)\in[0, \infty)\cross E.
By the same argument as in Remark 1 we see that Theorem 2 is

a generalization into a general Banach space of the above result of F. E.
Browder.

The following example shows that the conditions of Theorem 2 are
more general than those of F. E. Browder.
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EXAMPLE. Let E=R^{1} and let a(t) be the function defined by

a(t)= \int t(0\leqq t\leqq\epsilon)\downarrow\epsilon(t>\epsilon)

where \epsilon is a positive constant. We consider the differential equation

\frac{d}{dt}u=f(t, u)=

\prime 1+\frac{1}{1+\sqrt{u}}(t\geqq 0, u>a(t))

\backslash 1+\frac{1}{1+\sqrt{a(t)}}(t\geqq 0, u\leqq a(t)) .

Obviously, the function f(t, u) is continuous from [0, \infty)\cross R^{1} into R.
However the function f(t, u) does not satisfy the monotonicity condition
(6. 3) but does satisfy all our conditions of Theorem 2.

In fact, for u\neq v and t>0
\langle u-v,f(t, u)-f(t, v)\rangle_{2}=(f(t, u)-f(t, v))(u-v)/|u-v|

=-^{I}-|-(f(t, u)-f(t, v))

\leqq\{

(1/2)|u-v|(1/2\sqrt{}^{\frac{\sqrt a(t)}{a(t)}})|u-v|

(u, v>a(t), t>0)
(u>a(t), 0\leqq v\leqq a(t), t>0)

(1/2\sqrt{a(t)})|u-v| (u>a(t), v<0, t>0)

0 (u, v\leqq a(t,)t>0) .
Thus we have

\langle u-v, f(t, u)-f(t, v\rangle_{2}\leqq (1/2\sqrt{a(t)})|u-v|

for all (t, u), (t, v)\in(0, \infty)\cross R^{1} .
Set g(t, \tau)=(1/2\sqrt{a(t)}) \tau and \alpha(t)=t, then it follows easily that g and \alpha

satisfy all our conditions of Theorem 2.
On the other hand we have

(f(t, u)-f(t, v), u-v)\leqq(1/2\sqrt{a(t)})|u-v|^{2}

for all (t, u), (t, v)\in(0, \infty)\cross R^{1} .
Since 1/2\sqrt{a(t)} is discontinuous at 0, the condition (6. 3) does not hold.

REMARK 3. In Theorem 3 if A is linear and D(A) is dense in E,
then A is the infinitesimal generator of a strongly continuous contraction
semi-group \{T(t) ; t\geqq 0\} (see M. Hasegawa [6]).
In this case the integral equation



226 S. Kato

v(t)=u_{0}+ \int^{tt}T(t-s) f(s, v(s))ds

has a unique solution for each u_{0}\in D(A) by the same argument as G. Webb
[15]. We don’t know whether the solution of the above integral equation
is a solution of (D_{2}) .
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