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By Hy\^oitir\^o TAKENO and Shin-ichi KITAMURA

\S 1. Introduction.

The space-time V was defined by the present authors and its proper-
ties have been studied in detail in a series of papers [1], [2], \cdots , [10]^{1)} . The
present paper is a continuation of these ones, and naturally, the same
notations and terminologies will be used throughout the paper.

The object of the present paper is to deal with the problem of deter-
mining all parallel tensors in the space-time V. A parallel tensor of weight
m is defined by the equation

(1. 1) \nabla_{f}w_{i_{1}\cdots i_{n}}=0 ,

where \nabla_{f} denotes covariant derivative. The problem for spherically sym-
metric space-times has been solved by one of the present authors. (Cf.
Chap. IX of [11] and Chap. X of [12].) As was stated in \S 102 and \S 104
of [12], we succeeded to solve the problem for general n and for almost
all kinds of spherically symmetric space-times.

As will be seen in due course, the problem for the V is completely
solved only for n\leqq 3 , contrary to the case of spherically symmetric space-
times. We hope that some systematic method of dealing with the problem
of parallel tensors for general n and for general Riemannian space will
appear, and expect that the results obtained in the present paper will be
of use in the investigation of the problem as presenting some remarkable
examples.

\S 2. Preliminaries, 1.

The following results are obtained in \S 99 of [12]:
(i) When the v_{i_{1}\cdots i_{n}} is a scalar v, (1. 1) becomes

(2. 1) \nabla_{j}v=\partial_{i}v=0 ,

and the general solution is given by v=const. , as is well-known.
(ii) When the v_{i_{1}\cdots i_{n}} is a relative scalar of weight m, the general

solution is given by

(2. 2) v=(\sqrt{-g})^{m}\cross const. ,

1) Numbers in brackets refer to the references at the end of the paper.
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where g is the determinant of the metric tensor g_{ij} . (Note that in [12],
\sqrt{g} was used in place of the above \sqrt{-g}, but this is of no importance.)

(iii) The general form of the relative tensor of weight m is given by
multiplying that of the parallel ordinary tensor by (\sqrt{-g})^{m} .

These results are given in [12] with respect to spherically symmetric
space-times. But it is evident that they are valid for any Riemannian
space. Thus, considering the fact that the equation (1. 1) is independent
of raising or lowering of the indices, we shall deal only with the ordinary
covariant tensors exclusively in the following.

Now, in order to deal with the condition in another form, which is
convenient for our present purpose, we take any orthonormal set of vectors
h_{i}\alpha and h^{i}\alpha(iii) \cdots=1 ,\cdots , 4 ; \alpha,\beta,\cdots=1 ,\cdots , 4) satisfying

(2. 3) \sum_{\alpha}h_{i}h_{f}=g_{if}\alpha\alpha , \sum h^{i}h^{j}\alpha\alpha\alpha=g^{\dot{l}f} ; \sum_{\alpha}h_{i}h^{f}\alpha\alpha=\delta_{i}^{f}, h_{i}h^{i}=\delta_{\beta}^{\alpha}\alpha\beta ; h^{\dot{l}}\alpha=g^{ij}h_{f}\alpha ,

and put

(2. 4) \mathcal{T}_{\alpha\beta\gamma}=(\nabla_{i}h_{f})h^{f}h^{i}=-\gamma_{\beta\alpha\gamma}\alpha .
\beta r

\gamma_{\alpha\beta\gamma} is nothing but the coefficient of rotation. Then (1. 1) is equivalent to
the following equations for the scalar components V_{\alpha_{1}\cdot\cdot\alpha_{n}}=h^{i_{1}}\cdots h^{i_{n}}v_{i_{1}}\alpha_{1}\alpha_{n} . i_{n} :

(2. 5) h^{s} \partial_{s}V_{\alpha_{1}\cdot\cdot\alpha_{n}}+\sum_{\rho\beta}\{\gamma_{\rho\alpha_{1}\beta}V_{\rho\alpha_{2}\cdot\cdot\alpha_{n}}+\cdots+\mathcal{T}_{\rho\alpha_{r\iota}\beta}V_{\alpha_{1}\cdot\cdot\alpha_{n-1}\rho}\}=0 .

Thus our present problem is to solve (2. 5) for the given V. Here it
should be noted that the components of h_{i}\alpha , and hence those of h^{i}\alpha and \gamma_{\alpha\beta\gamma} ,

are not necessarily real, by virtue of the relation (2. 3). We use (2. 3),
however, in order to deal with x^{2}, x^{3} and x^{4} (i.e. y, z and t) symmetrically.
Further, as is easily seen, the results to be obtained are independent of
the special choice of the coordinate system and that of the ennuple h_{i}\alpha .

\S 3. Preliminaries, 2.

Now we give some fundamental properties of V which will play im-
portant roles in the present paper. V is a space-time whose metric can
be brought into the form

(3. 1) ds^{2}=-dx^{2}-Bdy^{2}-Cdz^{2} Ddt2, ((x^{i})\equiv(x, y, z, t)) ,

where B, C and D are positive-valued functions of x. A characteristic
system (abbreviated to c.s.) is defined as a set of 4 unit vectors and some
scalars satisfying some tensor equations. All intrinsic properties of V can
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be expressed in terms of c.s. Among these scalars, the most fundamental
ones are \lambda_{2} , \lambda_{3} and \lambda_{4} . They are given by

(3. 2) \lambda_{2}=-\beta/2 , \lambda_{3}=-\gamma/2 , \lambda_{4}=-\delta/2, (\beta\equiv B’/B, \gamma\equiv C’/C, \delta\equiv D’/D) ,

in the coordinate system of (3. 1), which is called standard for the c.s .
Here a prime denotes the derivative with respect to x. (Cf. \S 3 of [1].)

Now the following theorem is proved in [2] by using the coordinate
system of (3. 1) (Prop. 5. 6):

PROPOSITION 3. 1. ( I) When \beta\gamma\delta\neq 0 , the V admits no parallel vector
field {hereafter ‘fidd’ will be omitted). (II) When one of (II_{2})(\beta=0, \gamma\delta\neq 0) ,
(II_{3})(\gamma=0, \delta\beta\neq 0) and (II_{4})(\delta=0, \beta\gamma\neq 0) holds, we have one and only one
pardlel vector v_{i} to within a constant multiplier. It is c\delta_{v}^{2}i , c\delta_{i}^{3} {space-like),
and c\delta_{l}^{4}, {time-like) respectively. Here c is a non-vanishing arbitrary con-
stant. (II) When one of (III_{2})(\gamma=\delta=0, \beta\neq 0) , (III_{3})(\delta=\beta=0, \gamma\neq 0) and (I\coprod_{4})

(\beta=\mathcal{T}=0, \delta\neq 0) holds and the V is non-flat, we have two linearly independ-
ent {with constant coefficients) parallel vectors. They are c\delta_{i}^{3}+c’\delta_{i}^{4} , c\delta_{\dot{l}}^{4}+c’\delta_{i}^{2}

{space-like, null, time-like) and c\delta_{i}^{2}+c’\delta_{\dot{a},v}^{3} {space-like) respectively. Here c and
c’ are arbitrary constants which do not satisfy c=c’=0. Whm the V is
flat, we have evidently 4 linearly independent parallel vectors. (IV) When
\beta=\gamma=\delta=0 holds, the V is flat.

Further it is evident from the results in [2] that the condition that the
V in the case of (III_{a}) , (a=2,3, 4), be flat is given by k_{2}\equiv-B’/2\sqrt{B}=const .
\neq 0 or k_{3}\equiv-C’/2\sqrt{C}=const . \neq 0 or k_{4}\equiv iD’/2\sqrt{D}=const . \neq 0 respectively.
(Again, we use the purely imaginary quantity k_{4} for convenience’ sake.)
The condition k_{a}=0 is equivalent to \beta=0 or \mathcal{T}=0 or \delta=0 respectively.

The V in the case of ( I) is characterized by the condition that it
admit a c.s. satisfying \lambda_{2}\lambda_{3}\lambda_{4}\neq 0 . Similarly, the V in the case of (II_{a}) is
characterized by the existence of a c.s . satisfying \lambda_{2}=0 , \lambda_{3}\lambda_{4}\neq 0) or (\lambda_{3}=0 ,
\lambda_{4}\lambda_{2}\neq 0) or (\lambda_{4}=0, \lambda_{2}\lambda_{3}\neq 0) respectively, and the V in the case of (III_{a}) admit-
ting 2 independent parallel vectors is characterized by the conditions that
it is non-flat and admits a c.s. satisfying (\lambda_{2}\neq 0, \lambda_{3}=\lambda_{4}=0) or (\lambda_{3}\neq 0, \lambda_{4}=\lambda_{2}

=0) or (\lambda_{4}\neq 0, \lambda_{2}=\lambda_{3}=0) respectively. We denote these V’s by V(I), V(II_{2}) ,
\ldots , V(III_{2}), \cdots respectively.

On the other hand, it is shown in [12] that in S(B), i.e. the flat space-
time, the problem of parallel tensors is completely solved for arbitrary n
as follows :

PROPOSITION 3. 2. In the space-time S(B), a parallel tensor of n-th
order is given by (\lambda, \lambda, \lambda, \lambda)_{n}1234 , where \lambda=\lambda_{i}\alpha\alpha , (\alpha=1, \cdots, 4) , are 4 parallel unit
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vectors mutually orthogonal and the notation (\lambda, \cdots)_{n}1 denotes any linear
combination (with constant coefficients) of tensors of n-th order made from
\lambda’ s\alpha by outer products.

Evidently g_{if} is parallel. Further if we put \eta_{iflm}=\sqrt{-g}\epsilon_{iflm} , where
\epsilon_{iflm} is anti-symmetric with respect to each pair of indices and \epsilon_{1234}=1 , it
is also parallel. (If the group of coordinate transformations contains the
transformations whose Jacobians are negative, \eta_{iflm} is defined by \rho - g
\epsilon_{iflm} , where \rho is a pseud0-scalar satisfying |\rho|=1 .) These g_{if} and \eta_{iflm} are
contained in the expression (\lambda, \cdots)_{n}1 implicitly.

\S 4. Equations to be solved.

We use the coordinate system of (3. 1) and take the orthonormal en-
nuple defined by

(4. 1) h_{i}=i\delta_{i}^{1}1 , h_{i}^{2}=i\sqrt{B}\delta_{i}^{2} , h_{i}^{3}=i\sqrt{C}\delta_{i}^{3} , h_{i}^{4}=\sqrt{D}\delta_{i}^{4} .
Then the non-vanishing components of \gamma_{\alpha\beta\gamma} are given by
(4. 2) r_{122}=-r_{212}=-i\beta/2 , \mathcal{T}_{133}=-\mathcal{T}_{313}=-i\gamma/2, \mathcal{T}_{144}=-\mathcal{T}_{414}=-i\delta/2 ,

and the equation (2. 5) becomes

(4. 3a) \partial_{x}V_{\alpha_{1}\cdot\cdot\alpha_{n}}=0, i.e . V_{\alpha_{1}\cdots\alpha_{n}}=function of (y, z, t),

\partial_{b}V_{\alpha_{1}\cdot\alpha_{n}}=k_{b}\{(\delta_{\alpha_{1}}^{b}V_{1\alpha_{2}\cdot\cdot\alpha_{n}}+\delta_{\alpha_{2}}^{b}V_{\alpha_{1}1\alpha_{3}\cdot\cdot\alpha_{n}}+ \cdot.. +\delta_{\alpha_{n}}^{b}V_{\alpha_{1}\cdots\alpha_{n-1}1})

(4. 3b)
-(\delta_{\alpha_{1}}^{1}V_{b\alpha_{2}\cdots\alpha_{n}}+\delta_{\alpha_{2}}^{1}V_{\alpha_{1}b}\alpha_{h}+\cdots+\delta_{\alpha_{n}}^{1}V_{\alpha_{1}\cdot\cdot\alpha_{n-1}b})\} ,

where (b=2,3,4) and \partial_{a}=\partial/\partial x^{a} . (4. 3) gives the equations to be solved.
The integration of (4. 3a) is evident. When n is large, however, it is

very laborious to integrate (4. 3b), which is composed of 3\cross 4^{n} equations.
To execute the calculations easily as far as possible, we further classify
7(I)’s and V(II)’s as follows: V(I) is V(I)_{a} when all of k_{2} , k_{3} and k_{4} are
non-constant, V(I)_{b} when one of k_{a} ’s is a non-zero constant and the re-
maining two are non-constant, V(I)_{c} when two of k_{a} ’s are non-zero con-
stants and the remaining one is non-constant, and V(I)_{d} when all of k_{a} ’s
are non-zero constants. Similarly, V(II) is V(II)_{a} when the two surviving
k_{a} ’s are non-constants, V(\coprod)_{b} when one is non-constant and the other is
a non-zero constant, and V(II)_{c} when both of the two are non-zero con-
stants. In general, the solution of (4. 3b) is very easy when k_{b}\neq const .
holds, compared with the case of k_{b}=const . (\neq 0) .

When n=1, (4. 3b) becomes
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(4. 4) \partial_{y}V_{1}=-k_{2}V_{2} , \partial_{y}V_{2}=k_{2}V_{1} , \partial_{y}V_{3}=\partial_{y}V_{4}=0, and cycl. ,

where cycl. means the expressions obtained by the cyclic changes of (2, 3, 4)

and (y, z, t) . Then it is easy to obtain Prop. 3. 1.

\S 5. When n=2.
When n=2, (4. 3b) becomes

(5. 1) \{

\partial_{y}V_{11}+k_{2}(V_{12}+V_{21})=\partial_{y}V_{22}-k_{2}(V_{12}+V_{21})

=\partial_{y}V_{12}-k_{2}(V_{11}-V_{22})=\partial_{y}V_{21}-k_{2}(V_{11}-V_{22})=0 ,

\partial_{y}V_{13}+k_{2}V_{23}=\partial_{y}V_{31}+k_{2}V_{32}=\cdots=\partial_{y}V_{24}-k_{2}V_{14}=\partial_{y}V_{42}-hV_{41}=0 ,

\partial_{y}V_{33}=\partial_{y}V_{34}=\partial_{y}1_{43}^{\gamma}=\partial_{y}V_{44}=0 , and cycl.

By solving (5. 1), we can easily obtain: (/) When the V is V(I), we
have V_{\alpha\beta}=e\delta_{\alpha 9} , from which we have

(5. 2) v_{if}=cg_{if} .
Here e and c are arbitrary constants. (II) Next we consider the case in
which the V is V(U). If we take V(II_{2}), for example, we have V_{\alpha\beta}=e_{1}\delta_{\alpha\beta}

+e_{2}\delta_{\alpha}^{2}\delta_{\beta}^{2} , i.e.
2 2

(5. 3) v_{if}=c_{1}g_{if}+c_{2}v_{i}v_{f} .
2

Here e’s and c’s are arbitrary constants and v_{i} is the parallel unit vector
2

whose components are given by v_{i}=\delta_{i}^{2} in the coordinate system in which
2

B=1 holds (cf. Prop. 3.1). (Note that the scalar components of v_{i} are
given by \delta_{\alpha}^{2} .) {Ill) Lastly we consider F(III) . If we take V(I\Pi_{2}), for ex-
ample, we can obtain V_{\alpha\beta}=e_{1}\delta_{\alpha\beta}+e_{2}\delta_{\alpha}^{3}\delta_{\beta}^{3}+e_{2}’\delta_{\alpha}^{4}\delta_{\beta}^{4}+e_{3}\delta_{\alpha}^{3}\delta_{\beta}^{4}+e_{3}’\delta_{\alpha}^{4}\delta_{\beta}^{3}+e_{4}\epsilon_{\alpha\beta\gamma\delta}\delta_{3}^{r}\delta_{4}^{\delta} , i.e .

(5. 4) v_{iJ}=c_{1}g_{tJ}+c2viv_{f}+c’2viv_{J}+c3viv_{f}+c_{3}’v_{i}v_{f}+c_{4}\eta_{tflm}v^{l}v^{m}3344344334,\cdot

3 4

where e’s and c’s are arbitrary constants, and v_{i} and v_{\iota}, are the independ-
ent parallel vectors given in Prop. 3.1 in the case of (III_{2}) .

\S 6. When n=3.
In this case (4. 3b) is composed of 3\cross 4^{3} equations :

(6. 1)

-\partial_{y}V_{111}+k_{2}(V_{211}+V_{121}+V_{112})=\partial_{y}V_{112}+k_{2}(V_{212}+V_{122}-V_{111})=0 ,

) ...........................
\vee\partial_{y}V_{441}+hV_{442}=\partial_{y}V_{442}-k_{2}V_{441}=\partial_{y}V_{u3}=\partial_{y}V_{444}=0 , and cycl.

We denote by (E_{2}) the equation (4. 3b) with b=2. Then we can show
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that, when k_{2}\neq const. , (E_{2}) is equivalent to
P

(6. 2) \{

V_{\alpha\beta\gamma}=V_{\alpha\beta r}(z, t);V_{abc}=0 , V_{12\rho}+V_{21\rho}=0 ,

V_{11\rho}=V_{22\rho}P , V_{1\rho\sigma}=V_{2\rho\sigma}=0PP , (a, b, c=1,2;\rho, \sigma=3,4) ,

where =P means that the n! (in this case, 3 !) equations obtained by the
permutation of n indices hold.

On the other hand, when k_{2}=const . (\neq 0) , (E_{2}) is equivalent to
P

(6. 3) \{

V_{11}, =p_{11\rho} sin 2k_{2}y+q_{11\rho} cos 2k_{2}y+r_{11\rho} ,
P

V_{22}, =-p_{11\rho} sin 2k_{2}y-q_{11\rho} cos 2k_{2}y+r_{11\rho} ,
V_{12\rho}=-p_{11\rho}\cos 2k_{2}y+q_{11\rho}\sin 2k_{2}y+r_{12\rho}P ,
V_{21\rho}=P-p_{11\rho}\cos 2k_{2}y+q_{11\rho}\sin 2k_{2}y-r_{12\rho} ;

P P

(6. 4) \{

V_{\rho\sigma 1}=a_{p\sigma 1} sin k_{2}y+b_{\rho\sigma 1} cos k_{2}y , V_{\sigma 2},=-a_{\rho\sigma 1} cos k_{2}y+b_{\sigma 1}, sin k_{2}y ;
V_{\rho\sigma\tau}=V_{\rho\sigma\tau}(z, t) ;

(6. 5) \{

\partial_{y}V_{111}+k_{2}(V_{211}+V_{121}+V_{112})=\partial_{y}V_{222}-k_{2}(V_{122}+V_{212}+V_{221})=0 ,
\partial_{y}V_{211}+k_{2}(-V_{111}+V_{221}|+V_{212})=\partial_{y}V_{122}+k_{2}(V_{222}-V_{121}-V_{112})=0PP .

Here \rho, \sigma, \tau=3,4, and g’s, g’s, r’s, a’s and b’s are functions of (z, t).
Using these equations and dealing with the cases V(I)_{a} , V(I)_{b} , \cdots ,

V(II)_{a} , V(II)a , \cdots , V(III) separately, we can arrive at the following conclusion
(again, the calculations are omitted for brevity’s sake):

PROPOSITION 6. 1. When the V is V(I), we have
(6. 6) v_{ifk}=0 .
When the V is V(II), we have

(6. 7) v_{ifk}=c_{1}\mu_{i}g_{fk}+c_{2}\mu_{f}g_{ik}+c_{3}\mu_{k}g_{if}+c_{4}\mu_{i}\mu_{J}\mu_{k}+c_{5}\eta_{ifkl}\mu^{l} ,

where c’s are arbitrary constants and \mu_{i} is the parallel unit vector uniquely
2 3 4

determined (i.e. v_{i} or v_{i} or v_{i} in V(II_{2}) or V(II_{3}) or V(II_{4}) respectivdy.
When the V is V(III), we have

(6. 8) \{

v_{ifk}=(c_{1}\mu_{i}+c_{1}’\nu_{i})g_{fk}+(c_{2}\mu_{J}+c_{2}’\nu_{f})g_{ik}+(c_{3}\mu_{k}+c_{3}’\nu_{k})g_{if}

+c_{4}\mu_{i}\mu_{J}\mu_{k}+c_{4i}’\nu\nu_{f}\nu_{k}+(c_{5}\nu_{i}\mu_{j}\mu_{k}+c_{5}’\mu_{i}\nu_{f}\nu_{k})+\cdots

+\{(c_{8}\mu_{i},+c_{8}’\nu_{i})\eta_{fkpq}+\cdots+(c_{10}\mu_{k}+c_{10}’\nu_{k})\eta_{ifpq}\}\mu^{p}\nu^{q} ,

where c’s and c’ ’s are arbitrary constants and \mu_{i} and \nu_{i} are mutually or-
thogonal parallel unit vectors stated in Prop. 3. 1 (i.e. (v_{i}, v_{i})34 or (v‘, v_{i})42 or
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(v_{i}, v_{i})23 in V(II_{2}) or V(II_{3}) or V(II_{4}) respectively). The number of arbitrary
constants is 20.

Arranging the results in Prop. 3. 1, \S 5 and Prop. 6. 1, we have
PROPOSITION 6. 2. When the non-flat V is V(I) or V(II) or V(III), we

have

(6. 9) v_{i_{1}\cdots i_{n}}=(g, \eta)_{n} or

(6. 10) =(g, \eta, \mu)_{n} or

(6. 11) =(g, \eta, \mu, \nu)_{n}

respectively, if we assume 1\leqq n\leqq 3 .
Here the notation (g, \eta, \mu)_{n} , for example, means a tensor of n-th order

obtained as a linear combination (with constant coefficients) of the tensors
of n-th order each of which is composed of g_{if} , \eta_{iflm} and \mu_{i} by the process

of outer products and contractions. Examples are given in (5. 3) (\mu_{i}=v_{i})2

and (6. 7).

Conversely, it is evident that (6. 9), (6. 10) and (6. 11) give parallel ten-

sors in each Vs, since g_{if} and \eta_{iflm} are parallel in all Vs, \mu_{i} is parallel in
V(II), and \mu_{i} and \nu_{i} are parallel in V(III).

Our conjecture is that Prop. 6. 2 holds for all n\geqq 1 . At the present

stage of the investigation, this is only a conjecture.

\S 7. When n=4.
As is stated at the end of the last section, we can not prove Prop.

6. 2 even for the case of n=4 at the present stage. We have proved only
(6. 9) for V(I)_{a} , V(I)_{b} and V(I)_{c}. assuming n=4. The proof for V(I)_{a} is
laborious, so we stop here, only noting the conditions corresponding to

(6. 2) and \{(6.3), (6. 4), (6. 5)\} .
When k_{2}\neq const. , (E_{2}), which is composed of 4^{4} equations, is equivalent

to
P P

(7. 1) \{

V_{\alpha\beta\gamma\delta}=V_{\alpha\beta\gamma\delta}(z, t) ; V_{a\rho\sigma\tau}=0 , V_{\rho abc}=0 ,

V_{11\rho\sigma}=V_{22\rho\sigma}P , V_{12\rho\sigma}+V_{21\rho\sigma}=0P ,

V_{1111}=V_{2222}=p+q+r, (V_{1122}=V_{2211}=p, V_{1212}=V_{2121}=q ,

V_{1221}=V_{2112}=r), V_{2111}=-V_{1222}=b_{1} , V_{1211}=-V_{2122}=b_{2} ,

V_{1121}=-V_{2212}=b_{3} , V_{1112}=-V_{2221}=b_{4} ,

b_{1}+b_{2}+b_{3}+b_{4}=0 ,
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where (a, b, c=1,2 ; \rho, \sigma, \tau=3,4) and p, q, r, b_{1} , \cdots , b_{4} are functions of (z, t).
When k_{2}=const . (\neq 0), we have from (E_{2})

P P

(7. 2) \{

V_{\sigma\tau 1},=p_{p\sigma\tau} sin k_{2}y+q_{p\sigma\tau} cos k_{2}y , V_{\rho\sigma\tau 2}=-p_{\rho\sigma\tau} cos hy+q_{\rho\sigma\tau} sin k_{2}y ,
V_{p\sigma 11}-V_{\rho\sigma 22}=r_{p\sigma}P sin 2k_{2}y+s_{\rho\sigma} cos 2k_{2}y ,
V_{p\sigma 12}+V_{\sigma 21},=-r_{\rho\sigma}P cos 2k_{2}y+s_{\rho\sigma} sin 2k_{2}y ,

(7. 3) \{

V_{2111}+V_{1211}+V_{1121} \dagger V_{1112}=-a cos 2k_{2}y+b sin 2k_{2}y

-m cos 4k_{2}y+n sin 4k_{2}y ,

V_{1222}+V_{2122}+V_{2212}+V_{2221}=-a cos 2k_{2}y+b sin 2k_{2}y

+m cos 4k_{2}y-n sin 4k_{2}y ,

(7. 4) \{

V_{1111}=(a/2) sin 2k_{2}y+(b/2) cos 2k_{2}y+(m/4) sin 4k_{2}y+(n/4) cos 4k_{2}y+f,

V_{2222}=-(a/2) sin 2k_{2}y-(b/2) cos 2k_{2}y+(m/4) sin 4k_{2}y+(n/4) cos 4k_{2}y+f,
V_{1122}+I^{\gamma_{2211}}+V_{1212}+V_{2121}+V_{1221}+V_{2112}

=-(3/2) (m sin 4k_{2}y+n cos 4k_{2}y ) +2f,
P

(7. 5) \{

3V_{\rho 1}^{\alpha}+X_{2}^{\alpha},=u_{\rho} sin k_{2}y+v_{\rho} cos k_{2}y ,
3V_{a2}^{\alpha}+X_{\rho 2}^{\alpha}=P-u_{\rho} cos k_{2}y+v_{\rho} sin k_{2}y ,

where (a, b, c=1,2;\rho_{ \sigma},, r’s, 5’s, a, b, m, n,f, us and v’s are arbitrary
functions of (z, t). Further, for example, V_{\rho 1}^{1}=V_{\rho 111} , V_{\rho 2}^{1}=V_{\theta 22} , X_{\rho 1}^{1}=V_{\rho 211}+

V_{p121}+V_{\rho 112} and X_{\rho 2}^{2}=V_{1\rho 22}+V_{2\rho 12} \dagger V_{2\rho 21} , and the upper index \alpha indicates the
position of \rho .

Further it should be noted that the condition \{(7.2), \cdots, (7. 5)\} is not
sufficient for (E_{2}) with k_{2}=const . \neq 0 . Some other equations are necessary,
but we omit them for brevity’s sake.
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