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1. We work in the category of compact PL spaces and PL maps [Z].
Given spaces X and Y and a map f: X—Y, we define U,(f) to be the set
of points € X such that f~!f(x) contains at least r points. S,(f) is the
closure of U,(f) in X. We call B(f)=S,(f)—U,(f) branch locus of f (i.e.
for x€ B(f) f~f(x)=x but f|U(x) is not embedding for any neighborhood
U(x) of x.) Conversely we consider whether f|U,(f) is a local embedding
(=immersion) or not (i.e. for x€ U,(f) there is a neighborhood U(x) of
x such that f|U(x) is an embedding). For this problem we obtain a
following.

ProposiTion. 1. If M™, Q° are closed m- and q-dim. manifolds and
if f: M"—Q* (m<q) is a map, f|U,(f) is an immersion.

Next we consider about almost immersions. Given a map f: M—Q,
we call f almost immersion if B(f)=38,(f)—U,(f)=one point and we call
f special almost immersion if f is an almost immersion and if S,(f|lk(q,
M)={a,, ---, a,} (finite set of even points) for a unique point {a}=B(f)
and S;(f|lk(a, M))=¢. According to Irwin [1] f is a simple immersion if
S:(f)=¢=B(f). Then we prove ,

THEOREM 1. Let M™, Q* be (2m—q—1)-connected closed manifolds,
3m=2q9—1 and q=6. Then any PL map f: M—Q is homotopic to a spe-
cial almost immersion g ; M—Q with S;(g)=4.

THEOREM 2. Let M™ be (2m—q—1)-connected closed manifold and Q"
be (2m—q)-connected, g<m—3. Then any PL map f; M—Q is homotopic
to an almost immersion g : M—Q with S;(g)=¢.

In this paper M, Q always mean m- and g¢-dim. closed manifold if
otherwise is not stated. D", S* are always n-dim. ball and sphere respec-
tively. For a simplial complex K and a simplex 4 in K, let

St(d, K)={4re K| dr <o, 40> 4,
Lk(4, K)={dre St(4, K)| 42N 4" = ¢} be

the star and the link of 4* in K. For spaces or complexes X and Y, X*Y
denote a non-singular join of X with Y. We call XxY a linear cone on
Y if X is one point. dM, Int M mean the boundary, the interior of the
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manifold M respectively. Sometime we use the notation M instead of
Int M. Both /X, X mean the closure of X in some space.

2. Let f: M»—>Q? (m<q) be a PL map. It is well known that we
can move f into general position by homotopy (i.e. there is a PL map
fo: M—Q which is homotopic to f and dim fi(4")=r for any r-simplex of
M and dim S,(f)£2m—gq.) So unless otherwise is stated we suppose that
any PL map f is in general position. Then there is an integer p such
that U,.,(f)=¢ since M is compact.

Proor ofF ProprosTiON. Let K, J be subdivisions of M, Q respec-
tively such that f: K—J is simplicial. For x€ U,(f) there is an integer
E=2 such that x€ U (f)— U, (f). Since dim (U (f)—Upn(f)Skm—(k—
1)g=r, there exists a z-simplex 4'€ K(¢<7) such that x€Int4’. Let L=
LE(4, K). We first prove that f|L is an embedding. Let 4;, 45€ L(4i+
4% with f(4)=f(4;) (dim 4,=dim 4, because f is non-degenerate). We may
assume [=2m—gq since f is in general position. Then f(4x4")=f(4’x L)
and dim (f(dad)Nf(dxd)—f( LN L)L) =1+t +1>1=2m—q. This con-
tradicts to dim S,(f)<2m—q. Hence f|L is an embedding. Next we show
fla*L=f|St(4, K) embedding. f|4'*L=Ff] AUEL(A‘*Aj) and 4«4, is a simplex
of K by the definition of L. Since f is jnon-degenerate and simplicial
with respect to K, f|4'*4; is an embedding. If P=f(4*d,)Nf(d'*d;)—
f(dx(4;n4,)>x¢ for some 4;, 4;€ L, f*(P)Nd;#¢ and f(P)Nd;#¢ and
FUP)NL)=f(f(P)N4;) because f|4 is an embedding. This contradicts
to f|L embedding. Hence f|St(4, K)=f|St(x, K) is an embedding and so
FIU(f) is an immersion.

CorOLLARY 1. U(f)DU,n(f) and
S:(/)—Ua(f)2S,a(f)—=U,u(f) for any r= 1L

Proor. First statement is obvious by definition. To show second state-
ment it is sufficiently to show that (U,(f)—U,.(f)NS,1(f)=¢ for any
r=1. Let P=(U,(f)—U,n(/N)NS,ui(f) and P#£g. If x€ P, f f(a)={x1,
oo, 2} (2I<7) and for any neighborhood U(x;) of z;, there exists y,€

U(x;) such that £ f(y)={y1, ==, Y5}, p=r+1 (¥).

On the other hand for the above x; there is a neighborhood V(z;) for

which f|V(x;) is an embedding by proposition. We choose a neighdorhood
oo

W(f(z) of flm) in Q so that W(f(z)NAM)C Uf(V(x.) and put V(z,)=

V(z)nf(W(f(x) Then we can show f~'f(y)={w, -, v} (g=I) for
any ¥, € V(x,). Because f'f(y,)NV(x)=1y, since f]V(x,) is an embedding.
By the same way
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_fue i f)ef(V(z)
lg i flu)ef(V(x).

So [T fly)f T (f(V(x)Nf(M)=f(W(f(x)Nf(M >)Ci91f V().
Hence f'f(y)={v1, ", ¥ (¢<I). This contradicts to (¥).
Hence P=¢.

COROLLARY 2. Let f: M™—Q® (q=m+3) be a PL map which is in
general position and let V.()=U.(f)—U,.n(f). If V.(f)#¢ for some
r=2, for any s2<s=<r) V,(f)#4¢.

Proor. By flU(f) is an immersion. For x€ V.(f) let
U f@)={x, -+, x,}. Then f|St(z;, K): St(x;, K)=>St(f(x,), J) is a proper
locally flat embedding for each 7 and some triangulations K, J of M, Q
respectively. Let U(x,)=St(x;, K) and U(f(x)=St(f(x,), J). Then by
[A-Z, Th. 1.] we can ambient isotope f(U(x;)) transversal to jg. f(U(x;) by

small ambient isotopy of U(f(x,). Hence we can consider U(f(z;))D U

[NV ()

f(U(x,) as like as the m-dim. planes in g-dim. euclidean space R% So let
U(f(x)))=R?* and f(U(x,))=E7(1<i<7r). Then there are (g—1)-dim, hyper-
planes E7Y, .-+, EL,, such that Er=E%'N---NE%L,. For any &, I(k+])
E?3! and E%;' are neither parallel nor coincide. Furthermore for any E%7
and E$;' (not i=j, k=[) they are neither parallel nor coincide. Because
for i=j, k#1, it is obvious. If i#j and if E¢}'=E%},

ErNE? =ES'N-NESL. NESTN---NESN---NELL,

and so dim(E7NE?)=qg—{g—m)+(g—m—1)}=2m—q+1. It contradicts
E? and E? in general position. And if E%;! is parallel to E4/, E%'NEY;
=¢ and EPNEPCEYNEY}=¢. It contradicts to EPNE}+#¢. So taking
ErN--NED (5;%#14, if j#k 255Z7),

, Eg_ln nEz g— mn"'nEg;}.n"'nE%;;—m;bgﬁ-
Hence V,(f)#¢ for 2<s<r.

3. LEMMA 1. Let A™, B¢ be balls and let f: 0A—>0B be a PL map
such that S,(f)=aUa,. Then there is a special almost immersion g: A—
B which is an extension of f.

PROOF. Let g be a linear cone extension of f. Then S;(g)=(a*a,)U
(a*a,) where a is the center of A and S,(¢)—{a}=U.(¢9)—Us(g), a€ B(g).
And it is obvious that S,(g|lk(a, A)) contains only two points. So ¢: A—
B is a sepecial almost immersion which is an extension of f.
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LEMMA 2. Let A™ B® be balls and f: dA—dB be a simple immersion
whose S,(f) consists of two connected components C,, C, which are PL
subspaces. Suppose 3m=<2q—1, g=6 then there is a special almost immer-
sion g: A—B which is an extension of f.

Proor. Choose a linear cone X?*™% on C; in dA. Then we may
assume X,NC,=¢ (if necessary, by putting X;, C, into general position
with respect to each other). And remove a second derived neighborhood
N,=N(X,,dA"”) of X, and next put a linear cone X3"¢ on C, in 9A—
Int Ny=D™'. Choose a linear cone Y**~**! on f(X,UX;) in dB. Since by
putting Y in general position with respect to (9 A)

dim(Y NfOA—(X,UX))<2m—q+1+(m—1)—(¢—1)=0,

let YNFOA—(X,UXy)={w, -, %) Then we may assume u;& f(S:(f).
Let v;=f"'(«;). Joining a point ¢;& C, with v; by simple polygonal arc «;
in 9A so that

(1) aNay=¢ (i #35)
(2) az‘nX1=Cl
(3) ainX2=¢,

(it is possible because ¢>m+2).
Joining f(c;) with u; by simple polygonal arc $; on Y so that

(4) BnB=9 (i # )
(5) ﬁz ﬂf(aA) =f(Cl)Uui-

Since dim dB=q—1=5, by Embedding Theorem [Z, Chap. 8] there exist PL
embeddings h: D*-9B (i=1,2, -+, r) satisfying

(6) h(DHNhy(LY)=¢ (i #37)
(7) hi(@D?) = fle:)U B
(8 hi(D)NfOA—a))=¢.
let X,=X,U U, Y=Y U Uh(D?) then X.,\0in 84, Y\ 0 in 8B and

?

fYYn f(aA))=§Z1UX2. So the second derived neighborhood N=N(Y,
oB", N,=N(X,,04A"), N,=N(X,,9A") of these are (m—1)- and (g—1)-
balls respectively and f|Ni, f|N; are proper embeddings into N. (dN:
FON,), FON,)=(S72: S™%, 8™ %) is a link. Let W,=N(X,, A"), W,=N(X,,
A"), W=N(Y,B") be second derived neighborhoods of X;, X;, ¥ respec-
tively, then they are all balls. Taking a, € oW,—N,, a,ecdW,—N,, acdW
—N, then we may consder W,zaxN,, W,=axN,, W=axN. So we define
a map f:dAUW,UW,—»3dBUW by F=f on 84, f(a)=F(a)=a and by
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extending linearly on W,, W,. Then Sy F)=(a*C)U(a*C,) and F is
a simple immersion. Let A,=A—(W,Uu W,)=D™, B,= B— W=D then
floA,: 0A,— 3B, is a simple immersion and S,(f|04,)=a;Ua,. So by
LEMMA 1, there is a special almost immersion §: A;—B, such that §|dA
=flaA0.

We define a map ¢g: A—>B by

g=Jf on dAUW,UW,
lﬁ on A,.

It is clear that ¢ is a special almost immersion.

REMARK. 1. Even if S,(f) has as connected component more than 2,
it is clear that we may deal separately with each pair of connected com-
ponents which is identified under £ So and may be
carried out well clear of even components more than 2.

REMARK. 2. Let A™, B° balls and f: JA—3B be an immersion, then
there is an almost immersion ¢g: A—B using cone extension such that
gloA=f.

ProorF oF THEOREM 1. Since f is in general position, dim.S,(f)<
2m—q and S;(f)=¢. And the branch locus B(f)=S,(f)—U,(f) is con-
tained in the (2m—g—1)-skeletion of some triangulation of M. Using
Engulfing Theorem ([Z. Chap. 7]) there is a collapsible subpolyhedron X?»-¢
in M which contains B(f). Since dim (XN (S.(f)— B(f))=3m—2¢<0,
f1X is an embedding and so f(X)\O0 in Q. Now put A”=N(X, M"), B
=N(f(X), Q") then A, B are m-and g¢-balls and by the map f: M—Q,
J(M—A)cQ—B, f(dA)cdB and f(Int A)CInt B. Furthermore B(f)CInt A.
Since f|M—Int A is a simple immersion, by LEMMA 2 and REMARK 1 there
is a special almost immersion

§: A—B such that §|0A=f.
So we define f: M—Q by

_{f on M—IntA
1§ on A.

Then ¢ is a special almost immersion which is homotopic to f.

REMARK. Let f: M"—>Q be a PL map with S;(f)=¢. Then a con-
nected component C of f(U,(f)) is a connected manifolds. We denote
F4(C)=C,UC, where Ci(i=1, 2) are subset of f*(C) satisfping the follow-

ing conditions,
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1. VC1 € C1 ECZ € Cg 9f<C1) =f(C2>
2. de c Cz ﬂ-dl c C1 Bf(dl) =f(dg>
3. C;(i=1,2) are connected and C,NC,=¢.

Then we may consider following cases.

Case 1. If C, is a closed subset in f~(C) or if C, is an open subset
in £~Y(C), f(C) is not connected.

Cask 2. If C, is neither closed nor open in f(C), FYC) is con-
nected. Since f is a PL map, dC;=CI(C;)—Int(C;) is contained in the
(2m—q—1)-skeleton of some triangulation of M. So if CASE 2 happens to
THEOREM 1, we take X?"~? so that it contains not only B(f) but also dC;.
Then is available.

ProOF OF THEOREM 2. Since f: M—Q is simplicial and in general
position with respect to some triangulations of M and Q, dimB(f)=
2m—q—1 and by Engulfing Theorem ([Z Chap. 7]) there is a collapsible
polyhedron X, in M which contains B(f). And there is a collapsible
polyhedron YZ*~¢*! in Q which contains f(X;). Put Wo=(f"(Ys)—X,) then

dim W, < 2m—q—2 and so dim W,<dimB(f).

We prove the theorem by induction as follows. Inductive hypothesis ¢(i):
There exist collapsible subspaces X; and Y, such that B(f)CX;CM, f(X.)
cY,cQ and W,=CIl(f*(Y,)—X,) has dimension =2m—g—i—2. The
case i=0 has been proved above. We assume ¢(j—1), =1 and prove ¢(j).
dim W, £2m—qg—j—1. By Engul fing Therem there is a subspace
sz =4 ijn M such that W,_ ICXZ’”“’ 7 and Xj—Xj IUXj\O And there
is a subspace Y% ¢! in Q such that f(X,)cY; and Y,=Y,,UY,\0.
Then f(X,)CY; and we put Y; rel. FAX,)UY,_,, into general pasition with
respect to f(M). Now (Y,;Nf(M))—f(X,)=(T,;Nf(M))—f(X, and dim W,
=dim (Y, N (M) —f(X)S2m—g—j+1+m—q=2m—q—j—2.
¢(2m—q—1) tell us that Wy, _,1=¢ and so B(f)C Xom—q-1\0, f(Xzm-e-1)C
Yomoqoa O and 1 (Yom—g-1)=Xom—g-1. We put X=Xp,, 41, Y=Y;n_1 and
let A=N(X, M"), B=N(Y, Q") (m-and g-balls respectively). Then f(M—
A)cQ—B, f(8A)cadB, f(A)cB and B(f)CIntA. Since fI[M—A is an
immersion, by REMARK 2 we can extend f|dA to an almost immersion
f: A—B and we obtain a required almost immersion

g : M—Q by defining
_Jf on M—A
_lf on A.
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In particular taking X,DB(f)US;(f) because 3m—2¢<2m—qg—1, g is an
almost immersion with S;(g)=4.

ExaMPLE. It is well known that n-dim. complex projective space
P*(C) is immersible in R*! but not R*? for n=2". On the other hand
THEOREM 1 and THEOEM 2 tell us that P*(C) is special almost immersible
in R*"? for n=2", r=2.
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