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1. We work in the category of compact PL spaces and PL maps [Z].
Given spaces X and Y and a map f:Xarrow Y. we define U_{r}(f) to be the set
of points x\in X such that f^{-1}f(x) contains at least r points. S_{r}(f) is the
closure of U_{r}(f) in X. We call B(f)=S_{2}(f)-U_{2}(f) branch locus of f(i.e.
for x\in B(f)f^{-1}f(x)=x but f|U(x) is not embedding for any neighborhood
U(x) of x.) Conversely we consider whether f|U_{2}(f) is a local embedding
(=immersion) or not (i.e. for x\in U_{2}(f) there is a neighborhood U(x) of
x such that f|U(x) is an embedding). For this problem we obtain a
following.

PROPOSITION. 1. If M^{m} , Q^{q} are closed m- and g-dim. manifolds and
if f:M^{m}arrow Q^{q}(m<q) is a map, f|U_{2}(f) is an immersion.

Next we consider about almost immersions. Given a map f:Marrow Q,
we call f almost immersion if B(f)=S_{2}(f)-U_{2}(f)=one point and we call

f special almost immersion if f is an almost immersion and if S_{2}(f|lk(a,
M))=\{a_{1}, \cdots, a_{2n}\} (finite set of even points) for a unique point \{a\}=B(f)

and S_{3}(f|lk(a, M))=\phi . According to Irwin [1] f is a simple immersion if
S_{3}(f)=\phi=B(f) . Then we prove

THEOREM 1. Let M^{m}, Q^{q} be (2m-q-1)-connected closed manifolds,
3m\leqq 2q-1 and q\geqq 6 . Then any PL map f:Marrow Q is homotopic to a spe-
cial almost immersion g;Marrow Q with S_{3}(g)=\phi .

THEOREM 2. Let M^{m} be (2m-q-1)-connected closed manifold and Q^{q}

be (2m-q)-connected, q\leqq m-3 . Then any PL map f;Marrow Q is homotopic
to an almost immersion g:Marrow Q with S_{3}(g)=\phi .

In this paper M, Q always mean m- and g-dim. closed manifold if
otherwise is not stated. D^{n}, S^{n} are always w-dim. ball and sphere respec-
tively. For a simplial complex K and a simplex \Delta^{t} in K, let

St(\Delta^{t}, K)=\{\Delta^{p}\in K|\Delta^{p}<\Delta^{q} , \Delta^{q}>\Delta^{t}\}’\backslash

Lk(\Delta^{t}, K)=\{\Delta^{p}\in St(\Delta^{t}, K)|\Delta^{p}\cap\Delta^{t}=\phi\} be

the star and the link of \Delta^{t} in K. For spaces or complexes X and Y, X*Y
denote a non-singular join of X with Y. We call X*Y a linear cone on
Y if X is one point. \partial M, Int M mean the boundary, the interior of the
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manifold M respectively. Sometime we use the notation [mathring]_{M} instead of
Int M. Both clX,\overline{X} mean the closure of X in some space.

2. Let f:M^{m}arrow Q^{q}(m<q) be a PL map. It is well known that we
can move f into general position by homotopy (i.e. there is a PL map
f_{0} : Marrow Q which is homotopic to f and \dim f_{0}(\Delta^{r})=r for any r-simplex of
M and dim S_{2}(f)\leqq 2m-q.) So unless otherwise is stated we suppose that
any PL map f is in general position. Then there is an integer p such
that U_{p+1}(f)=\phi since M is compact.

PROOF OF PROPOSTION. Let K, J be subdivisions of M, Q respec-
tively such that f:Karrow J is simplicial. For x\in U_{2}(f) there is an integer
k\geqq 2 such that x\in U_{k}(f)-U_{k+1}(f). Since dim (U_{k}(f)-U_{k+1}(f))\leqq km-(k-

1)q\equiv r, there exists a t-simplex \Delta^{t}\in K(t\leqq r) such that x\in Int M. Let L=
Lk(\Delta^{t}, K) . We first prove that f|L is an embedding. Let \Delta_{i}^{l} , \Delta_{f}^{l}\in L(\Delta_{i}^{l}\neq

\Delta_{f}^{l}) with f(\Delta_{i}^{l})=f(\Delta_{f}^{l}) (dim \Delta_{i}=\dim\Delta_{f} because f is non-degenerate). We may
assume l=2m-q since f is in general position. Then f(\Delta_{i}^{l}*\Delta^{t})=f(\Delta_{f}^{l}*\Delta^{t})

and dim (f(\Delta_{i}^{l}*\Delta^{t})\cap f(\Delta_{f}^{l}*\Delta^{t})-f((\Delta_{i}^{l}\cap\Delta_{f}^{l})*\Delta^{t})=l+t+1>l=2m-q . This con-
tradicts to dim S_{2}(f)\leqq 2m-q. Hence f|L is an embedding. Next we show
f|\Delta^{t}*L=f|St(\Delta^{t}, K) embedding. f|\Delta^{t}*L=f|\cup(\Delta^{t}*\Delta_{f}) and \Delta^{t}*\Delta_{f} is a simplex

\Delta_{f}\epsilon L

of K by the definition of L. Since f is non-degenerate and simplicial
with respect to K, f|\Delta^{t}*\Delta_{f} is an embedding. If P\equiv f(\Delta^{t}*\Delta_{i})\cap f(\Delta^{t}*\Delta_{f})-

f(\Delta^{t}*(\Delta_{i}\cap\Delta_{f}))\neq\phi for some \Delta_{i} , \Delta_{f}\in L, f^{-1}(P)\cap\Delta_{i}\neq\phi and f^{-1}(P)\cap\Delta_{f}\neq\phi and
f(f^{-1}(P)\cap\Delta_{i})=f(f^{-1}(P)\cap\Delta_{f}) because f|\Delta^{t} is an embedding. This contradicts
to f|L embedding. Hence f|St(\Delta^{t}, K)=f|St(x, K) is an embedding and so
f|U_{2}(f) is an immersion.

COROLLARY 1. U_{2}(f)\supset U_{r+1}(f) and
S_{2}(f)-U_{2}(f)\supset S_{r+1}(f)-U_{r+1}(f) for any r\geqq 1 .

PROOF. First statement is obvious by definition. To show second state-
ment it is sufficiently to show that (U_{2}(f)-U_{r+1}(f))\cap S_{r+1}(f)=\phi for any
r\geqq 1 . Let P=(U_{2}(f)-U_{r+1}(f))\cap S_{r+1}(f) and P\neq\phi. If x_{1}\in P,f^{-1}f(x_{1})=\{x_{1} ,
\ldots , x_{l}\}(2\leqq l\leqq r) and for any neighborhood U(x_{1}) of x_{1} , there exists y_{1}\in

U(x_{1}) such that f^{-1}f(y_{1})=\{y_{1}, \cdots, y_{p}\} , p\geqq r+1(*) .
On the other hand for the above x_{i} there is a neighborhood \tilde{V}(x_{i}) for
which f|\tilde{V}(x_{i}) is an embedding by proposition. We choose a neighdorhood

W(f(x_{1})) of f(x_{1}) in Q so that W(f(x_{1})) \cap f(M)\subset\bigcup_{i=1}^{l}f(\tilde{V}(x_{i})) and put V(x_{i})=

\tilde{V}(x_{i})\cap f^{-1}(W(f(x_{1}))) . Then we can show f^{-1}f(y_{1})=\{y_{1}, \cdots, y_{q}\}(q\leqq l) for
any y_{1}\in V(x_{1}) . Because f^{-1}f(y_{1})\cap\tilde{V}(x_{1})=y_{1} since f|\tilde{V^{-}}(x_{1}) is an embedding.
By the same way
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f^{-1}f(y_{1})\cap\tilde{V}(x_{i})=\{
y_{i} if f(y_{I})\in f(V(x_{i}))

\phi if f(y_{1})\not\in f(\tilde{V}(x_{i})) .

So f^{-1}f(y_{1}) \subset f^{-1}(f(V(x_{1}))\cap f(M))=f^{-1}(W(f(x_{1}))\cap f(M))\subset\bigcup_{i=1}^{l}f(\tilde{V}(x_{i})) .
Hence f^{-1}f(y_{1})=\{y_{1}, \cdots, y_{q}\}(q\leqq l). This contradicts to (^{*}) .
Hence P=\phi .

COROLLARY 2. Let f:M^{m}arrow Q^{q}(q\geqq m+3) be a PL map which is in
general position and let V_{r}(f)=U_{r}(f)-U_{r+1}(f). If V_{r}(f)\neq\phi for some
r\geqq 2 , for any s(2\leqq s\leqq r)V_{s}(f)\neq\phi .

PROOF. By Proposition f|U_{2}(f) is an immersion. For x\in V_{r}(f) let
f^{-1}f(x_{1})=\{x_{1}, \cdots, x_{r}\} . Then f|St(x_{i}, K) : St\{xt ,K)arrow St(f(x_{1}), J) is a proper
locally flat embedding for each i and some triangulations K, J of M, Q
respectively. Let U\{xt) =St\{xt ,K) and U(f(x_{1}))=St(f(x_{1}), J). Then by
[A-Z, Th. 1.] we can ambient isotope f(U(x_{i})) transversal to \bigcup_{f\neq i}f(U(x_{f})) by

small ambient isotopy of U(f(x_{1})). Hence we can consider U(f(x_{i})) \supset\bigcup_{i}

f(U(x_{i})) as like as the ra-dim. planes in q-dim. euclidean space R^{q} . So let
U(f(x_{1}))=R^{q} and f(U(x_{i}))=E_{i}^{m}(1\leqq i\leqq r). Then there are (q-1)- dim, hyper-
planes E_{i,1}^{q-1}, \cdots , E_{i,q-m}^{q-1} such that E_{i}^{m}=E_{i,1}^{q-1}\cap\cdots\cap E_{i.q-m}^{q-1} . For any k, l(k\neq l)

E_{i,k}^{q-1} and E_{i,l}^{q-1} are neither parallel nor coincide. Furthermore for any E_{i,k}^{q-1}

and E_{j,l}^{q-1} (not i=j, k=l) they are neither parallel nor coincide. Because
for i=j, k\neq l, it is obvious. If i\neq j and if E_{i,k}^{q-1}=E_{f,l\backslash }^{q-1}

E_{i}^{m}\cap E_{f}^{m}=E_{i,1}^{q-1}\cap\cdots\cap E_{i,q-m}^{q-1}\cap E_{j,1}^{a-1}\cap\cdots\cap E_{j,l}^{q-1}\cap\cdots\cap E_{j,q-m}^{q-1}

and so dim (E_{i}^{m}\cap E_{f}^{m})=q-\{(q-m)+(q-m-1)\}=2m-q+1 . It contradicts
E_{i}^{m} and E_{f}^{m} in general position. And if E_{i,k}^{q-1} is parallel to E_{j,l}^{q-1}, E_{i,k}^{q-1}\cap E_{j,l}^{q-1}

=\phi and E_{i}^{m}\cap E_{f}^{m}\subset E_{i,k}^{q-1}\cap E_{f,l}^{q-1}=\phi . It contradicts to E_{i}^{m}\cap E_{f}^{m}\neq\phi. So taking
E_{i_{1}}^{m}\cap\cdots\cap E_{i_{s}}^{m} (i_{j}\neq i_{k} if j\neq k, 2\leqq s\leqq r),

E_{i_{1},1}^{q-1}\cap\cdots\cap E_{i_{1},q-m}^{q-1}\cap\cdots\cap E_{i_{s}.1}^{q-1}\cap\cdots\cap E_{i_{s},q-m}^{q-1}\neq\phi .

Hence V_{s}(f)\neq\phi for 2\leqq s\leqq r .
3. Lemma 1. Let A^{m}, B^{q} be balls and let f:\partial A- \partial B be a PL map

such that S_{2}(f)=a_{1}\cup a_{2} . Then there is a special almost immersion g:Aarrow

B which is an extension of f.
PROOF. Let g be a linear cone extension of f. Then S_{2}(g)=(a*a_{1})\cup

(a*a_{2}) where a is the center of A and S_{2}(g)-\{a\}=U_{2}(g)-U_{3}(g), a\in B(g) .
And it is obvious that S_{2}(g|lk(a, A)) contains only two points. So g:Aarrow

B is a sepecial almost immersion which is an extension of f.
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LEMMA 2. Let A^{m}, B^{q} be balls and f:\partial A- \partial B be a simple immersion
whose S_{2}(f) consists of two connected components C_{1} , C_{2} which are PL
subspaces. Suppose 3m\leqq 2q-1 , q\geqq 6 then there is a special almost immer-
sion g:Aarrow B which is an extension of f.

PROOF. Choose a linear cone X_{1}^{2m-q} on C_{1} in \partial A . Then we may
assume X_{1}\cap C_{2}=\phi (if necessary, by putting X_{1} , C_{2} into general position
with respect to each other). And remove a second derived neighborhood
N_{1}=N(X_{1}, \partial A’) of X_{1} and next put a linear cone X_{2}^{2m-q} on C_{2} in \partial A-

Int N_{1}\cong D^{m-1} . Choose a linear cone Y^{2m-q+1} on f(X_{1}\cup X_{2}) in \partial B. Since by
putting Y in general position with respect to f(\partial A)

dim (Y\cap f(\partial A-(X_{1}\cup X_{2})))\leqq 2m-q+1+(m-1)-(q-1)\leqq 0 ,

let Y\cap f(\partial A-(X_{1}\cup X_{2}))=\{u_{1}, \cdots, u_{r}\} . Then we may assume u_{i}\not\in f(S_{2}(f)).
Let v_{i}=f^{-1}(u_{i}) . Joining a point c_{1}\leq C_{1} with v_{i} by simple polygonal arc \alpha_{i}

in \partial A so that
\circ

(1) \alpha_{i}\cap\alpha_{f}=\phi (i\neq j)

(2) \alpha_{i}\cap X_{1}=c_{1}

(3) \alpha_{i}\cap X_{2}=\phi ,

(it is possible because q>m+2).

Joining f(c_{1}) with u_{i} by simple polygonal arc \beta_{i} on Y so that

(4) [mathring]_{i}_{\beta}\cap[mathring]_{f}_{\beta}=\phi (i\neq j)

(5) \beta_{i}\cap f(\partial A)=f(c_{1})\cup u_{i} .
Since dim \partial B=q-1\geqq 5 , by Embedding Theorem [Z, Chap. 8] there exist PL
embeddings h : D^{2}arrow\partial B(i=1,2, \cdots, r) satisfying

(6) h_{i}(\dot{D}^{2})\cap h_{f}([mathring]_{E}^{2})=\phi\neg (i\neq j)

(7) h_{i}(\partial D^{2})=f(\alpha_{i})\cup\beta_{i}

(8) h_{i}(D^{2})\cap f(\partial A-\alpha_{i})=\phi .
let X \sim 1^{=X_{1}}\cup\bigcup_{i}\alpha_{i},\overline{Y}=Y\cup\bigcup_{i}h_{i}(D^{2}), then \tilde{X}_{1}\backslash 0 in \partial A,\overline{Y}\searrow 0 in \partial B and
f^{-1}(\overline{Y}\cap f(\partial A))=\tilde{X}_{1}\cup X_{2} . So the second derived neighborhood N=N(\overline{Y} ,
\partial B’),\tilde{N}_{1}=N(\tilde{X}_{1}, \partial A’), N_{2}=N(X_{2}, \partial A’) of these are (m-1)- and (q-1)-
balls respectively and f|\tilde{N}_{1},f|N_{2} are proper embeddings into N. ( \partial N :
f(\partial N_{1}),f(\partial N_{2}))\cong(S^{q-2} : S^{m-2}, S^{m-2}) is a link. Let \overline{W}_{1}=N(\tilde{X}_{1}, A’), W_{2}=N(X_{2},
A’), W=N(\overline{Y}, B’) be second derived neighborhoods of \tilde{X}_{1} , X_{2} , \tau respec-
tively, then they are all balls. Taking a_{1}\in\partial\overline{W}_{1}-N_{1} , a_{2}\in\partial W_{2}-N_{2} , a\in\partial W

-N, then we may consder \overline{W}_{1}\cong a_{1}*\tilde{N}_{1} , W_{2}\cong a_{2}*N_{2} , W\cong a*N. So we define
a map \hat{\acute{f}}:\partial A\cup\overline{W}_{1}\cup W_{2}arrow\partial B\cup W by \tilde{f}=f on \partial A,\check{f}(a_{1})=\tilde{f}(a_{2})=a and by
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extending linearly on \overline{W}_{1} , W_{2} . Then S_{2}(\check{f})=(a_{1}*C_{1})\cup(a_{2}*C_{2}) and \tilde{f} is
a simple immersion. Let A_{0}=\overline{A-(\overline{W}_{1}\cup W_{2})}\cong D^{m}, B_{0}=\overline{B-W}=D^{q}, then
\check{f}|\partial A_{0} : \partial A_{0}arrow\partial B_{0} is a simple immersion and S_{2}(\tilde{f}|\partial A_{0})=a_{1}\cup a_{2} . So by
LEMMA 1, there is a special almost immersion\tilde{.q}:A_{0}arrow B_{0} such that \tilde{.q}|\partial A

=\check{f}|\partial A_{0} .
We define a map g:Aarrow B by

g=\{
\check{f} on \partial A\cup\overline{W}_{1}\cup W_{2}

\tilde{g} on A_{0} .
It is clear that g is a special almost immersion.

REMARK. 1. Even if S_{2}(f) has as connected component more than 2,
it is clear that we may deal separately with each pair of connected com-
ponents which is identified under f. So Lemma 1 and Lemma 2 may be
carried out well clear of even components more than 2.

REMARK. 2. Let A^{m}, B^{q} balls and f:\partial A- \partial B be an immersion, then
there is an almost immersion g:Aarrow B using cone extension such that
g|\partial A=f.

PROOF OF THEOREM 1. Since f is in general position, dim S_{2}(f)\leqq

2m-q and S_{3}(f)=\phi . And the branch locus B(f)=S_{2}(f)-U_{2}(f) is con-
tained in the (2m-q-1)-skeletion of some triangulation of M. Using
Engulfing Theorem ([Z. Chap. 7]) there is a collapsible subpolyhedron X^{2m-q}

in M which contains B(f). Since dim (X\cap(S_{2}(f)-B(f)))\leqq 3m-2q<0 ,
f|X is an embedding and so f(X)\searrow 0 in Q. Now put A^{m}=N(X, M’), B^{q}

=N(f(X), Q’) then A, B are m and q-balls and by the map f:Marrow Q,
f(M-A)\subset Q-B,f(\partial A)\subset\partial B and f(IntA)\subset IntB. Furthermore B(f)\subset IntA .
Since f|M- Int A is a simple immersion, by LEMMA 2 and REMARK 1 there
is a special almost immersion

\tilde{g}:Aarrow B such that .\tilde{q}|\partial A=f.
So we define f:Marrow Q by

g=\{_{\tilde{q}}f onon AM.-
Int A

Then g is a special almost immersion which is homotopic to f.
REMARK. Let f:M^{m}arrow Q^{q} be a PL map with S_{3}(f)=\phi. Then a con-

nected component \hat{C} of f(U_{2}(f)) is a connected manifolds. We denote
f^{-1}(\tilde{C})=C_{1}\cup C_{2} where C_{i}(i=1,2) are subset of f^{-1}(\tilde{C}) satisfping the follow-
ing conditions,



86 K. Kobayashi

1. r_{c_{1}\in C_{1}} ff_{C_{2}\epsilon C_{2}\ni f(c_{1})=f(c_{2})}

2. Vd_{2}\in C_{2}ffd_{1}\in C_{1}\ni f(d_{1})=f(d_{2})

3. C_{i}(i=1,2) are connected and C_{1}\cap C_{2}=\phi .
Then we may consider following cases.

CASE 1. If C_{1} is a closed subset in f^{-1}(\tilde{C}) or if C_{1} is an open subset
in f^{-1}(\tilde{C}), f^{-1}(\tilde{C}) is not connected.

CASE 2. If C_{1} is neither closed nor open in f^{-1}(\tilde{C}), f^{-1}(\tilde{C}) is con-
nected. Since f is a PL map, \partial C_{i}\equiv Cl(C_{i})- Int (C_{i}) is contained in the
(2m-q-1)-skeleton of some triangulation of M. So if CASE 2 happens to
THEOREM 1, we take X^{2m-q} so that it contains not only B(f) but also \partial C_{i} .
Then Lemma 2 is available.

PROOF OF THEOREM 2. Since f:Marrow Q is simplicial and in general
position with respect to some triangulations of M and Q, dim B(f)\leqq

2m-q-1 and by Engulfing Theorem ([Z Chap. 7]) there is a collapsible
polyhedron X_{0} in M which contains B(f). And there is a collapsible
polyhedron Y_{0}^{2m-q+1} in Q which contains f(X_{0}) . Put W_{0}=(f^{-1}(Y_{0})-X_{0}) then

dim W_{0}\leqq 2m-q-2 and so dim W_{0}\leqq\dim B(f) .
We prove the theorem by induction as follows. Inductive hypothesis \phi(i) :
There exist collapsible subspaces X_{i} and Y_{i} such that B(f)\subset X_{i}\subset M, f(X_{i})

\subset Y_{i}\subset Q and W_{i}=Cl(f^{-1}(Y_{i})-X_{i}) has dimension \leqq 2m-q-i-2 . The
case i=0 has been proved above. We assume \phi(j-1), j\geqq 1 and prove \phi(j).
dim W_{f-1}\leqq 2m-q-j-1 . By Engulfing Therem there is a subspace
\overline{X}_{f}^{2m-q-f} in M such that W_{f-1}\subset\tilde{X}_{f}^{2m-q-f} and X_{f}=X_{f-1}\cup\tilde{X}_{f}\searrow 0 . And there
is a subspace \overline{Y}_{f}^{2m-q-j+1} in Q such that f(\tilde{X}_{f})\subset\overline{Y}_{f} and Y_{f}=Y_{f-1}\cup\overline{Y}_{f}\searrow 0 .
Then f(X_{f})\subset Y_{j} and we put Y_{f}rel. f(\tilde{X}_{f})\cup Y_{f-1} , into general pasition with
respect to f(M). Now (Y_{f}\cap f(M))-f(X_{f})=(\overline{Y}_{f}\cap f(M))-f(X_{f}) and dim W_{f}

=\dim((Y_{f}\cap f(M))-f(X_{f}))\leqq 2m-q-j+1+m-q\leqq 2m-q-j-2 .
\phi(2m-q-1) tell us that W_{2m-q-1}=\phi and so B(f)\subset X_{2m-q-1}\searrow 0 , f(X_{2m-q-1})\subset

Y_{2m-q-1}\searrow 0 and f^{-1}(Y_{2m-q-1})=X_{2m-q-1} . We put X=X_{2m-q-1} , Y=Y_{2m-q-1} and
let A=N(X, M’), B=N(Y, Q’) (m and q-balls respectively). Then f(M-
A)\subset Q-B, f(\partial A)\subset\partial B, f(A)\subset B and B(f)\subset IntA . Since f|\overline{M-A} is an
immersion, by REMARK 2 we can extend f|\partial A to an almost immersion
\tilde{f}:Aarrow B and we obtain a required almost immersion

g : Marrow Q by defining

g=\{ f on M-A
\check{f} on A .
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In particular taking X_{0}\supset B(f)\cup S_{3}(f) because 3m-2q<2m-q-1 , g is an
almost immersion with S_{3}(g)=\phi.

EXAMPLE. It is well known that /z- dim. complex projective space
P^{n}(C) is immersible in R^{4n-1} but not R^{4n-2} for n=2^{r} . On the other hand
THEOREM 1 and THEOEM 2 tell us that P^{n}(C) is special almost immersible
in R^{4n-2} for n=2^{r}, r\geqq 2 .
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