Almost immersions

By Kazuaki KOBAYASHI (Received February 12, 1975)

1. We work in the category of compact PL spaces and PL maps [Z]. Given spaces X and Y and a map $f: X \rightarrow Y$, we define $U_r(f)$ to be the set of points $x \in X$ such that $f^{-1}f(x)$ contains at least r points. $S_r(f)$ is the closure of $U_r(f)$ in X. We call $B(f)=S_2(f)-U_2(f)$ branch locus of f (i. e. for $x \in B(f)$ $f^{-1}f(x)=x$ but f|U(x) is not embedding for any neighborhood U(x) of x.) Conversely we consider whether $f|U_2(f)$ is a local embedding (=immersion) or not (i. e. for $x \in U_2(f)$ there is a neighborhood U(x) of x such that f|U(x) is an embedding). For this problem we obtain a following.

PROPOSITION. 1. If M^m , Q^q are closed m- and q-dim. manifolds and if $f: M^m \rightarrow Q^q$ (m < q) is a map, $f|U_2(f)$ is an immersion.

Next we consider about almost immersions. Given a map $f: M \rightarrow Q$, we call f almost immersion if $B(f)=S_2(f)-U_2(f)=$ one point and we call f special almost immersion if f is an almost immersion and if $S_2(f|lk(a, M))=\{a_1, \dots, a_{2n}\}$ (finite set of even points) for a unique point $\{a\}=B(f)$ and $S_3(f|lk(a, M))=\phi$. According to Irwin [1] f is a simple immersion if $S_3(f)=\phi=B(f)$. Then we prove

THEOREM 1. Let M^m , Q^q be (2m-q-1)-connected closed manifolds, $3m \leq 2q-1$ and $q \geq 6$. Then any PL map $f: M \rightarrow Q$ is homotopic to a special almost immersion $g; M \rightarrow Q$ with $S_3(g) = \phi$.

THEOREM 2. Let M^m be (2m-q-1)-connected closed manifold and Q^q be (2m-q)-connected, $q \leq m-3$. Then any PL map f; $M \rightarrow Q$ is homotopic to an almost immersion $g: M \rightarrow Q$ with $S_3(g) = \phi$.

In this paper M, Q always mean m- and q-dim. closed manifold if otherwise is not stated. D^n , S^n are always n-dim. ball and sphere respectively. For a simplial complex K and a simplex Δ^t in K, let

$$\begin{split} St(\varDelta^t, K) &= \left\{ \varDelta^p \in K \left| \varDelta^p < \varDelta^q, \varDelta^q > \varDelta^t \right\}, \\ Lk(\varDelta^t, K) &= \left\{ \varDelta^p \in St(\varDelta^t, K) \left| \varDelta^p \cap \varDelta^t = \phi \right\} \right\} \end{split}$$
be

the star and the link of Δ^t in K. For spaces or complexes X and Y, X*Y denote a non-singular join of X with Y. We call X*Y a linear cone on Y if X is one point. ∂M , Int M mean the boundary, the interior of the

manifold M respectively. Sometime we use the notation \dot{M} instead of Int M. Both cl X, \overline{X} mean the closure of X in some space.

2. Let $f: M^m \to Q^q \ (m < q)$ be a PL map. It is well known that we can move f into general position by homotopy (i.e. there is a PL map $f_0: M \to Q$ which is homotopic to f and $\dim f_0(\Delta^r) = r$ for any r-simplex of M and $\dim S_2(f) \leq 2m - q$.) So unless otherwise is stated we suppose that any PL map f is in general position. Then there is an integer p such that $U_{p+1}(f) = \phi$ since M is compact.

PROOF OF PROPOSTION. Let K, J be subdivisions of M, Q respectively such that $f: K \rightarrow J$ is simplicial. For $x \in U_2(f)$ there is an integer $k \ge 2$ such that $x \in U_k(f) - U_{k+1}(f)$. Since $\dim(U_k(f) - U_{k+1}(f)) \le km - (k - 1)$ 1) $q \equiv r$, there exists a *t*-simplex $\Delta^t \in K(t \leq r)$ such that $x \in \text{Int } \Delta^t$. Let L = $Lk(\Delta^{t}, K)$. We first prove that f|L is an embedding. Let $\Delta^{t}_{i}, \Delta^{t}_{j} \in L(\Delta^{t}_{i} \neq I)$ Δ_{j}^{l} with $f(\Delta_{i}^{l}) = f(\Delta_{j}^{l})$ (dim $\Delta_{i} = \dim \Delta_{j}$ because f is non-degenerate). We may assume l=2m-q since f is in general position. Then $f(\mathcal{A}_{i}^{l}*\mathcal{A}_{j}^{l})=f(\mathcal{A}_{j}^{l}*\mathcal{A}_{j}^{l})$ and dim $(f(\Delta_i^l * \Delta^t) \cap f(\Delta_j^l * \Delta^t) - f((\Delta_i^l \cap \Delta_j^l) * \Delta^t) = l + t + 1 > l = 2m - q$. This contradicts to dim $S_2(f) \leq 2m-q$. Hence f|L is an embedding. Next we show $f| \Delta^t * L = f| St(\Delta^t, K)$ embedding. $f| \Delta^t * L = f| \bigcup_{\Delta_j \in L} (\Delta^t * \Delta_j)$ and $\Delta^t * \Delta_j$ is a simplex of K by the definition of L. Since f is non-degenerate and simplicial with respect to K, $f \mid \Delta^{t} * \Delta_{j}$ is an embedding. If $P = f(\Delta^{t} * \Delta_{i}) \cap f(\Delta^{t} * \Delta_{j}) - f(\Delta^{t} * \Delta_{j})$ $f(\Delta^{t}*(\Delta_{i}\cap\Delta_{j}))\neq\phi$ for some $\Delta_{i}, \Delta_{j}\in L, f^{-1}(P)\cap\Delta_{i}\neq\phi$ and $f^{-1}(P)\cap\Delta_{j}\neq\phi$ and $f(f^{-1}(P) \cap \mathcal{A}_i) = f(f^{-1}(P) \cap \mathcal{A}_j)$ because $f|\mathcal{A}^t$ is an embedding. This contradicts to f|L embedding. Hence $f|St(\mathcal{A}^t, K) = f|St(x, K)$ is an embedding and so $f|U_2(f)$ is an immersion.

COROLLARY 1.
$$U_2(f) \supset U_{r+1}(f)$$
 and
 $S_2(f) - U_2(f) \supset S_{r+1}(f) - U_{r+1}(f)$ for any $r \ge 1$.

PROOF. First statement is obvious by definition. To show second statement it is sufficiently to show that $(U_2(f)-U_{r+1}(f))\cap S_{r+1}(f)=\phi$ for any $r\geq 1$. Let $P=(U_2(f)-U_{r+1}(f))\cap S_{r+1}(f)$ and $P\neq\phi$. If $x_1\in P, f^{-1}f(x_1)=\{x_1, \dots, x_l\}$ $(2\leq l\leq r)$ and for any neighborhood $U(x_1)$ of x_1 , there exists $y_1\in U(x_1)$ such that $f^{-1}f(y_1)=\{y_1,\dots, y_p\}, p\geq r+1$ (*).

On the other hand for the above x_i there is a neighborhood $\widetilde{V}(x_i)$ for which $f|\widetilde{V}(x_i)$ is an embedding by proposition. We choose a neighdorhood $W(f(x_1))$ of $f(x_1)$ in Q so that $W(f(x_1)) \cap f(M) \subset \bigcup_{i=1}^{l} f(\widetilde{V}(x_i))$ and put $V(x_i) =$ $\widetilde{V}(x_i) \cap f^{-1}(W(f(x_1)))$. Then we can show $f^{-1}f(y_1) = \{y_1, \dots, y_q\}$ $(q \leq l)$ for any $y_1 \in V(x_1)$. Because $f^{-1}f(y_1) \cap \widetilde{V}(x_1) = y_1$ since $f|\widetilde{V}(x_1)$ is an embedding. By the same way

$$f^{-1}f(y_1) \cap \widetilde{V}(x_i) = \begin{cases} y_i & \text{if } f(y_1) \in f(\widetilde{V}(x_i)) \\ \phi & \text{if } f(y_1) \notin f(\widetilde{V}(x_i)). \end{cases}$$

So $f^{-1}f(y_1) \subset f^{-1}(f(V(x_1)) \cap f(M)) = f^{-1}(W(f(x_1)) \cap f(M)) \subset \bigcup_{i=1}^{i} f(\widetilde{V}(x_i)).$
Hence $f^{-1}f(y_1) = \{y_1, \dots, y_q\} \ (q \leq l).$ This contradicts to (*).
Hence $P = \phi$.

COROLLARY 2. Let $f: M^m \to Q^q$ $(q \ge m+3)$ be a PL map which is in general position and let $V_r(f) = U_r(f) - U_{r+1}(f)$. If $V_r(f) \neq \phi$ for some $r \ge 2$, for any $s(2 \le s \le r) V_s(f) \neq \phi$.

PROOF. By Proposition $f|U_2(f)$ is an immersion. For $x \in V_r(f)$ let $f^{-1}f(x_1) = \{x_1, \dots, x_r\}$. Then $f|St(x_i, K) : St(x_i, K) \rightarrow St(f(x_1), J)$ is a proper locally flat embedding for each i and some triangulations K, J of M, Q respectively. Let $U(x_i) = St(x_i, K)$ and $U(f(x_1)) = St(f(x_1), J)$. Then by [A–Z, Th. 1.] we can ambient isotope $f(U(x_i))$ transversal to $\bigcup_{j \neq i} f(U(x_j))$ by small ambient isotopy of $U(f(x_1))$. Hence we can consider $U(f(x_i)) \supset \bigcup_i f(U(x_i))$ as like as the *m*-dim. planes in *q*-dim. euclidean space R^q . So let $U(f(x_1)) = R^q$ and $f(U(x_i)) = E_i^m (1 \le i \le r)$. Then there are (q-1)-dim, hyperplanes $E_{i,1}^{q-1}, \dots, E_{i,q-m}^{q-1}$ such that $E_i^m = E_{i,1}^{q-1} \cap \cdots \cap E_{i,q-m}^{q-1}$. For any k, $l(k \ne l) E_{i,k}^{q-1}$ and $E_{j,i}^{q-1}$ (not i=j, k=l) they are neither parallel nor coincide. Because for $i=j, k \ne l$, it is obvious. If $i \ne j$ and if $E_{i,k}^{q-1} = E_{j,l}^{q-1}$.

$$E_{i}^{m} \cap E_{j}^{m} = E_{i,1}^{q-1} \cap \dots \cap E_{i,q-m}^{q-1} \cap E_{j,1}^{q-1} \cap \dots \cap \hat{E}_{j,l}^{q-1} \cap \dots \cap E_{j,q-m}^{q-1}$$

and so dim $(E_i^m \cap E_j^m) = q - \{(q-m) + (q-m-1)\} = 2m-q+1$. It contradicts E_i^m and E_j^m in general position. And if $E_{i,k}^{q-1}$ is parallel to $E_{j,l}^{q-1}$, $E_{i,k}^{q-1} \cap E_{j,l}^{q-1} = \phi$ and $E_i^m \cap E_j^m \subset E_{i,k}^{q-1} \cap E_{j,l}^{q-1} = \phi$. It contradicts to $E_i^m \cap E_j^m \neq \phi$. So taking $E_{i_1}^m \cap \cdots \cap E_{i_s}^m$ $(i_j \neq i_k$ if $j \neq k$, $2 \leq s \leq r$),

$$E_{i_1,1}^{q-1}\cap\cdots\cap E_{i_1,q-m}^{q-1}\cap\cdots\cap E_{i_s,1}^{q-1}\cap\cdots\cap E_{i_s,q-m}^{q-1}\neq\phi.$$

Hence $V_s(f) \neq \phi$ for $2 \leq s \leq r$.

3. LEMMA 1. Let A^m , B^q be balls and let $f: \partial A \rightarrow \partial B$ be a PL map such that $S_2(f) = a_1 \cup a_2$. Then there is a special almost immersion $g: A \rightarrow B$ which is an extension of f.

PROOF. Let g be a linear cone extension of f. Then $S_2(g) = (a*a_1) \cup (a*a_2)$ where a is the center of A and $S_2(g) - \{a\} = U_2(g) - U_3(g), a \in B(g)$. And it is obvious that $S_2(g|lk(a, A))$ contains only two points. So $g: A \rightarrow B$ is a sepecial almost immersion which is an extension of f. LEMMA 2. Let A^m , B^q be balls and $f: \partial A \rightarrow \partial B$ be a simple immersion whose $S_2(f)$ consists of two connected components C_1 , C_2 which are PL subspaces. Suppose $3m \leq 2q-1$, $q \geq 6$ then there is a special almost immersion $g: A \rightarrow B$ which is an extension of f.

PROOF. Choose a linear cone X_1^{2m-q} on C_1 in ∂A . Then we may assume $X_1 \cap C_2 = \phi$ (if necessary, by putting X_1 , C_2 into general position with respect to each other). And remove a second derived neighborhood $N_1 = N(X_1, \partial A'')$ of X_1 and next put a linear cone X_2^{2m-q} on C_2 in $\partial A -$ Int $N_1 \cong D^{m-1}$. Choose a linear cone Y^{2m-q+1} on $f(X_1 \cup X_2)$ in ∂B . Since by putting Y in general position with respect to $f(\partial A)$

$$\dim (Y \cap f(\partial A - (X_1 \cup X_2))) \leq 2m - q + 1 + (m - 1) - (q - 1) \leq 0,$$

let $Y \cap f(\partial A - (X_1 \cup X_2)) = \{u_1, \dots, u_r\}$. Then we may assume $u_i \notin f(S_2(f))$. Let $v_i = f^{-1}(u_i)$. Joining a point $c_1 \notin C_1$ with v_i by simple polygonal arc α_i in ∂A so that

- (1) $\overset{\circ}{\alpha_i} \cap \overset{\circ}{\alpha_j} = \phi$ $(i \neq j)$ (2) $\alpha_i \cap X_1 = c_1$
- $(3) \quad \alpha_i \cap X_2 = \phi,$

(it is possible because q > m+2). Joining $f(c_1)$ with u_i by simple polygonal arc β_i on Y so that

> (4) $\mathring{\beta}_i \cap \mathring{\beta}_j = \phi$ $(i \neq j)$ (5) $\beta_i \cap f(\partial A) = f(c_1) \cup u_i$.

Since dim $\partial B = q - 1 \ge 5$, by *Embedding Theorem* [Z, Chap. 8] there exist *PL* embeddings $h: D^2 \rightarrow \partial B$ $(i=1, 2, \dots, r)$ satisfying

(6)
$$h_i(\mathring{D}^2) \cap h_j(\mathring{D}^2) = \phi$$
 $(i \neq j)$
(7) $h_i(\partial D^2) = f(\alpha_i) \cup \beta_i$

(8)
$$h_i(D^2) \cap f(\partial A - \alpha_i) = \phi$$
.

let $\widetilde{X}_1 = X_1 \cup \bigcup \alpha_i$, $\widetilde{Y} = Y \cup \bigcup h_i(D^2)$, then $\widetilde{X}_1 \searrow 0$ in ∂A , $\widetilde{Y} \searrow 0$ in ∂B and $f^{-1}(\widetilde{Y} \cap f(\partial A)) = \widetilde{X}_1 \cup X_2$. So the second derived neighborhood $N = N(\widetilde{Y}, \partial B'')$, $\widetilde{N}_1 = N(\widetilde{X}_1, \partial A'')$, $N_2 = N(X_2, \partial A'')$ of these are (m-1)- and (q-1)-balls respectively and $f | \widetilde{N}_1, f | N_2$ are proper embeddings into N. $(\partial N: f(\partial N_1), f(\partial N_2)) \cong (S^{q-2}: S^{m-2}, S^{m-2})$ is a link. Let $\widetilde{W}_1 = N(\widetilde{X}_1, A'')$, $W_2 = N(X_2, A'')$, $W = N(\widetilde{Y}, B'')$ be second derived neighborhoods of $\widetilde{X}_1, X_2, \widetilde{Y}$ respectively, then they are all balls. Taking $a_1 \in \partial \widetilde{W}_1 - N_1$, $a_2 \in \partial W_2 - N_2$, $a \in \partial W - N$, then we may consder $\widetilde{W}_1 \cong a_1 * \widetilde{N}_1$, $W_2 \cong a_2 * N_2$, $W \cong a * N$. So we define a map $\widetilde{f}: \partial A \cup \widetilde{W}_1 \cup W_2 \to \partial B \cup W$ by $\widetilde{f} = f$ on ∂A , $\widetilde{f}(a_1) = \widetilde{f}(a_2) = a$ and by

extending linearly on \widetilde{W}_1 , W_2 . Then $S_2(\widetilde{f}) = (a_1 * C_1) \cup (a_2 * C_2)$ and \widetilde{f} is a simple immersion. Let $A_0 = \overline{A - (\widetilde{W}_1 \cup W_2)} \cong D^m$, $B_0 = \overline{B - W} = D^q$, then $\widetilde{f} \mid \partial A_0 : \partial A_0 \to \partial B_0$ is a simple immersion and $S_2(\widetilde{f} \mid \partial A_0) = a_1 \cup a_2$. So by LEMMA 1, there is a special almost immersion $\widetilde{g} : A_0 \to B_0$ such that $\widetilde{g} \mid \partial A$ $= \widetilde{f} \mid \partial A_0$.

We define a map $g: A \rightarrow B$ by

$$g = \begin{cases} \tilde{f} & \text{on} \quad \partial A \cup \widetilde{W}_1 \cup W_2 \\ \tilde{g} & \text{on} \quad A_0 \,. \end{cases}$$

It is clear that g is a special almost immersion.

REMARK. 1. Even if $S_2(f)$ has as connected component more than 2, it is clear that we may deal separately with each pair of connected components which is identified under f. So LEMMA 1 and LEMMA 2 may be carried out well clear of even components more than 2.

REMARK. 2. Let A^m , B^q balls and $f: \partial A \rightarrow \partial B$ be an immersion, then there is an almost immersion $g: A \rightarrow B$ using cone extension such that $g|\partial A = f$.

PROOF OF THEOREM 1. Since f is in general position, dim $S_2(f) \leq 2m-q$ and $S_3(f) = \phi$. And the branch locus $B(f) = S_2(f) - U_2(f)$ is contained in the (2m-q-1)-skeletion of some triangulation of M. Using *Engulfing Theorem* ([Z. Chap. 7]) there is a collapsible subpolyhedron X^{2m-q} in M which contains B(f). Since dim $(X \cap (S_2(f) - B(f))) \leq 3m - 2q < 0$, f|X is an embedding and so $f(X) \searrow 0$ in Q. Now put $A^m = N(X, M'')$, $B^q = N(f(X), Q'')$ then A, B are m-and q-balls and by the map $f: M \rightarrow Q$, $f(M-A) \subset Q-B, f(\partial A) \subset \partial B$ and $f(\operatorname{Int} A) \subset \operatorname{Int} B$. Furthermore $B(f) \subset \operatorname{Int} A$. Since f|M-Int A is a simple immersion, by LEMMA 2 and REMARK 1 there is a special almost immersion

 $\tilde{g}: A \rightarrow B$ such that $\tilde{g}|\partial A = f$.

So we define $f: M \rightarrow Q$ by

$$g = \begin{cases} f & \text{on} \quad M - \operatorname{Int} A \\ \tilde{g} & \text{on} \quad A \end{cases}$$

Then g is a special almost immersion which is homotopic to f.

REMARK. Let $f: M^m \to Q^q$ be a *PL* map with $S_3(f) = \phi$. Then a connected component \widetilde{C} of $f(U_2(f))$ is a connected manifolds. We denote $f^{-1}(\widetilde{C}) = C_1 \cup C_2$ where $C_i(i=1, 2)$ are subset of $f^{-1}(\widetilde{C})$ satisfying the following conditions,

- 1. ${}^{v}c_{1} \in C_{1} \quad {}^{\mathcal{I}}c_{2} \in C_{2} \ni f(c_{1}) = f(c_{2})$
- 2. ${}^{\nu}d_2 \in C_2 {}^{\pi}d_1 \in C_1 \ni f(d_1) = f(d_2)$
- 3. $C_i(i=1, 2)$ are connected and $C_1 \cap C_2 = \phi$.

Then we may consider following cases.

CASE 1. If C_1 is a closed subset in $f^{-1}(\widetilde{C})$ or if C_1 is an open subset in $f^{-1}(\widetilde{C})$, $f^{-1}(\widetilde{C})$ is not connected.

CASE 2. If C_1 is neither closed nor open in $f^{-1}(\widetilde{C})$, $f^{-1}(\widetilde{C})$ is connected. Since f is a PL map, $\partial C_i \equiv Cl(C_i) - \operatorname{Int}(C_i)$ is contained in the (2m-q-1)-skeleton of some triangulation of M. So if CASE 2 happens to THEOREM 1, we take X^{2m-q} so that it contains not only B(f) but also ∂C_i . Then LEMMA 2 is available.

PROOF OF THEOREM 2. Since $f: M \rightarrow Q$ is simplicial and in general position with respect to some triangulations of M and Q, dim $B(f) \leq 2m-q-1$ and by *Engulfing Theorem* ([Z Chap. 7]) there is a collapsible polyhedron X_0 in M which contains B(f). And there is a collapsible polyhedron Y_0^{2m-q+1} in Q which contains $f(X_0)$. Put $W_0 = (f^{-1}(Y_0) - X_0)$ then

dim $W_0 \leq 2m - q - 2$ and so dim $W_0 \leq \dim B(f)$.

We prove the theorem by induction as follows. Inductive hypothesis $\phi(i)$: There exist collapsible subspaces X_i and Y_i such that $B(f) \subset X_i \subset M$, $f(X_i) \subset Y_i \subset Q$ and $W_i = Cl(f^{-1}(Y_i) - X_i)$ has dimension $\leq 2m - q - i - 2$. The case i=0 has been proved above. We assume $\phi(j-1)$, $j \geq 1$ and prove $\phi(j)$. dim $W_{j-1} \leq 2m - q - j - 1$. By Engulfing Therem there is a subspace \widetilde{X}_j^{2m-q-j} in M such that $W_{j-1} \subset \widetilde{X}_j^{2m-q-j}$ and $X_j = X_{j-1} \cup \widetilde{X}_j \searrow 0$. And there is a subspace $\widetilde{Y}_j^{2m-q-j+1}$ in Q such that $f(\widetilde{X}_j) \subset \widetilde{Y}_j$ and $Y_j = Y_{j-1} \cup \widetilde{Y}_j \searrow 0$. Then $f(X_j) \subset Y_j$ and we put Y_j rel. $f(\widetilde{X}_j) \cup Y_{j-1}$, into general pasition with respect to f(M). Now $(Y_j \cap f(M)) - f(X_j) = (\widetilde{Y}_j \cap f(M)) - f(X_j)$ and dim $W_j = \dim((Y_j \cap f(M)) - f(X_j)) \leq 2m - q - j + 1 + m - q \leq 2m - q - j - 2$.

 $\phi(2m-q-1)$ tell us that $W_{2m-q-1} = \phi$ and so $B(f) \subset X_{2m-q-1} \searrow 0$, $f(X_{2m-q-1}) \subset Y_{2m-q-1} \searrow 0$ and $f^{-1}(Y_{2m-q-1}) = X_{2m-q-1}$. We put $X = X_{2m-q-1}$, $Y = Y_{2m-q-1}$ and let A = N(X, M''), B = N(Y, Q'') (m-and q-balls respectively). Then $f(M-A) \subset Q-B$, $f(\partial A) \subset \partial B$, $f(A) \subset B$ and $B(f) \subset \text{Int } A$. Since $f|\overline{M-A}$ is an immersion, by REMARK 2 we can extend $f|\partial A$ to an almost immersion $\tilde{f}: A \to B$ and we obtain a required almost immersion

$$g: M \rightarrow Q \text{ by defining}$$
$$g = \begin{cases} f \text{ on } M - A \\ \tilde{f} \text{ on } A \end{cases}$$

In particular taking $X_0 \supset B(f) \cup S_3(f)$ because 3m-2q < 2m-q-1, g is an almost immersion with $S_3(g) = \phi$.

EXAMPLE. It is well known that *n*-dim. complex projective space $P^n(C)$ is immersible in R^{4n-1} but not R^{4n-2} for $n=2^r$. On the other hand THEOREM 1 and THEOREM 2 tell us that $P^n(C)$ is special almost immersible in R^{4n-2} for $n=2^r$, $r \ge 2$.

References

- [A-Z] ARMSTRONG, M. A. and ZEEMAN, E. C.: Transversality for piecewise linear manifolds. Topology Vol. 6 (1967), pp. 433-466.
- [I] IRWIN, M. C.: Polyhedral immersions, Proc. Camb. Phil. Soc. (1966), Vol. 62. pp. 45-50.
- [z] ZEEMAN, E. C.: Seminar on combinatorial topology (mimeographed note), Institute des Hautes Etudes Scientifiques, Paris (1963).

Department of Mathematics Hokkaido University