Some remarks on p-absolutely summing operators

By Yasuji TAKAHASHI (Received January 30, 1976)

§1. Introduction

In [1], Cohen has shown that the following:

THEOREM A. Let E be a normed space. Then E is an inner product space iff for all Banach spaces F and for all 2-absolutely summing operators T mapping E into F, the conjugate operator T^* is 2-absolutely summing and $\prod_2(T^*) \leq \prod_2(T)$.

In [2], Kwapień has given a similar characterization of spaces isomorphic to inner product spaces. That is the following:

THEOREM B. Let E be a Banach space, then the following conditions are equivalent:

- (1) E is isomorphic (=linearly homeomorphic) to an inner product space.
 - (2) If $T \in \prod_2(E, l_2)$, then $T^* \in \prod_2(l_2, E^*)$.

Theorem A and Theorem B suggest the following (*):

- (*) Let E be a Banach space, and $1 \le p < \infty$. Then the following conditions are equivalent.
 - (1) For all Banach spaces F, if $T \in \prod_{p} (E, F)$, then $T^* \in \prod_{p} (F^*, E^*)$.
 - (2) If $T \in \prod_{p} (E, l_{p})$, then $T^{*} \in \prod_{p} (l_{p^{*}}, E^{*})$.

In this paper, we shall prove this fact is true, and furthermore, using weakly p-summable sequences, we shall characterize Banach spaces E which satisfy the condition (1) (or equivalently condition (2)).

Notation. Throughout the paper E and F will denote Banach spaces and E^* and F^* the continuous dual spaces. The space of continuous linear operators mapping E into F will be denoted by L(E, F).

§ 2. Basic definitions and well known results

Let E and F be Banach spaces, and $1 \le p \le \infty$.

A sequence $\{x_i\}$ with values in E is called weakly p-summable $(l_p(E))$ if for all $x^* \in E^*$, the sequence $\{x^*(x_i)\} \in l_p$. The space $l_p(E)$ is a normed

space; the norm is given by

$$\varepsilon_{p}\left(\left\{x_{i}\right\}\right) = \begin{cases} \sup\left\{\left(\sum_{i=1}^{\infty}\left|x^{*}(x_{i})\right|^{p}\right)^{1/p} \colon \|x^{*}\| \leq 1\right\}, & 1 \leq p < \infty \\ \sup_{i}\left\{\sup\left\{\left|x^{*}(x_{i})\right| \colon \|x^{*}\| \leq 1\right\}\right\}, & p = \infty. \end{cases}$$

The following theorem, due to Grothendieck (c. f. [6]), provides a useful characterization of $l_p(E)$.

Theorem 2.1. For $1 and <math>1/p + 1/p^* = 1$, trere is an isometric isomorphism between $l_p(E)$ and $L(l_{p^*}, E)$. For p = 1, $l_1(E)$ is isometrically isomorphic with $L(c_0, E)$. In both cases, a sequence $\{x_i\}$ in $l_p(E)$ is identified with the operator

$$T(\lbrace c_i \rbrace) = \sum_{i=1}^{\infty} c_i x_i$$
.

A sequence $\{x_i\}$ is called absolutely *p*-summable $(l_p\{E\})$ if the sequence $\{\|x_i\|\} \in 1_p$. The space $l_p\{E\}$ is a normed space; the norm is given by

$$lpha_pig(\{x_i\}ig) = egin{cases} \left(\sum\limits_{i=1}^\infty \|x_i\|^p
ight)^{1/p}, & 1 \leq p < \infty \ \sup_i \|x_i\|, & p = \infty. \end{cases}$$

A sequence $\{x_i\}$ is called strongly p-summable $(l_p \langle E \rangle)$ if for all sequences $\{x_i^*\} \in l_{p^*}(E^*)$, $1/p+1/p^*=1$, the series $\sum_{i=1}^{\infty} x_i^*(x_i)$ converges.

The space $l_p\langle E\rangle$ is a normed space; the norm is given by

$$\sigma_p(\lbrace x_i \rbrace) = \sup \left\{ \left| \sum_{i=1}^{\infty} x_i^*(x_i) \right| : \, \varepsilon_{p^*}(\lbrace x_i^* \rbrace) \leq 1 \right\}.$$

DEFINITION 2.1. Let $1 \leq p$, $q \leq \infty$. An operator T mapping E into F is (p,q)-absolutely summing $(\prod_{p,q}(E,F))$ if there exists a constant $c \geq 0$, such that for all finite sets x_1, \dots, x_n , the inequality

$$\alpha_p(\{Tx_i\}) \leq c\varepsilon_q(\{x_i\})$$

is satisfied. The smallest number c, such that the above inequality is satisfied, is called the (p, q)-absolutely summing norm $(\prod_{p,q}(T))$ of T.

We shall say p-absolutely summing instead of (p, p)-absolutely summing, and absolutely summing instead of 1-absolutely summing, respectively.

It is easily seen that the following:

THEOREM 2.2. A linear operator T mapping E into F is (p, q)-absolutely summing iff for each $\{x_i\} \in l_q(E), \{Tx_i\} \in l_p\{F\}$.

DEFINITION 2.2. Let $1 \leq p$, $q \leq \infty$. An operator T mapping E into F is (p,q)-strongly summing $(D_{p,q}(E,F))$ if there exists a constant $c \geq 0$ such that for all finite sets x_1, \dots, x_n , the inequality

$$\sigma_p(\{Tx_i\}) \leq c\alpha_q(\{x_i\})$$

is satisfied. The smallest number c, such that the above inequality is satisfied, is called the (p, q)-strongly summing $norm(D_{p,q}(T))$ of T.

We shall say p-strongly summing instead of (p, p)-strongly summing.

Next, we shall introduce an \mathcal{L}_{pl} -space. The definition of this space is due to Lindenstrauss and Pelczyński (c. f. [7]).

Let E and F be Banach spaces. The distance d(E, F) between E and F is defined by $d(E, F) = \inf \{ ||T|| \cdot ||T^{-1}|| \}$, where the infimum is taken over all invertible operators in L(E, F). If no such T exists, i.e., if E and F are not isomorphic, d(E, F) is taken as ∞ .

DEFINITION 2.3. Let $1 \le p \le \infty$, and $1 \le \lambda < \infty$. A Banach space E is called an $\mathcal{L}_{p\lambda}$ -space if for all finite dimensional subspaces $M \subset E$ there exists a finite dimensional subspace N containing M such that $d(N, l_p^n) \le \lambda$, where $n = \dim(N)$.

It can be shown (c. f. [7]) that every $L_p(\mu)$ space is an $\mathscr{L}_{p\lambda}$ -space for all $\lambda > 1$ and every space of type C(K), where K is a compact Hausdorff space, is an $\mathscr{L}_{\omega\lambda}$ -space for all $\lambda > 1$. More generally, every Banach space whose dual is isometric to an $L_1(\mu)$ -space (e. g. every M space in the sence of Kakutani [8]) is an $\mathscr{L}_{\omega\lambda}$ -space for every $\lambda > 1$ (c. f. [9]).

The following theorems are due to J. S. Cohen (c. f. [3]).

Theorem 2.3. Let 1/p + 1/q = 1.

- (1) Let $1 \leq p < \infty$. An operator T belongs to $\prod_{p} (E, F)$ iff the conjugate operator T^* belongs to $D_q(F^*, E^*)$.
- (2) Let $1 < q \le \infty$. An operator T belongs to $D_q(E, F)$ iff the conjugate operator T^* belongs to $\prod_p (F^*, E^*)$.

THEOREM 2.4. Let 1 and <math>1/p + 1/q = 1.

- (1) Let E be an $\mathcal{L}_{p\lambda}$ -space. Then, $\prod_{q}(E, F) \subset D_{p}(E, F)$.
- (2) Let F be an $\mathcal{L}_{q\lambda}$ -space. Then, $D_p(E, F) \subset \prod_q (E, F)$.

The following theorem are due to M. Kato (c.f. [4]), and this is a generalization of the Theorem 2.3..

THEOREM 2.5. Let $1/p+1/p^*=1$, $1/q+1/q^*=1$.

(1) Let $1 \leq p, q < \infty$. An operator T belongs $\prod_{p,q} (E, F)$ iff the conjugate operator T^* belongs to $D_{q^*,p^*}(F^*, E^*)$.

(2) Let $1 and <math>1 \le q < \infty$. An operator T belongs $D_{q^*,p^*}(E,F)$ iff the conjugate operator T^* belongs to $\prod_{p,q}(F^*,E^*)$.

§3. Main theorems and other results

Throughout this section, let X be a set and \mathfrak{B} be a σ -algebra in X, and let μ be a positive measure such that there exist positive constants C_1 , C_2 and pairwise disjoint measurable subsets $\{X_n\}$, which satisfy the following conditions:

$$C_1 \leq \mu(X_n) \leq C_2$$
, for all $n = 1, 2, \cdots$

Let $L_p(X, \mu)$ be a usual Banach space, then l_p (usual sequence space) is a $L_p(X, \mu)$ -space which satisfies the above conditions.

We shall denote L_p instead of $L_p(X, \mu)$ in the ensuing discussions.

THEOREM 3.1. Let E be a Banach space, $1 \le p \le q \le r < \infty$. Then the following conditions are equivalent.

- (1) For all Banach spaces F, if $T \in \prod_{q,p} (E, F)$, then $T^* \in \prod_{r,q} (F^*, E^*)$.
- (2) If $T \in \prod_{q,p} (E, L_q)$, then $T^* \in \prod_{r,q} (L_{q^*}, E^*)$ $(1/q + 1/q^* = 1)$.
- (3) For any $\{x_n^*\}\subset E^*$ with $\|x_n^*\|=1$ $(n=1, 2, \cdots),$

$$\bigcap_{\mathbf{a}} 1_q(\mathbf{p}_{n,\mathbf{a}}) {\subset} 1_r$$

where $\rho_{n,a} = \sum_{i=1}^{\infty} |x_n^*(x_i)|^q$, with $\{x_i\} \in 1_p(E)$.

Proof.

 $(1) \Rightarrow (2)$: It is obvious.

 $(2) \Rightarrow (3)$: Assume the contrary, then there exist $\{x_n^*\} \subset E^*$ with $||x_n^*|| = 1$ $(n=1, 2, \cdots)$, and complex sequence $\{b_n\}$ such that $\sum_{n=1}^{\infty} |b_n|^q \rho_{n,\alpha} < \infty$ for all $\rho_{n,\alpha}$, and $\sum_{n=1}^{\infty} |b_n|^r = \infty$.

From the assumption of μ , there exist positive constants C_1 , C_2 and pairwise disjoint measurable subsets $\{X_n\}$ in X such that

$$C_1 \leq \mu(X_n) \leq C_2$$
 $(n=1, 2, \cdots).$

Let

$$f_n(s) = \begin{cases} 1 & \text{for } s \in X_n \\ 0 & \text{for } s \in X_n^c \text{ (complement of } X_n), \end{cases}$$

then obviously $\{f_n\}\subset L_q$.

Now, we shall define an operator T mapping E into L_q such that

$$Tx = \sum_{n=1}^{\infty} b_n x_n^*(x) f_n$$
 for $x \in E$.

Claim (a): T is (q, p)-absolutely summing. For each $\{x_i\} \in 1_p(E)$,

$$||Tx_{i}||^{q} = \int_{X} \left| \sum_{n=1}^{\infty} b_{n} x_{n}^{*}(x_{i}) f_{n} \right|^{q} d\mu$$

$$= \sum_{n=1}^{\infty} \int_{X_{n}} \left| b_{n} x_{n}^{*}(x_{i}) \right|^{q} d\mu$$

$$= \sum_{n=1}^{\infty} \left| b_{n} x_{n}^{*}(x_{i}) \right|^{q} \mu(X_{n})$$

$$\leq C_{2} \sum_{n=1}^{\infty} \left| b_{n} x_{n}^{*}(x_{i}) \right|^{q}$$

therefore, we have

$$\sum_{i=1}^{\infty} ||Tx_i||^q \leq \sum_{i=1}^{\infty} \sum_{n=1}^{\infty} C_2 |b_n x_n^* (x_i)|^q
= C_2 \sum_{n=1}^{\infty} |b_n|^q \rho_{n,\alpha} < \infty.$$

That is the assertion.

Next, let $g_i^*(s) = f_i(s)$ for $s \in X$, then $\{g_i^*\} \subset L_{q^*}$.

Clain (b): $\{g_i^*\}$ is weakly q-summable in L_{q^*} .

If q=1, then for any $g \in (L_{\infty})^*$, there exists complex sequence $\{\alpha_i\}$ such that $|\alpha_i|=1$, $|g(g_i^*)|=\alpha_i g(g_i^*)$.

Therefore, for positive integer N, we have

$$\begin{split} \sum_{i=1}^{N} \left| g\left(g_{i}^{*}\right) \right| &= g\left(\sum_{i=1}^{N} \alpha_{i} g_{i}^{*}\right) \\ &\leq \left\| g\right\|_{(L_{\infty})^{*}} \left\| \sum_{i=1}^{N} \alpha_{i} g_{i}^{*} \right\|_{L_{\infty}} \\ &= \left\| g\right\|_{(L_{\infty})^{*}}. \end{split}$$

Thus, we have the assertion.

If q>1, then L_q is reflexive. For any $g\in L_q$,

$$\begin{aligned} \left| g(g_i^*) \right| &\leq \int_X \left| g(s) g_i^*(s) \right| d\mu(s) \\ &\leq \left(\int_{X_i} |g|^q d\mu \right)^{1/q} \left(\int_{X_i} |g_i^*|^{q^*} d\mu \right)^{1/q^*} \\ &\leq (C_2)^{1/q^*} \left(\int_{X_i} |g|^q d\mu \right)^{1/q} \end{aligned}$$

therefore, we have

$$\sum_{i=1}^{\infty} \left| g(g_i^*) \right|^q \leq (C_2)^{q/q^*} \|g\|_{L_q}^q < \infty.$$

Thus, we have the assertion.

Claim (c): $T^*g_i^* = \mu(X_i)b_ix_i^*$.

For any $x \in E$, it is easily seen that the following:

$$T^* g_i^*(x) = \mu(X_i) b_i x_i^*(x).$$

Thus, we have the assertion.

Finally, if the condition (2) is satisfied, then by claim (a), T^* must be (r, q)-absolutely summing. Therefore, by claim (b) and claim (c), we have

$$\sum_{n=1}^{\infty} |b_n|^r < \infty.$$

That is a contradiction.

 $(3) \Rightarrow (1)$: Let T be a (q, p)-absolutely summing operator mapping E into F. For any $\{y_n^*\} \in 1_q(F^*)$, it is easily seen that

$$C = \sup \left\{ \sum_{n=1}^{\infty} \left| y_n^*(y) \right|^q \colon \|y\|_F \leq 1 \right\} < \infty.$$

Without loss of generality, we assume that $T^*y_n^*$ is non-zero elements, and so we put

$$x_n^* = \frac{T^* y_n^*}{\|T^* y_n^*\|},$$

then, $||x_n^*|| = 1$ $(n = 1, 2, \cdots)$.

In order to show that $\{T^*y_n^*\} \in l_r\{E^*\}$, by the condition (3), it is sufficient to show that the following (*):

$$(*) \sum_{n=1}^{\infty} ||T^*y_n^*||^q \rho_{n,\alpha} < \infty \quad \text{for all} \quad \rho_{n,\alpha}$$

$$\text{where } \rho_{n,\alpha} = \sum_{i=1}^{\infty} |x_n^*(x_i)|^q, \ \{x_i\} \in l_p(E).$$

$$\text{Proof of } (*): \quad \sum_{n=1}^{\infty} ||T^*y_n^*||^q \rho_{n,\alpha} = \sum_{n=1}^{\infty} ||T^*y_n^*||^q \sum_{i=1}^{\infty} |x_n^*(x_i)|^q$$

$$= \sum_{n=1}^{\infty} \sum_{i=1}^{\infty} ||T^*y_n^*(Tx_i)|^q$$

$$\leq C \sum_{i=1}^{\infty} ||Tx_i||^q$$

from this and the assumptions of T and $\{x_i\}$, we have the assertion.

Hence, T^* is (r, q)-absolutely summing, that completes the proof. From the above Theorem and Theorem 2.5., we have the following:

THEOREM 3.2. Let $1 \le p \le q \le r < \infty$. Then the following conditions are equivalent.

- (1) For all Banach spaces F, $\prod_{q,p}(E,F)\subset D_{q^*,r^*}(E,F)$.
- (1)' For all Banach spaces F, $D_{p^*,q^*}(F^*, E^*) \subset \prod_{r,q} (F^*, E^*)$.
- (2) $\prod_{q,p}(E,L_q)\subset D_{q^*,r^*}(E,L_q).$
- (2)' $D_{r^*,q^*}(L_{q^*},E^*) \subset \prod_{r,q} (L_{q^*},E^*).$

Next, by Theorm 2.1. and Theorem 3.1., we have the following main Theorem.

Theorem 3.3. Let $1 \le p < \infty$. Then the following conditions are equivalent.

- (1) For all Banach spaces F, if $T \in \prod_{p} (E, F)$, then $T^* \in \prod_{p} (F^*, E^*)$.
- (2) If $T \in \prod_{p} (E, L_{p})$, then $T^{*} \in \prod_{p} (L_{p^{*}}, E^{*})$.
- (3) For any $\{x_n^*\}\subset E^*$ with $||x_n^*||=1$ $(n=1, 2, \cdots)$,

$$\bigcap_{T \in L(F,E)} l_p \left(\|T^* x_n^*\|^p \right) = l_p$$

where if p>1, $F=l_{p^*}$; if p=1, $F=c_0$ $(1/p+1/p^*=1)$.

Proof is easy.

In the above Theorem, if a Banach space E satisfies the condition (3) (or equivalently (1), (2)), we shall call that E has a $(*)_p$ -conditions.

In this sense, it is easily seen that if E^* is isomorphic to a subspace of l_p , then E has a $(*)_p$ -conditions. More generally, by the Theorem 2.3. and Theorem 2.4., \mathscr{L}_{p^*2} -space has a $(*)_p$ -condition.

In particular, every space of type C(K) (K is a compact Hausdorff space), every M space in the sence of Kakutani has a $(*)_1$ -conditions, and every $L_{p^*}(\mu)$ -space has a $(*)_p$ -conditions.

Now, by Theorem B and Theorem 3.3, we obtain a characterization of inner product spaces. That is the following:

Theorem 3.4. Let E be a Banach space, then the following conditions are equivalent:

- (1) E is isomorphic to an inner product space.
- (2) For every separable subspace H of E, H is isomorphic to l_2 .
- (3) For any $\{x_n^*\}\subset E^*$ with $||x_n^*||=1$ $(n=1, 2, \dots)$,

$$\bigcap_{T \in L(l_n, E)} l_2 \Big(\| T^* x_n^* \|^2 \Big) = l_2.$$

Proof is easy.

§4. Application

In this section, as an application of a Banach space E which satisfies a $(*)_p$ -conditions, we shall give the Sazonov's theorem concerning Gaussian measure. (For details, c. f. [10], [11], [12])

THEOREM 4.1. Let E be a Banach space which satisfies a $(*)_p$ -conditions for $1 \le p \le 2$, and let μ be a Gaussian measure on E^* . Then, the following conditions are equivalent:

- (1) μ is countably additive.
- (2) μ is continuous relative to the Hilbert-Schmidt topology.

Proof is omitted.

References

- [1] J. S. COHEN: A characterization of inner product spaces using absolutely 2-summing operators, Studia Math. 38 (1970).
- [2] S. KWAPIEŃ: A linear topological characterization of inner product spaces, Studia Math. 38, 277-278 (1970).
- [3] J. S. COHEN: Absolutely p-summing, p-nuclear operators and their conjugates, Math. Ann. 201, 177-200 (1973).
- [4] M. KATO: Conjugates of (p, q; r)-absolutely summing operators, Hiroshima Math. J. 5, 127-134 (1974).
- [5] A. PIETSCH: Absolut p-summierende Abbildungen in normierten Räumen, Studia Math. 28, 333-353 (1967).
- [6] A. GROTHENDIECK: Sur certaines classes de suites dans les espaces de Banach et le théorème de Dvoretzky-Rogers, Boletim Soc. Mat. Sao Paulo 8, 81-110 (1956).
- [7] J. LINDENSTRAUSS and A. PELCZYŃSKI: Absolutely summing operators between \mathcal{L}_{v} -spaces, Studia Math. 29, 275–326 (1968).
- [8] S. KAKUTANI: Concrete representation of abstract M-spaces, ibidem 42, 994-1024 (1941).
- [9] A. J. LAZAR and J. LINDENSTRAUSS: On Banach spaces whose duals are L_1 -spaces, Israel J. Math. 4, 205-207 (1966).
- [10] V. SAZONOV: A remark on characteristic functionals, Teor. Veroj. i. Prim. 3, 201-205 (1958).
- [11] Y. TAKAHASHI: A note on Sazonov's Theorem, J. Fac. Sci. Hokkaido Univ. Ser. 1, Vol. 22, No. 3-4, 126-131 (1972).
- [12] Y. TAKAHASHI: Bochner-Minlos' Theorem on infinite dimensional spaces, to appear.

Department of Mathematics Hokkaido University