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§1. Introduction

In [1], Cohen has shown that the following :

THEOREM A. Let E be a normed space. Then E is an inner product
space iff for all Banach spaces F and for all 2-absolutely summing opera-
tors T mapping E into F, the conjugate operator T* is 2-absolutely sum-
ming and 11,(T*)< [1.(T).

In [2], Kwapien has given a similar characterization of spaces isomor-
phic to inner product spaces. That is the following :

THEOREM B. Let E be a Banach space, then the following conditions
are equivalent :

(1) E is isomorphic (=linearly homeomorphic) to an inner product
space.

(2) If Te l.(E L), then T*¢€ [1;(L, E*).

Theorem A and Theorem B suggest the following (*):

(*) Let E be a Banach space, and 1=<p<oo. Then the following con-
ditions are equivalent.

(1) For all Banach spaces F,
if Te,(E,F), then T*€ [ ,(F*, E*).

(2) If Te ll,(EL,), then T*e 11, E*).

In this paper, we shall prove this fact is true, and furthermore, using
weakly p-summable sequences, we shall characterize Banach spaces E which
satisfy the condition (1) (or equivalently condition (2)).

Notation. Throughout the paper E and F will denote Banach spaces
and E* and F* the continuous dual spaces. The space of continuous
linear operators mapping E into F will be denoted by L(E, F).

§2. Basic definitions and well known results

Let E and F be Banach spaces, and 1=Sp=<co.
A sequence {x;} with values in E is called weakly p-summable (/,(E))
if for all £* € E* the sequence {«*(x,)}€l,. The space [,(E) is a normed
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space ; the norm is given by
sup {( 5 * (@)
i=1

sgp{sup{|x*(xi)|: le*llél}}, p=oco.

The following theorem, due to Grothendieck (c.f. [6]), provides a useful
characterization of /,(E).

THEOREM 2.1. For 1<p=<oco and 1/p+1/p*=1, trere is an isometric
isomorphism between l,(E) and L(l,, E). For p=1, l,(E) is isometrically
isomorphic with L(cy, E). In both cases, a sequence {x;} in L,(E) is identi-
fied with the operator

p\V/?
e ({x-}): ) : ||$*|[§1}, 1< p<oo

T({ci}> = gcixi .

A sequence {z;} is called absolutely p-summable (/,{E}) if the sequence
{llx:}|} €1,. The space [,{E} is a normed space; the norm is given by

ap ({:q}) = {(2 ”xf”p)w’ 1= p<oo

supllall,  p=oco.

A sequence {x;} is called strongly p-summable (/,<{E)) if for all se-
quences {xf}€l,.(E*), 1/p+1/p*=1, the series ixi" (x;) converges.
i=1

The space [,{E) is a normed space; the norm is given by
7y ({w) = sup {| S at (20] & ({20)) =1}

DEFINITION 2.1. Let 1=p, q<co. An operator T mapping E into F
is (p, q)-absolutely summing (11 ,,,(E, F)) if there exists a constant ¢=0, such
that for all finite sets x,, -+, x,, the inequality

@, ({Tx)) < e {})

is satisfied. The smallest number c, such that the above inequality is
satisfied, is called the (p, q)-absolutely summing norm (II,.(T)) of T.

We shall say p-absolutely summing instead of (p, p)-absolutely summing,
and absolutely summing instead of 1-absolutely summing, respectively.

It is easily seen that the following :

THEOREM 2.2. A linear operator T mapping E into F is (p, q)-abso-
lutely summing iff for each {x;}€l,(E), {Tx;}€l,{F}.
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DEFINITION 2.2. Let 1<p,q<co. An operator T mapping E into F
is (p, q)-strongly summing (D, (E, F)) if there exists a constant ¢Z0 such
that for all finite sets x, -+, x,, the inequality

7, ({T}) < ca({:})

is satisfied. The smallest number c, such that the above inequality is
satisfied, is called the (p, q)-strongly summing norm (D, .(T)) of T.

We shall say p-strongly summing instead of (p, p)-strongly summing.

Next, we shall introduce an £ ,-space. The definition of this space
is due to Lindenstrauss and Pelczynski (c.{. [7]).

Let E and F be Banach spaces. The distance d(E, F') between E and
F is defined by d(E, F)=inf {||T||-|| T""||}, where the infimum is taken over

all invertible operators in L(E, F). If no such T exists, i.e, if £ and F
are not isomorphic, d(E, F) is taken as co.

DEFINITION 2.3. Let 1<p=<oco, and 1=<i<oco. A Banach space E is
called an < ,-space if for all finite dimensional subspaces MCE there exists
a finite dimensional subspace N containing M such that d(N,l;)<2, where
n=dim (N).

It can be shown (c.f. [7]) that every L,(¢) space is an £ ,-space for
all 2>1 and every space of type C(K), where K is a compact Hausdorft
space, is an Z.-space for all 2>1. More generally, every Banach space
whose dual is isometric to an L,(u)-space (e.g. every M space in the sence
of Kakutani [8]) is an £..;-space for every 1>1 (c.{. [9]).

The following theorems are due to J. S. Cohen (c.f. [3]).

THEOREM 2.3. Let 1/p+1/g=1.

(1) Let 1Sp<oo. An operator T belongs to 11,(E, F) iff the conju-
gate operator T* belongs to D,(F*, E*).

(2) Let 1<q=co. An operator T belongs to D,(E, F) iff the conju-
gate operator T* belongs to 11 ,(F*, E*).

THEOREM 2.4. Let 1<p=<oo and 1/p+1/q=1.

(1) Let E be an £ ,-space. Then, 11,(E, F)cD,(E, F).

(2) Let F be an &£ ,-space. Then, D,(E, F)CII,(E, F).

The following theorem are due to M. Kato (c.f. [4]), and this is a
generalization of the Theorem 2.3..

THEOREM 2.5. Let 1/p+1/p*=1, 1/g+1/g*=1.

(1) Let 1=p,q<co. An operator T belongs 11,,(E, F) iff the conju-
gate operator T* belongs to Dy, ,.(F*, E*).
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(2) Let 1<p<co and 1=q<co. An operator T belongs Dy,(E, F)
iff the conjugate operator T* belongs to 1l ,,(F*, E*).

§3. Main theorems and other results

Throughout this section, let X be a set and B be a o-algebra in X,
and let ¢ be a positive measure such that there exist positive constants
C, C, and pairwise disjoint measurable subsets {X,}, which satisfy the
following conditions :

C.spX)LC,, foral n=1,2, -

Let L,(X, p) be a usual Banach space, then /,(usual sequence space) is
a L,(X, p)-space which satisfies the above conditions.

We shall denote L, instead of L,(X, ¢) in the ensuing discussions.

TueoreM 3.1. Let E be a Banach space, 1<p<q=<r<oco. Then the
following conditions are equivalent.

(1) For all Banach spaces F,

if Te,,E, F), then T*e 11, ,(F*, E¥).
(2) If T€.»(E, L), then T*€ 10,,4(Le E¥)  (1/g+1/g*=1).
(3) For any {xf}CE* with |z;||=1 (n=1,2, -+*),

N1,(0,..)C1l,

where P, ,= i}llx;{‘ (z)|, with {x;}€l,(E).

Proor.
(1)=>(2): It is obvious.
(2)=>(3): Assume the contrary, then there exist {z;}CE* with |zl

=1(n=1,2, '), and complex sequence {b,} such that ilb,,l“ P, .<co for

all 0., and 3 |b,|"=co.
n=1

From the assumption of g, there exist positive constants C;, C; and
pairwise disjoint measurable subsets {X,} in X such that

Clétu(Xn)écz ‘(7’1=1,2,"').
Let
1 for se X,

ns) 0 for se Xy (complement of X,),

then obviously {f,}CL,.
Now, we shall define an operator 7" mapping E into L, such that
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=ibn$3§(x)ﬁ for z€ E.
n=1

Claim (a): T is (q, p)-absolutely summing.
For each {x;}el,(E)

1Tl ={ |5 o) £ di
x (@) dp

JBaz @ w(x)

)l
3
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HMS ﬁ[_\ﬂg

10?00 < o0

That is the assertion.

Next, let g7 (s)=f:(s) for s€ X, then {gf}CL,.

Clain (b): {9/} is weakly q-summable in L,.

If g=1, then for any g€(L.)*, there exists complex sequence {a;} such

that |a;|=1, |g(¢¥)|=a, (7).
Therefore, for positive integer N, we have

5 g(gf)|= g@iaw?)

N
< Nl | S ot

= ”g“(zm)*-

Thus, we have the assertion.
If ¢>1, then L, is reflexive. For any g€ L,

loton)]={ |o)oz()|ans

(], 1avean)" ([ oriean)™

<(@ye({, lotan)"

tlw

A

therefore, we have
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Zlonf

< (G g3, < oo.

Thus, we have the assertion.
Claim (c): T*gf=p(X,)b;xf.
For any x€E, it is easily seen that the following:
T* g} (z) = p(Xi) bz ().

Thus, we have the assertion.
Finally, if the condition (2) is satisfied, then by claim (a), 7* must be
(r, 9)-absolutely summing. Therefore, by claim (b) and claim (c), we have

316 < o0

That is a contradiction.

(3)=>(1): Let T be a (g, p)-absolutely summing operator mapping E
into F. For any {y;}el, (F*), it is easily seen that

2 (

Without loss of generality, we assume that 7%y is non-zero elements,
and so we put

C=sup {33 |z @) s llle <1} < oo.

T*
= =TT ll

then, |z%||=1 (n=1,2, ---).
In order to show that {T*y}}el,{E*}, by the condition (3), it is
sufficient to show that the following (*):

(*) LIT*ysl0me< oo for all o,

where 0,,= Y |z* (2%, {x:}€l,(E).
i=1

Proof of (¥): gnT*y::llqpna Z HT*y*Hq

1

% ()

MS 1M8 |
Ms T

T* Yn (xi)lq

<

3 *
~
3

o

3
Il
-
-,
Il
-

ll/\

C X I Tl

from this and the assumptions of 7" and {z;}, we have the assertion.
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Hence, T* is (r, q)-absolutely summing, that completes the proof.
From the above Theorem and [Theorem 2.5, we have the following :

THEOREM 3.2. Let 1=Sp=<q=<r<oo. Then the following conditions
are equivalent.

(1) For all Banach spaces F, 11, ,(E, F)\C D, «(E, F).

(1Y For all Banach spaces F, D,..(F*, E¥)C1I, ,(F*, E*).

(2) Mg (E, L)C Dy .+ (E, L.

(2) Dyegr(Lyy EX)C I, o (Lgsy E*).

Next, by Theorm 2.1. and [Theorem 3.1, we have the following main
Theorem.

TueoreEM 3.3. Let 1=<p<co. Then the following conditions are
equivalent.
(1) For all Banach spaces F,
if Tell,(E, F), then T* € II,(F*, E*).
(2) If Tell,(E, L,), then T* € I] ,(L, E*).
(3) For any {x}}CE* with |z}||=1 (n=1,2, ---),
N L(IT*xx|") =1,

TeL(F,E)
where if p>1, F=l,.; if p=1, F=¢, (1/p+1/p*=1).

Proof is easy.

In the above Theorem, if a Banach space E satisfies the condition (3)
(or equivalently (1), (2)), we shall call that E has a (*),-conditions.

In this sense, it is easily seen that if E* is isomorphic to a subspace
of I,, then E has a (*),-conditions. More generally, by the [Theorem 2.3.
and [Theorem 2.4, £ ,..-space has a (*),-condition.

In particular, every space of type C(K) (K is a compact Hausdorff
space), every M space in the sence of Kakutani has a (*)-conditions, and
every L,.(p)-space has a (*),-conditions.

Now, by Theorem B and [Theorem 3.3, we obtain a characterization of
inner product spaces. That is the following:

THEOREM 3.4. Let E be a Banach space, then the following condi-
tions are equivalent:
(1) E is isomorphic to an inner product space.
(2) For every separable subspace H of E, H is isomorphic to I,
(3) For any {x}}CE* with |x}||=1 (n=1,2, ),
TeLQz,E) b <” ™ xﬂ;“2> =b.
Proof is easy.
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§4. Application

In this section, as an application of a Banach space E which satisfies
a (*),-conditions, we shall give the Sazonov’s theorem concerning Gaussian

measure. (For details, c.f. [10], [11], [12])

THEOREM 4.1. Let E be a Banach space which satisfies a (*),-condi-

tions for 1<p=<2, and let p be a Gaussian measure on E*.

Then, the fol-

lowing conditions are equivalent :
(1) p is countably additive.
(2) g is continuous relative to the Hilbert-Schmidt topology.

Proof is omitted.

[11]

(2]

[3]

[4]

(5]

[6]
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