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\S 1. Introduction. Let V^{n} be a closed orientable hypersurface in
an (n+1)-dimensional Euclidean space E^{n+1} and \overline{V}^{n}(\epsilon) be a family of ad-
missible hypersurfaces parameterized by the real number \epsilon near \epsilon=0 such
that \overline{V}^{n}(0)=V^{n} . We put

J[H_{1}^{c}]= \int_{r^{n}}H_{1}^{c}d\sigma ,

where c is an arbitrary positive integer, H_{1} is the mean curvature of V^{n}

and da means the volume element of V^{n} . We denote by \delta J the first varia-
tion of the functional J :

\delta(J[H_{1}^{c}])=(\frac{\partial}{\partial\epsilon}J[\overline{H}_{1}^{c}(\epsilon)]).=0 ,

where \overline{H}_{1}(\epsilon) is the mean curvature of \overline{V}^{n}(\epsilon) .
The normal variation is defifin\circ.d to be the variation such that the di-

rection of the deformation at each point of V^{n} is in the direction of the
normal of V^{n} . V^{n} is said to be stable with respect to J[H_{1}^{c}] if \delta(J[H_{1}^{c}])

=0 for any normal variation. In particular, when V^{n} is stable with re-
spect to J[H_{1}^{n}] , V^{n} is called the stable hypersurface. B. Y. Chen [1]^{1)}

has proved that a closed orientable hypersurface V^{n} in E^{n+1} is stable with
respect to J[H_{1}^{c}] if and only if H_{1} and R’ satisfy

(1. 1) c\Delta H_{1}^{c-1}+n^{2}(c-1)H_{1}^{c+1}+cH_{1}^{c-1}R’=0 ,

where \Delta denotes the Laplacian with respect to the induced metric on V^{n}

and R’ is the scalar curvature of V^{n} . When c=1, we obtain from (1. 1),
R’=0 and this result was given by M. Pinl and H. W. Trapp [2]. If we
denote by H_{2} the second mean curvature of V^{n}, from the Gauss equation
we get

(1. 2) R’=-n(n–1) H_{2} .
Therofore we can see that if a closed orientable hypersurface V^{n} in E^{n+1}

is stable with respect to J[H_{1}] , then H_{2}=0 .
1) Numbers in brackets refer to the references at the end of the paper.
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Putting c=n in (1. 1), by virtue of (1. 2) we have

(1. 3) \Delta H_{1}^{n-1}=-H_{1}^{n-1}\{n(n-1)(H_{1}^{2}-H_{2})\} .
By means of (1. 3), B. Y. Chen proved that a stable hypersurface V^{n} in
E^{n+1} is a hypersphere for n=2m+1 and when n=2m we have the same
result under the hypothesis that H_{1} does not change its sign.

When V^{n} is a closed orientable hypersurface in an (n+1)-dimensional
space form R^{n+1}(K) of curvature K, the first variation of the integral of
arbitrary functions with respect to H_{\nu}(\nu=0,1, \cdots, n) has been studied by
R. C. Reilly [3], where H_{\nu}(\nu=1, \cdots, n) denotes the \nu-th mean curvature of
V^{n} and specially we put H_{0}=1 . He showed that if \delta(J[H_{\nu}])=0 , then we
have

(\nu+1) (\begin{array}{ll} n\nu +1\end{array}) H_{\nu+1}+K(n-\nu+1) (\begin{array}{ll} n\nu -1\end{array}) H_{\nu-1}=0 .

If we put \nu=1 in the last equation, we get K=-(n-1)H_{2} . Thus, we can
see that if V^{n} in R^{n+1}(K) is stable with respect to J[H_{1}] , then H_{2}=const .
Particularly, if R^{n+1}(K) is an Euclidean space E^{n+1}, we have H_{2}=0 and
this is the result of M. Pinl and H. W. Trapp.

Recently, the variational properties for the normal variation of a closed
orientable hypersurface V^{n} in a general Riemannian space R^{n+1} have been
investigated by T. J. Willmore and C. S. Jhaveri [4]. It was proved that
V^{n} is the stable hypersurface if and only if H_{1} satisfies

(1. 4) \Delta H_{1}^{n-1}=-H_{1}^{n-1}\{n(n-1)(H_{1}^{2}-H_{2})-R_{if}N^{i}N^{f}\} ,

where R_{if} and N^{i} denotes the Ricci tensor of R^{n+1} and the unit normal
vector of V^{n} respectively. From (1. 4) we find that if V^{n} is a stable hy-
persurface in R^{n+1} and R_{if}N^{i}N^{f}\leqq 0 on V^{n}, then V^{n} is the minimal or the
umbilical hypersurface for n=2m+1 and when n=2m, we have the same
result under the hypothesis that H_{1} does not change its sign. Since there
exist no closed minimal hypersurface in an Euclidean space (S. B. Myers
[5] ), when R^{n+1} is E^{n+1} , we get from (1. 4) the result of B. Y. Chen.

The purpose of the present paper is to investigate the variational pr0-
perties of a closed orientable submanifold V^{n} of an arbitrary codimension
p in a Riemannian space R^{n+p} and give certain generalizations of the above
stated results. The terminologies, notations and the basic relations for
submanifolds in a Riemannian space are provided in \S 2. When the mean
curvature H_{1} of V^{n} does not vanish on V^{n}, the unit normal vector N^{t}E’

which has the same direction with the mean curvature vector, is deter-
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mined uniquely at each point on V^{n} (Y. Katsurada, T. Nagai and H. K\^ojy\^o
[6] ). When p=1, the vector N^{i} is the unit normal vector N^{i} of a closed

E
orientable hypersurface V^{n} in R^{n+1} . Then, in the present paper the varia-
tion in the direction N^{i}E is called the normal variation. A submanifold
V^{n} is said to be stable with respect to J[H_{1}^{c}] if \delta(J[H_{1}^{c}])=0 for any nor-
mal variation and when V^{n} is stable with respect to J[H_{1}^{n}] , we call it the
stable submanifold. In \S 3 we find the condition for \delta(J[H_{1}^{c}])=0 with
respect to the normal variation and making use of the condition of the
case c=n and c=1, we study the properties of the stable submanifold and
the submanifold which is stable with respect to J[H_{1}] .

The idea of the variation in the direction of a vector field has been
introduced by Y. Katsurada [7]. According to this idea, in \S 4 we study
some variational problems with respect to the variation in the direction \xi^{i},
where \xi^{i} is a vector field in R^{n+p} . The condition for \delta(J[H_{1}^{c}])=0 with re-
spect to the variation in the direction \xi^{i} is given in \S 4. In particular,
when \xi^{i} is the homothetic Killing vector field, we give the properties of
V^{n} which is stable with respect to J[H_{1}^{c},] for the variation in the direc-
tion \xi^{i} .

The author wishes to express his sincere thanks to Professor Yoshie
Katsurada for her kindly guidance and criticism.

\S 2. The fundamental equations for submanifolds. Let R^{n+p}(n\geqq

2, p\geqq 1) be an (n+p)-dimensional Riemannian space of class C^{r}(r\geqq 3) and
(x^{1}, x^{2_{ }},\cdots, x^{n+p}) be a local coordinate system of R^{n+p} . Let V^{n} be an n-di-
mensional closed orientable submanifold in R^{n+p}, then V^{n} is expressed
locally by the equation

x^{i}=x^{i}(u^{\alpha}) , (i=1,2, \cdots, n+p;\alpha=1,2, \cdots, n)^{2)}

where (u^{1}, u^{2_{ }},\cdots, u^{n}) is a local coordinate system of V^{n} and the Jacobian
matrix (\partial x^{i}/\partial u^{\alpha}) is of rank n. If we denote by g_{if} the metric tensor of
R^{n+p} and put B_{\alpha}^{i}=\partial x^{i}/\partial u^{\alpha}, then the induced metric tensor g_{\alpha\beta} of V^{n} is
given by

(2. 1) g_{\alpha\beta}=g_{if}B_{\alpha}^{i}B_{\beta}^{f3)},\cdot

2) In this paper the Latin indices i, j, k, \cdots run from 1 to n+p and the Greek indices
\alpha , \beta , \gamma , \cdots run from 1 to n .

3) Throughout this paper we shall use the Einstein convention, that is when the same
index appears in any term as an upper index and a lower index, it is understood
that this letter is summed for all the values over its range.
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and the volume element d\sigma of V^{n} is given by

(2. 2) d\sigma=\sqrt{g}du^{1}\Lambda\cdots\Lambda du^{n} ,

where g det. (g_{\alpha\beta}) .
Let N^{i}P(P=n+1, n+2, \cdots, n+p)^{4)} be the contravariant components of p

unit vectors which are normal to V^{n} and mutually orthogonal and the set
of n+p vectors

(2. 3) (B_{1}^{i}, B_{2}^{J_{ }},\cdots, B_{n}^{i}, N^{i},N^{i_{ }},\cdots,N^{i})n+1n+2n+p

be a positively oriented frame at each point on V^{n} . Putting

(2. 4) B_{i}^{\alpha}=gg_{if}B_{\beta}^{J}\alpha\beta , N_{i}=g_{if}N^{f}PP ,

we have
g^{if}=g^{\alpha\beta}B_{\alpha}^{i}B_{\beta}^{j}+ \sum_{P=n+1}^{n+p}N^{i}N^{f}PP ,

(2. 5)
g_{if}=g_{\alpha\beta}B_{i}^{\alpha}B_{f}^{3}+ \sum_{P=n+1}^{n+p}N_{i}N_{f}PP ,

and we can see that the set of n+p vectors

(B_{i}^{1}, B_{i}^{2_{ }},\cdots, B_{i}^{n},N_{i},N_{i^{ }},\cdots,N_{i})n+1n+2n+p

gives the dual frame of the frame (2. 3), where g^{if} and g^{\alpha\beta} are defined by
the equation g^{if}g_{fk}=\delta_{k}^{i} and g^{\alpha\beta}g_{\beta\gamma}=\delta_{\gamma}^{\alpha} respectively and \delta_{k}^{i} and \delta_{\gamma}^{\alpha} denote the
Kronecker delta.

In the present paper we shall denote by “, ” and “ ;” the partial
differentiation and the covariant differentiation along V^{n} due to van der
Waerden-Bortolotti respectively. Denoting by Pb_{\alpha\beta} the second fundamental

tensor with respect to N^{i}P and putting PPb_{\alpha}^{rtr}=gb_{\alpha 9} we get the following

fundamental formulas :

(2. 6) B_{\alpha;\beta}^{i}= \sum^{n+p}b_{\alpha\beta}N^{i}P=n+1PP

’ (Gauss formula)

(2. 7) N_{;\alpha}^{i}=-b_{\alpha}^{\gamma}B_{\gamma}^{i}+\Gamma_{P\alpha}^{\prime\prime Q}N^{i}PPQ ,\cdot (Weingarten formula)

where
(2. 8) \Gamma_{P\alpha}^{\prime\prime Q}=(N_{f}^{i},+\Gamma_{hf}^{i}N^{h})B_{\alpha}^{f}N_{i}PPQ ’

and \Gamma_{hf}^{i} are the Christoffel symbols defined by g_{if} . Since N^{i}N_{i}=\delta_{PQ}PQ’ from
(2. 8) we have

4) In this paper the capital Latin indices P, Q, R, \cdots run from n+1 to n+p.
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\Gamma_{P\alpha}^{\prime\prime Q}+\Gamma_{Q\alpha}^{\prime\prime P}=0r

,

and if p=1, i.e. , when V^{n} is a hypersurface in R^{n+1}, then \Gamma_{P\alpha}^{\prime\prime Q} vanishes
identically.
Putting

R_{fkh}^{i}=\Gamma_{fh,k}^{i}-\Gamma_{fk,h}^{i}+\Gamma_{fh}^{l}\Gamma_{lk}^{i}-\Gamma_{fk}^{l}\Gamma_{lh\prime}^{i}.
R_{\alpha_{l}}^{\prime\delta}\epsilon_{\gamma}=\Gamma_{\alpha\gamma,\theta}^{\prime\delta}-\Gamma_{\alpha 9,\gamma}^{\prime\delta}+\Gamma_{\alpha\gamma}’.\Gamma_{\beta}^{\prime\delta}.-\Gamma_{\alpha\beta}’*\Gamma_{\epsilon\gamma}^{\prime\delta} ,

where \Gamma_{\beta\gamma}^{\prime\alpha} are the Christoffel symbols defined by g_{\alpha\beta}, then from the inte-
grability conditions of the Gauss and Weingarten formula we have the fol-
lowing Gauss and Mainardi-Codazzi equations:

(2. 9) R_{ihfk}B_{\delta}^{i}B_{\alpha}^{h}B_{\beta}^{f}B_{\gamma}^{k}=R_{\delta\alpha\beta\gamma}’- \sum^{n+p}(b_{\delta\beta}b_{\alpha\gamma}-b_{\delta\gamma}b_{\alpha 9}.)P=n+1PPPP

’

(2. 10)
R_{ihfk}N^{i}B_{\alpha}^{h}B_{\beta}^{f}B_{\gamma}^{k}=b_{\alpha\gamma;\beta}-b_{\alpha\beta jf}+b_{\alpha\gamma}\Gamma_{P\beta}^{\prime\prime Q}-b_{\alpha\beta}\Gamma_{P\gamma}^{\prime\prime Q}PPPQPQ^{\cdot}

We shall denote by H_{\nu}P the \nu-th mean curvature of V^{n} with respect

to N^{i}P^{\cdot} Then we have

(2. 11) H_{1}= \frac{1}{n}\Sigma^{n}\kappa_{\alpha}=\frac{1}{n}b_{\alpha}^{\alpha}P\alpha=1PP ,

(2. 12) H_{2}= \frac{2}{n(n-1)}\Sigma\kappa_{\alpha}\kappa_{\beta}=\frac{1}{n(n-1)}(b_{\gamma}^{\gamma}b_{\delta}^{\delta}-b_{\delta}^{\gamma}b_{\gamma}^{\delta})P\alpha<\beta PPPPPP

’

where
P\kappa_{\alpha}

means the principal curvature of V^{n} for the normal vector N^{i}P^{\cdot}

By means of (2. 11) and (2. 12) we get

(2. 13) H_{1}^{2}-H_{2}= \frac{1}{n^{2}(n-1)}\sum_{\alpha PP<\theta}(\kappa_{\alpha}-\kappa_{\beta})^{2}PP

Let H^{i} be the contravariant component of the mean curvature vector
of V^{n}, then from (2. 6) and (2. 11) we have

(2. 14) H^{i}= \frac{1}{n}B_{\alpha;\beta}^{i}g^{\alpha\beta}=\frac{1}{n}\sum^{n+p}b_{\alpha}^{\alpha}N^{i}=\sum_{PP=n+1PP=n+1}^{n+p}H_{1}N^{i}PP

’

and the mean curvature H_{1} of V^{n} is given by

(2. 15) H_{1}=(g_{if}H^{i}H^{f})^{1/2}

When the mean curvature H_{1} does not vanish on V^{n}, we have the unit
normal vector N^{i}E at each point of V^{n} . In this case we get H^{i}’=H_{1}N^{t}E

and if we take a set of p mutually orthogonal unit normal vectors N^{i}P(P=

n+1, n+2, \cdots , n+p) in such a way that n+1EN^{i}=N^{i}, then from (2. 14) and
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\langle2. 15) it follows that

\langle2. 16) H_{1}=H_{1}E= \frac{1}{n}b_{\alpha}^{\alpha}E

’ H_{1}P=0 (P=n+2, \cdots, n+p)1

Let C^{i} be any normal vector of V^{n} and (C_{j\alpha}^{i})^{N} be the normal part of
C_{\alpha}^{i}.,\cdot When (C_{;\alpha}^{i})^{N}=0, the vector C^{i} is said to be parallel with respect to
the connection in the normal bundle. From (2. 7), we can see that the
vector N^{i}E is parallel with respect to the connection in the normal bundle

if and only if \Gamma_{E\alpha}^{\prime\prime P}=0(P=n+2, \cdots, n+p, \alpha=1, \cdots, n) .

\S 3. The normal variation of the integral J[H_{1}^{c}] . Let V^{n} be an
n-dimensional closed orientable submanifold in an (n+p)-dimensional Rie-
mannian space R^{n+p} . In this section we assume that the mean curvature
H_{1} of V^{n} does not vanish at each point of V^{n} . Let

(3. 1) \overline{x}^{i}(u^{\alpha}, \epsilon)=x^{i}(u^{\beta})+\rho(u^{\alpha})N^{i}E(u^{\alpha})\epsilon ,

be a normal variation of V^{n} associated with a function \rho on V^{n}, where \epsilon

is a parameter in a small interval containing 0. Then we have a family
of admissible submanifolds \overline{V}^{n}(\epsilon) such that \overline{V}^{n}(0)=V^{n} . When \overline{\Omega}(\epsilon) be a
geometric object on \overline{V}^{n}(\epsilon) such that \overline{\Omega}(0)=\Omega, we put

\delta\Omega=(\frac{\partial}{\partial\epsilon}\overline{\Omega}(\epsilon)).=0

From (3. 1) it follows that

(3. 2) B_{\alpha}^{i}=B_{\alpha}^{i}+(\rho N^{i}),\alpha\epsilonrightarrow E^{\cdot}

Since we have
\langle3. 3) N_{;\alpha}^{i}=N_{\alpha}^{i},+\Gamma_{fk}^{i}N^{f}B_{\alpha}^{k}EEE ’

by means of (2. 7) and (3. 2) we get

(3. 4) \delta B_{\alpha}^{i}=\rho_{j\alpha}N^{i}-\rho(b_{\alpha}^{\gamma}B_{\gamma}^{i}+\Gamma_{fk}^{i}N^{f}B_{\alpha}^{k}-\Gamma_{E\alpha}^{\prime\prime P}N^{i})EEEP1

By means of (2. 1) and (3. 4) we get

(3. 5) \delta g_{\alpha\beta}=-2^{\rho}b_{\alpha\beta}E^{\cdot}

Sinec \overline{g}^{\alpha\beta}(\epsilon)\overline{g}_{\beta\gamma}(\epsilon)=\delta_{\gamma}^{\alpha}, from (3. 5) we have
\langle3. 6) \delta g^{\alpha\beta}=2\rho g^{\alpha\gamma}g^{\beta\delta}b_{\gamma\delta}E^{\cdot}

Furthermore, from the relation \delta\sqrt{g}=\frac{1}{2}\sqrt{g}g^{\alpha\beta}\delta g_{\alpha\beta} and (3. 5) we get
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(3. 7) \delta d\sigma=-\rho b_{\alpha}^{\alpha}d\sigma=-n\rho H_{1}E da.

From (2. 16) it follows that

\delta H_{1}=\frac{1}{n}\{(\delta g^{\alpha\beta})b_{\alpha\beta}+g^{\alpha\beta}\delta b_{\alpha\beta}\}EE

From the definition of the covariant differentiation along V^{n}, we have
B_{\alpha;\beta}^{i}=B_{\alpha,\beta}^{i}+\Gamma_{fk}^{i}B_{\alpha}^{f}B_{\beta}^{k}-\Gamma_{\alpha\beta}^{\prime\gamma}B_{\gamma}^{i} ,

and from (3. 2) we can see that

\frac{\partial}{\partial\epsilon}(\overline{B}_{\alpha,\beta}^{i})=(^{-}\frac{\partial}{\partial\epsilon}\hat{B}_{\alpha}^{i}),\beta=(\rho N^{i})_{\alpha,\beta}E’ .

Then, by means of EEb_{\alpha\beta}=B_{\alpha;\beta}^{t}N_{i} we get

g^{\alpha\beta}\delta b_{\alpha\beta}=gE\alpha\rho\{(\rho N^{i})_{\alpha,\beta},+\rho\Gamma_{fk,h}^{i}N^{h}B_{\alpha}^{f}B_{\beta}^{k}+\Gamma_{fk}^{i}(\rho N^{f})_{\alpha},B_{\beta}^{k}EEE

(3. 8)
+\Gamma_{fk}^{i}B_{\alpha}^{f}(\rho N^{k})_{\beta},-\Gamma_{\alpha\beta}^{\prime\gamma}(\rho N^{i})_{\gamma},\}N_{i}+nH_{1}N^{i}\delta N_{i}tEEEEE

Since \overline{g}^{if}\overline{N}_{t}\overline{N}_{f}=1EE ’ it follows that
(3. 9) N^{i}\delta N_{i}=\rho\Gamma_{fk}^{i}N_{i}N^{f}N^{k}EEEEE

Making use of (3. 3) and (3. 9), from (3. 8) we get

g^{\alpha\beta}\delta b_{\alpha\beta}=gE\alpha\rho\{(\rho N^{i})_{;\alpha;\beta}N_{i}-R_{ifkh}N^{i}B_{\alpha}^{f}B_{\beta}^{k}N^{h}\}EEEE

By virtue of (2. 6) and (2. 7) we find that
g^{\alpha\beta}(\rho N^{i})_{;\alpha;\beta}N_{i}=\Delta\rho-\rho(b_{\alpha}^{\beta}b_{\beta}^{\alpha}-g^{\alpha\beta}\Gamma_{E\alpha}^{\prime\prime P}\Gamma_{P\beta}^{\prime\prime E})EEEE^{\cdot}

Then we have

(3. 10) \delta H_{1}=\frac{1}{n}\{\rho(b_{\alpha}^{\beta}b_{\beta}^{\alpha}+g^{\alpha\beta}\Gamma_{E\alpha}^{\prime\prime P}\Gamma_{P\beta}^{\prime\prime F}\lrcorner-R_{ifkh}N^{i}B_{\alpha}^{f}B_{\beta}^{k}N^{h\alpha\beta}EEEEg)+\Delta\rho\}c

For any positive integer c we have

(3. 11) \delta(J[H_{1}^{c}])=\int_{r^{n}}cH_{1}^{c-1}(\delta H_{1})d\sigma+\int_{r^{n}}H^{c}(\delta d\sigma) .

On the other hand, applying the Green’s theorem to the closed orientable
submanifold V^{n}, we have

\int_{r^{n}}H_{1}^{c-1}(\Delta\rho)d\sigma=\int_{r^{n}}(\Delta H_{1}^{c-1})\rho d\sigma .

Consequently, by means of (3. 7) and (3. 10) we finally obtain
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\delta(J[H_{1}^{c}])=\int_{r^{n}}\rho\{

.\langle 3.12)

\frac{c}{n}(\Delta H_{1}^{c-1})+\frac{c}{n}H_{1}^{c-1}(b_{\alpha}^{\beta}b_{\beta}^{a}+g^{\alpha\beta}\Gamma_{E\alpha}^{\prime\prime P}\Gamma_{P\beta}^{\prime\prime E}EE

-R_{ifkh}N^{i}B_{\alpha}^{f}B_{\beta}^{k}N^{h}g^{\alpha\beta}- \frac{n^{2}}{c}H_{1}^{2})\}EE da.

Lemma 3. 1. Let V^{n} be a closed orimtable submanifold in R^{n+p}, then
V^{n} is stable with respect to J[H_{1}^{c}] if and only if

\frac{c}{n}(\Delta H_{1}^{c-1})=-\frac{c}{n}H_{1}^{c-1}(b_{\alpha}^{\beta}b_{\beta}^{\alpha}+g^{\alpha\beta}\Gamma_{E\alpha}^{\prime\prime P}\Gamma_{P\beta}^{\prime\prime E}EE

(3. 13)
-R_{ifkh}N^{i}B_{\alpha}^{f}B_{\beta}^{k}N^{h\alpha\beta}EEg- \frac{n^{2}}{c}H_{1}^{2}) .

(PROOF) If V^{n} is stable with respect to J[H_{1}^{c}] , then we must have \delta(J

[H_{1}^{c}])=0 for any function \rho . Therefore, from (3. 12) we have (3. 13). The
converse is evident. Q. E. D.

THEOREM 3. 2. Let V^{n} be a closed orimtable submanifold in R^{n+p} . If
(i) N^{i}E is parallel with respect to the connection in the normal bundle,

(ii) R_{ifkh}N^{i}B_{\alpha}^{f}B_{\beta}^{k}N^{h}g^{\alpha\beta}\leqq 0EE on V^{n},

thm every point of V^{n} is mubilic with respect to N^{i} .
E

(PROOF) Putting c=n in (3. 13), from (2. 12) and our hypothesis (i)
we get

(3. 14) \Delta H_{1}^{n-1}=-H_{1}^{n-1}\{n(n-1) (H_{1}^{2}-_{EEE}H_{2})-R_{ifkh}N^{i}B_{\alpha}^{f}B_{\beta}^{k}N^{h\alpha\beta}g\}

From (2. 13) and the hypothesis (ii), we find
(3. 15) n(n-1)(H_{1}^{2}-H_{2})-R_{ifkh}N^{i}B_{\alpha}^{f}B_{\beta}^{k}N^{h}g^{\alpha\beta}\geqq 0EEE

On the other hand, since H_{1}\neq 0 on V^{n}, from the continuity, H_{1} has a
fixed sign on V^{n}. Then from (3. 14) we have \Delta H_{1}^{r\iota-1}\leqq 0 on V^{n}

- Con-
sequently, applying the Hopf’s theorem we get \Delta H_{1}^{n-1}=0 and since V^{n}

is compact orientable we get H_{1}=const . (\neq 0) . Then, from (3. 14) the left
hand member of (3. 15) must vanish. This implies that H_{1}^{2}-H_{2}=0E^{\cdot}i.e. ,

every point of V^{n} is umblic with respect to N^{i} . Q. E. D.
E

In particular, when p=1, we may put N^{i}=N^{i}E ’ where N^{i} is the unit

normal vector of a hypersurface V^{n} in R^{n+1} and it is determined uniquely
at each point on V^{n} without the assumption H_{1}\neq 0 . In this case the
hypothesis (i) in Theorem 3. 2 is satisfied identically. Furthermore, by
means of (2. 5) we get

R_{ifkh} N^{i}B_{\alpha}^{f}B_{\beta}^{k}N^{h\alpha\theta}g=R_{ih} N^{i} N^{h}
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Then, when p=1, Theorem 3. 2 gives us the result of T. J. Willmore and
C. S. Jhaveri.

THEOREM 3. 3 Let R^{n+p}(K) be a constant curvature space of curvature
K and V^{n} be a closed orimtable submanifold in R^{n+p}(K). If

(i) N^{i}E is parallel with respect to the connection in the normal bundle,

(ii) V^{n} is stable with respect to J[H_{1}] ,
then H_{2}=constE^{\cdot}

(PROOF) Putting c=1 in Lemma 3. 1, by virtue of our hypothesis (i)
we get

(3. 16) \frac{1}{n}b_{\alpha}^{\beta}b_{\beta}^{\alpha}-nH_{1}^{2}-\frac{1}{n}R_{ijkh}N^{i}B_{\alpha}^{f}B_{\beta}^{k}N^{h\alpha}EEEEg’=0 .

Substituting R_{ifkh}=K(g_{ik}g_{fh}-g_{ih}g_{fk}) into (3. 16), by means of (2. 5), (2. 11)

and (2. 12) we obtain H_{2}=K/(n-1)E^{\cdot} Q. E. D.

In particular, when p=1 in Theorem 3. 3, we have

(3. 16)’ \frac{1}{n}b_{\alpha}^{\beta}b_{\beta}^{\alpha}-nH_{1}^{2}-\frac{1}{n}R_{ifkh}N^{i}B_{\alpha}^{f}B_{\beta}^{k}N^{h\alpha\beta}g=0 ,

without the assumption H_{1}\neq 0 . If R^{n+1} is an Einstein space, we have

R_{ifkh}N^{i}B_{\alpha}^{f}B_{\beta}^{k}N^{h\alpha\beta}g= \frac{R}{n+1}t

Then, from (3. 16)’ we have (n-1)H_{2}=-R/n(n+1) . Therefore, we have
COROLLARY 3. 4. Let V^{n} be a closed orientable hypersurface in an

Einstein space R^{n+1} . If V^{n} is stable with respect to J[H_{1}] , thm H_{2}=const.
In particular, when R^{n+1} in the above corollary is a constant curvature

space, we get the result of R. C. Reilly.

\S 4. The variation of the integral J[H_{1}^{c}] in the direction of a
vector field. Let \xi^{i} be a vector field in R^{n+p} and L_{\xi} be the operator of
Lie derivation with respect to the vector field \xi^{i} . Then we have (K.
Yano [8] )

(4. 1) L_{\xi}g_{if}=\xi_{i;f}+\xi_{f;i} ,

(4. 2) \xi^{i}.,J;k=L_{\xi}\Gamma_{fk}^{i}-R_{fhk}^{i}\xi^{h}

We now consider a variation of a geometrical object in R^{n+p}, defined by

(4. 3) \overline{x}^{i}=x^{i}+\xi^{i}(x^{f})\epsilon ,

where \epsilon is a parameter near \epsilon=0 . Let V^{n} be an n-dimensional closed
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orientable submanifold in R^{n+p} and the local expression of V^{n} be
(4. 4) x^{i}=x^{i}(u^{\alpha}) .
In this section we assume that the submanifold V^{n} is imbedded in a reg-
ular domain with respect to the vector field \xi^{t} . Then, substituting (4. 4)
into (4. 3) we have
(4. 5) \overline{x}^{i}(u^{\alpha}, \epsilon)=x^{i}(u^{\alpha})+\xi^{i}(x^{f}(u^{\alpha}))\epsilon ,

and by means of these n+p functions we get a family of admissible sub-
manifolds \overline{V}^{n}(\epsilon) parameterized by the real number \epsilon such that \overline{V}^{n}(0)=V^{n} .
From (4. 5) it follows that
(4. 6) \overline{B}_{\alpha}^{i}=B_{\alpha}^{i}+\xi_{\alpha}^{i},\epsilon ,

(4. 7) \delta B_{\alpha}^{i}=\xi_{\alpha}^{i}, .
Since we have
(4. 8) \xi_{j\alpha}^{i}=\xi_{\alpha}^{i},+\Gamma_{fk}^{i}\xi^{f}B_{\alpha}^{k} ,

by means of (2. 1), (4. 1) and (4. 7) we have
\delta g_{\alpha\beta}=g_{if}(\xi_{j\alpha}^{t}B_{\dot{\beta}}^{f}+B_{\alpha}^{i}\xi_{\beta}^{f},,)=(L_{\xi}g_{if})B_{\alpha}^{i}B_{\beta}^{J5)}.

From the last relation we get

(4. 9) \delta g^{\alpha\beta}=-g^{\alpha\gamma}g^{\beta\delta}(L_{\xi}g_{if})B_{\gamma}^{i}B_{\delta}^{f} ,

(4. 10) \delta d\sigma=\frac{1}{2}g^{\alpha\beta}(L_{\xi}g_{if})B_{\alpha}^{i}B_{\beta}^{f} da.

Let c be a positive integer. Then we have

(4. 11) \delta(J[H_{1}^{c},])=\int_{r^{n}}\frac{c}{2}H_{1}^{c-2}(\delta H_{1}^{2})d\sigma+\int_{V^{n}}H_{1}^{c}(\delta d\sigma) ,

for c\geqq 2 , and (4. 11) is valid for c=1 under the hypothesis that H_{1}\neq 0 on V^{n}.
By means of (2. 14) and (2. 15) it follows that

(4. 12) \delta H_{1}^{2}=\frac{\partial g_{if}}{\partial x^{k}}\xi^{k}H^{i}H^{f}+\frac{2}{n}\{(\delta B_{\alpha;\beta}^{i})g^{\alpha\beta}+B_{\alpha i\beta}^{i}(\delta g^{\alpha\beta})\}H_{i}

From (4. 6) we get

\frac{\partial}{\partial\epsilon}(\overline{B}_{\alpha,\beta}^{i})=(\frac{\partial}{\partial\epsilon}\overline{B}_{\alpha}^{i})_{\beta},=\xi_{\alpha,\beta}^{i},1

Therefore, by virtue of

5) This relation, (49) and (4. 10) have been given by Y. Katsurada [7].
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B_{\alpha;\beta}^{i}=B_{\alpha\beta}^{i}+\Gamma_{fk}^{l}B_{\alpha}^{f}B_{\beta}^{k}-\Gamma_{\alpha\beta}^{\prime\gamma}B_{\gamma}^{i} ,

we obtain

\frac{2}{n}(\delta B_{\alpha;\beta}^{i})g^{\alpha\beta}H_{i}=\frac{2}{n}(\xi_{\alpha,\beta}^{i},+\Gamma_{hk,p}^{i}\xi^{p}B_{\alpha}^{h}B_{\beta}^{k}

+\Gamma_{hk}^{i}\xi_{\alpha}^{h},B_{\beta}^{k}+\Gamma_{hk}^{i}B_{\alpha}^{h}\xi_{\beta}^{k},-\Gamma_{\alpha\beta}’\xi^{i},f)g^{\alpha\beta}H_{i(}

On the other hand, by means of (2. 14) we find that

\frac{2}{n}\Gamma_{fk}^{i}\xi^{k}B_{\alpha;\beta}^{f}g^{\alpha\beta}H_{i}=\frac{\partial g_{if}}{\partial x^{k}}\xi^{k}H^{i}H^{f}

Then by means of (4. 8) we get

\frac{2}{n}(\delta B_{\alpha;\beta}^{i})g^{\alpha\beta}H_{i}=\frac{2}{n}(\xi_{\alpha;\beta}^{i}.,+R_{hpk}^{i}\xi^{p}B_{\alpha}^{h}B_{\beta}^{k})g^{\alpha\beta}H_{i}-\frac{\partial g_{ii}}{\partial x^{k}}\xi^{k}H^{i}H^{f}

By means of (2. 14), (4. 1) and (4. 2) we have
(\xi_{\alpha;\beta}^{i}.,+R_{hpk}^{i}\xi^{p}B_{\alpha}^{h}B_{\beta}^{k})g^{\alpha\beta}H_{i}

(4. 13)
= \{(L_{\xi}\Gamma_{fk}^{i})B_{\alpha}^{f}.B_{\beta}^{k\alpha\beta}gH_{i}+\frac{n}{2}(L_{\xi}g_{if})H^{i}H^{f}\} .

Consequently, from (4. 11) and (4. 12) we have
LEMMA 4. 1. Let V^{n} be a closed orientable submanifold in R^{n+p}(p\geqq 2) .

Then, with respect to the variation in the direction of a vector fifield \xi^{i} we
have

\delta(J[H_{1}^{c}])=\int_{r^{n}}\frac{c}{n}H_{1}^{c-2}\{(L_{\xi}\Gamma_{fk}^{i})B_{\alpha}^{f}B_{\beta}^{k\alpha 9}g\cdot H_{i}+\frac{n}{2}(L_{\xi}g_{if})H^{i}H^{f}

(4. 14) -B_{\alpha;\beta}^{i\alpha\gamma\beta\delta}gg(L_{\xi}g_{fk})B_{\gamma}^{f}B_{\delta}^{k}H_{i}\} da

+ \int_{r^{n}}\frac{1}{2}H_{1}^{c}
,

g^{\alpha\beta}(L_{\xi}g_{if})B_{\alpha}^{i}B_{\beta}^{f}d\sigma

for any positive integer c(\geqq 2) and (4. 14) is valid for c=1 under the hy-
pothesis that H_{1^{\underline{\neg}}}^{p_{-}}0 on V^{n} .

When p=1, we have

H^{i}= \frac{1}{n}B_{\alpha;\beta}^{i}g^{\alpha\beta}=H_{1}N^{i}’.

where N^{i} is the unit normal vector of a hypersurface V^{n} in R^{n+1} . Then
we get for any positive integer c,

\delta(J[H_{1}^{c}])=\int_{f}\frac{c}{n}H_{1}^{c-1}\{(\delta B_{\alpha;\beta}^{i})g^{\alpha 9}\dashv\cdot B_{\alpha;\beta}^{i}(\delta g^{\alpha\beta})\}N_{i} da
(4. 15)

+ \int_{\nu^{n}}cH_{1}^{c}N^{i}(\delta N_{i})d\sigma+\int_{r^{n}}H_{1}^{c}(\delta d\sigma) .
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Since \overline{g}^{if}\overline{N}_{i}\overline{N}_{j}=1 , it follows that

N^{i} \delta N_{i}=\frac{1}{2}\frac{\partial g_{if}}{\partial x^{k}}\xi^{k}N^{i}N^{f}

On the other hand, using the same way as in the case of submanifold, we
have

(4. 16) \frac{1}{n}(\delta B_{\alpha;\beta}^{i})g^{\alpha\theta}N_{i}=\frac{1}{n}(\xi_{\alpha;\beta}^{i}.,+R_{hpk}^{i}\xi^{p}B_{\alpha}^{h}B_{\beta}^{k})g^{\alpha\beta}N_{i^{-}}\frac{1}{2}H_{1}\frac{\partial g_{if}}{\partial x^{k}}\xi^{k}N^{i}N^{f}

By means of (4. 13), (4. 15) and (4. 16) we have

Lemma 4. 2. Let V^{n} be a closed orientable hypersurface in R^{n+1} and
c be an arbitrary positive integer. Thm, with respect to the variation in
the direction of a vector fifield \xi^{i} we have

\delta(J[H_{1}^{c}])=\int_{r^{n}}\frac{c}{n}H_{1}^{c-1}\{(L_{\xi}\Gamma_{fk}^{i})B_{\alpha}^{f}B_{\beta}^{k\alpha 9}gN_{i}

(4. 17) + \frac{n}{2}H_{1}(L_{\xi}g_{if})N^{i}N^{f}-b^{\gamma\delta}(L_{\xi}g_{if})B_{\gamma}^{i}B_{\delta}^{f}\} da

+ \int_{r^{n}}\frac{1}{2}H_{1g(L_{\xi}g_{if})B_{\alpha}^{i}B_{\beta}^{f}d\sigma}^{c\alpha\beta} .

In particular, if \xi^{i} is a homothetic Killing vector field such that L_{\dot{\sigma}}

g_{if}=2\phi g_{if}, where const., then we have L_{\epsilon}. \Gamma_{jk}^{i}=0 and we get the fol-
lowing relation from (4. 14) and (4. 17) :

(4. 18) \delta(J[H_{1}^{c}])=\int_{V^{n}}(n-c)\phi H_{1}^{r}, d\sigma

Then we have
THEREM 4. 3. Let \xi^{i} be a homothetic Killing vector fifield in R^{n+p} and

V^{n} be a closed orientable svbmanifold in R^{n+p} . Then \delta J([H_{1}^{n}])=0 with
respect to the variation in the direction of the vector field \xi^{i} .

When c\neq n , by virtue of Lemma 4. 1 and Lemma 4. 2 we have
THEOREM 4. 4. Let \xi^{i} be a homothetic Killing vector fifield in R^{n+p}

and V^{n} be a closed orimtable submanifold in R^{n+p} . If
(i) c(\neq n) is an even positive integer,
(ii) \delta(J[H_{1}^{c}])=0 with respect to the variation in the direction of the

vector fifield \xi^{t},
then V^{n} is the minimal submanifold.

Furthermore, in consequence of Lemma 4. 1, we have
THEOREM 4. 5. Let \xi^{i} be a homothetic Killing vector field in R^{n+p}

(p\geqq 2) and V^{n} be a closed orimtable submanifold in R^{n+p} . If
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(i) c(\neq n, >1) is an odd positive integer,
(ii) \delta(J[H_{1}^{c}]=0 with respect to the variation in the direction of the

vector fifield \xi^{i},
then V^{n} is the minimal submanifold.

When p\geqq 2 , by virtue of Lemma 4. 1, we have (4. 18) for c=1 under
the hypothesis H_{1}\neq 0 . Therefore, Theorem 4_{-}5 is not valid for the case
c=1 . However, when p=1, by virtue of Lemma 4. 2 we get (4. 18) for
c=1 . Then we have

THEOREM 4. 6. Let \xi^{i} be a homothetic Killing vector fifield in R^{n+1}

and V^{n} be a closed orientable hypersurface in R^{n+1} . If
(i) c(\neq n) is an odd positive integer,
(ii) \delta(J[H_{1}^{c},])=0 with respect to the variation in the direction of the

vector fifield \xi^{i},
(iii) H_{1} does not change its sign on V^{n},

then V^{n} is the minimal hypersurface-
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