On some variational properties of submanifolds in Riemannian spaces

By Tamao Nagai

(Received October 9, 1975)
§ 1. Introduction. Let V^{n} be a closed orientable hypersurface in an ($n+1$)-dimensional Euclidean space E^{n+1} and $\bar{V}^{n}(\varepsilon)$ be a family of admissible hypersurfaces parameterized by the real number ε near $\varepsilon=0$ such that $\bar{V}^{n}(0)=V^{n}$. We put

$$
J\left[H_{1}^{c}\right]=\int_{V^{n}} H_{1}^{c} d \sigma,
$$

where c is an arbitrary positive integer, H_{1} is the mean curvature of V^{n} and $d \sigma$ means the volume element of V^{n}. We denote by δJ the first variation of the functional J :

$$
\delta\left(J\left[H_{1}{ }^{c}\right]\right)=\left(\frac{\partial}{\partial \varepsilon} J\left[\bar{H}_{1}^{c}(\varepsilon)\right]\right)=0,
$$

where $\bar{H}_{1}(\varepsilon)$ is the mean curvature of $\bar{V}^{n}(\varepsilon)$.
The normal variation is defined to be the variation such that the direction of the deformation at each point of V^{n} is in the direction of the normal of V^{n}. V^{n} is said to be stable with respect to $J\left[H_{1}{ }^{\circ}\right]$ if $\delta\left(J\left[H_{1}^{c}\right]\right)$ $=0$ for any normal variation. In particular, when V^{n} is stable with respect to $J\left[H_{1}^{n}\right], V^{n}$ is called the stable hypersurface. B. Y. Chen [1] ${ }^{1)}$ has proved that a closed orientable hypersurface V^{n} in E^{n+1} is stable with respect to $J\left[H_{1}{ }^{c}\right]$ if and only if H_{1} and R^{\prime} satisfy

$$
\begin{equation*}
c \Delta H_{1}^{c-1}+n^{2}(c-1) H_{1}^{c+1}+c H_{1}^{c-1} R^{\prime}=0, \tag{1.1}
\end{equation*}
$$

where Δ denotes the Laplacian with respect to the induced metric on V^{n} and R^{\prime} is the scalar curvature of V^{n}. When $c=1$, we obtain from (1.1), $R^{\prime}=0$ and this result was given by M. Pinl and H. W. Trapp [2]. If we denote by H_{2} the second mean curvature of V^{n}, from the Gauss equation we get

$$
\begin{equation*}
R^{\prime}=-n(n-1) H_{2} . \tag{1.2}
\end{equation*}
$$

Therofore we can see that if a closed orientable hypersurface V^{n} in E^{n+1} is stable with respect to $J\left[H_{1}\right]$, then $H_{2}=0$.

[^0]Putting $c=n$ in (1.1), by virtue of (1.2) we have

$$
\begin{equation*}
\Delta H_{1}^{n-1}=-H_{1}^{n-1}\left\{n(n-1)\left(H_{1}^{2}-H_{2}\right)\right\} \tag{1.3}
\end{equation*}
$$

By means of (1.3), B. Y. Chen proved that a stable hypersurface V^{n} in E^{n+1} is a hypersphere for $n=2 m+1$ and when $n=2 m$ we have the same result under the hypothesis that H_{1} does not change its sign.

When V^{n} is a closed orientable hypersurface in an ($n+1$)-dimensional space form $R^{n+1}(K)$ of curvature K, the first variation of the integral of arbitrary functions with respect to $H_{\nu}(\nu=0,1, \cdots, n)$ has been studied by R. C. Reilly [3], where $H_{\nu}(\nu=1, \cdots, n)$ denotes the ν-th mean curvature of V^{n} and specially we put $H_{0}=1$. He showed that if $\delta\left(J\left[H_{\nu}\right]\right)=0$, then we have

$$
(\nu+1)\binom{n}{\nu+1} H_{\nu+1}+K(n-\nu+1)\binom{n}{\nu-1} H_{\nu-1}=0 .
$$

If we put $\nu=1$ in the last equation, we get $K=-(n-1) H_{2}$. Thus, we can see that if V^{n} in $R^{n+1}(K)$ is stable with respect to $J\left[H_{1}\right]$, then $H_{2}=$ const. Particularly, if $R^{n+1}(K)$ is an Euclidean space E^{n+1}, we have $H_{2}=0$ and this is the result of M. Pinl and H. W. Trapp.

Recently, the variational properties for the normal variation of a closed orientable hypersurface V^{n} in a general Riemannian space R^{n+1} have been investigated by T. J. Willmore and C. S. Jhaveri [4]. It was proved that V^{n} is the stable hypersurface if and only if H_{1} satisfies

$$
\begin{equation*}
\Delta H_{1}^{n-1}=-H_{1}^{n-1}\left\{n(n-1)\left(H_{1}^{2}-H_{2}\right)-R_{i j} N^{i} N^{j}\right\} \tag{1.4}
\end{equation*}
$$

where $R_{i j}$ and N^{i} denotes the Ricci tensor of R^{n+1} and the unit normal vector of V^{n} respectively. From (1.4) we find that if V^{n} is a stable hypersurface in R^{n+1} and $R_{i j} N^{i} N^{j} \leqq 0$ on V^{n}, then V^{n} is the minimal or the umbilical hypersurface for $n=2 m+1$ and when $n=2 m$, we have the same result under the hypothesis that H_{1} does not change its sign. Since there exist no closed minimal hypersurface in an Euclidean space (S. B. Myers [5]), when R^{n+1} is E^{n+1}, we get from (1.4) the result of B. Y. Chen.

The purpose of the present paper is to investigate the variational properties of a closed orientable submanifold V^{n} of an arbitrary codimension p in a Riemannian space R^{n+p} and give certain generalizations of the above stated results. The terminologies, notations and the basic relations for submanifolds in a Riemannian space are provided in $\S 2$. When the mean curvature H_{1} of V^{n} does not vanish on V^{n}, the unit normal vector N_{E}^{i}, which has the same direction with the mean curvature vector, is deter-
mined uniquely at each point on V^{n} (Y. Katsurada, T. Nagai and H. Kôjyô [6]). When $p=1$, the vector N_{F}^{i} is the unit normal vector N^{i} of a closed orientable hypersurface V^{n} in R^{n+1}. Then, in the present paper the variation in the direction N_{E}^{i} is called the normal variation. A submanifold V^{n} is said to be stable with respect to $J\left[H_{1}{ }^{c}\right]$ if $\delta\left(J\left[H_{1}^{c}\right]\right)=0$ for any normal variation and when V^{n} is stable with respect to $J\left[H_{1}^{n}\right]$, we call it the stable submanifold. In §3 we find the condition for $\delta\left(J\left[H_{1}{ }^{c}\right]\right)=0$ with respect to the normal variation and making use of the condition of the case $c=n$ and $c=1$, we study the properties of the stable submanifold and the submanifold which is stable with respect to $J\left[H_{1}\right]$.

The idea of the variation in the direction of a vector field has been introduced by Y. Katsurada [7]. According to this idea, in §4 we study some variational problems with respect to the variation in the direction ξ^{i}, where ξ^{i} is a vector field in R^{n+p}. The condition for $\delta\left(J\left[H_{1}^{c}\right]\right)=0$ with respect to the variation in the direction ξ^{i} is given in $\S 4$. In particular, when ξ^{i} is the homothetic Killing vector field, we give the properties of V^{n} which is stable with respect to $J\left[H_{1}^{c}\right]$ for the variation in the direction ξ^{i}.

The author wishes to express his sincere thanks to Professor Yoshie Katsurada for her kindly guidance and criticism.
§2. The fundamental equations for submanifolds. Let $R^{n+p}(n \geqq$ $2, p \geqq 1)$ be an ($n+p$)-dimensional Riemannian space of class $C^{r}(r \geqq 3)$ and $\left(x^{1}, x^{2}, \cdots, x^{n+p}\right)$ be a local coordinate system of R^{n+p}. Let V^{n} be an n-dimensional closed orientable submanifold in R^{n+p}, then V^{n} is expressed locally by the equation

$$
x^{i}=x^{i}\left(u^{\alpha}\right), \quad(i=1,2, \cdots, n+p ; \alpha=1,2, \cdots, n)^{2)}
$$

where ($u^{1}, u^{2}, \cdots, u^{n}$) is a local coordinate system of V^{n} and the Jacobian matrix $\left(\partial x^{i} / \partial u^{\alpha}\right)$ is of rank n. If we denote by $g_{i j}$ the metric tensor of R^{n+p} and put $B_{\alpha}^{i}=\partial x^{i} / \partial u^{\alpha}$, then the induced metric tensor $g_{\alpha,}$ of V^{n} is given by

$$
\begin{equation*}
g_{\alpha \beta}=g_{i j} B_{\alpha}^{i} B_{\beta}^{j},{ }^{3)} \tag{2.1}
\end{equation*}
$$

2) In this paper the Latin indices i, j, k, \cdots run from 1 to $n+p$ and the Greek indices $\alpha, \beta, \gamma, \cdots$ run from 1 to n.
3) Throughout this paper we shall use the Einstein convention, that is when the same index appears in any term as an upper index and a lower index, it is understood that this letter is summed for all the values over its range.
and the volume element $d \sigma$ of V^{n} is given by

$$
\begin{equation*}
d \sigma=\sqrt{g} d u^{1} \wedge \cdots \wedge d u^{n}, \tag{2.2}
\end{equation*}
$$

where $g=$ det. $\left(g_{\alpha \beta}\right)$.
Let ${\underset{P}{N}}^{i}(P=n+1, n+2, \cdots, n+p)^{4}$ be the contravariant components of p unit vectors which are normal to V^{n} and mutually orthogonal and the set of $n+p$ vectors

$$
\begin{equation*}
\left(B_{1}^{i}, B_{2}^{j}, \cdots, B_{n}^{i}, N_{n+1}^{i}, N_{n+2}^{i}, \cdots,{ }_{n+p}^{i}\right) \tag{2.3}
\end{equation*}
$$

be a positively oriented frame at each point on V^{n}. Putting

$$
\begin{equation*}
B_{i}^{\alpha}=g^{\alpha \beta} g_{i j} B_{\beta}^{j}, \quad N_{P}=g_{i j} N_{P}^{j}, \tag{2.4}
\end{equation*}
$$

we have

$$
\begin{align*}
& g^{i j}=g^{\alpha \beta} B_{\alpha}^{i} B_{\beta}^{j}+\sum_{P=n+1}^{n+p} N_{P}^{i} N_{P}^{j}, \\
& g_{i j}=g_{\alpha \beta} B_{i}^{\alpha} B_{j}^{3}+\sum_{P=n+1}^{n+p} N_{P} N_{P}, \tag{2.5}
\end{align*}
$$

and we can see that the set of $n+p$ vectors

$$
\left(B_{i}^{1}, B_{i}^{2}, \cdots, B_{i}^{n}, N_{n+1}, N_{n+2}, \cdots, N_{n+p}\right)
$$

gives the dual frame of the frame (2.3), where $g^{i j}$ and $g^{a \beta}$ are defined by the equation $g^{i s} g_{j k}=\delta_{k}^{t}$ and $g^{\alpha \beta} g_{f \tau}=\delta_{r}^{\alpha}$ respectively and δ_{k}^{i} and δ_{τ}^{α} denote the Kronecker delta.

In the present paper we shall denote by "," and ";" the partial differentiation and the covariant differentiation along V^{n} due to van der Waerden-Bortolotti respectively. Denoting by $b_{p, \beta}$ the second fundamental tensor with respect to ${\underset{P}{N}}^{i}$ and putting ${\underset{P}{P}}_{b_{\alpha}}^{r}=g_{P}^{f \tau} b_{\alpha \xi}$ we get the following fundamental formulas:

$$
\begin{align*}
& B_{\alpha ; \beta}^{i}={ }_{P=n+1}^{n+p} b_{\alpha \beta}^{n \beta} N_{P}^{i}, \quad \text { (Gauss formula) } \tag{2.6}\\
& N_{P}^{i} ; \alpha=-b_{P}^{i} b_{r}^{i}+\Gamma_{P \alpha}^{\prime \prime \prime} N_{Q}^{i}, \quad \text { (Weingarten formula) } \tag{2.7}
\end{align*}
$$

where

$$
\begin{equation*}
\Gamma^{\prime \prime \prime}{ }_{F a}=\left(\underset{P}{N^{i}, j}+\Gamma_{n j}^{i} \underset{P}{N_{i}^{n}}\right) B_{\alpha}^{j} \underset{Q}{N_{i}}, \tag{2.8}
\end{equation*}
$$

and $\Gamma_{n j}^{i}$ are the Christoffel symbols defined by $g_{i j}$. Since ${\underset{P}{N}}_{N_{Q}}^{N_{i}=\delta_{P Q} \text {, from }}$ (2.8) we have

[^1]$$
\Gamma_{P \alpha}^{\prime \prime}+\Gamma_{Q \alpha}^{\prime \prime P}=0
$$
and if $p=1$, i.e., when V^{n} is a hypersurface in R^{n+1}, then $\Gamma_{P \alpha}^{\prime \prime Q}$ vanishes identically. Putting
\[

$$
\begin{aligned}
& R_{j k h}^{i}=\Gamma_{j h, k}^{i}-\Gamma_{j k, h}^{i}+\Gamma_{j h}^{l} \Gamma_{l k}^{i}-\Gamma_{j k}^{l} \Gamma_{l h}^{i},
\end{aligned}
$$
\]

where $\Gamma_{k \gamma}^{\prime \alpha}$ are the Christoffel symbols defined by $g_{\alpha \beta}$, then from the integrability conditions of the Gauss and Weingarten formula we have the following Gauss and Mainardi-Codazzi equations :

$$
\begin{align*}
& R_{i h j k} B_{\delta}^{i} B_{\alpha}^{n} B_{\beta}^{j} B_{r}^{k}=R^{\prime}{ }_{i \alpha f \gamma}-\sum_{P=n+1}^{n+p}\left(b_{p \beta} b_{P} b_{p r}-b_{p r} b_{P} b_{\alpha}\right), \tag{2.9}\\
& R_{i h j k} N_{P}^{i} B_{\alpha}^{h} B_{\beta}^{j} B_{\gamma}^{k}=\underset{P}{b_{\alpha \tau ; \beta}}-\underset{P}{b_{\alpha \beta ; \gamma}}+b_{\alpha \gamma} \Gamma_{P}^{\prime \prime Q}-b_{\alpha \beta} \Gamma_{P T}^{\prime \prime}{ }_{P T} . \tag{2.10}
\end{align*}
$$

We shall denote by ${\underset{P}{P}}_{H_{\nu}}$ the ν-th mean curvature of V^{n} with respect to $\underset{P}{N^{i}}$. Then we have

$$
\begin{align*}
& \underset{P}{H_{1}}=\frac{1}{n} \sum_{\alpha=1}^{n} \kappa_{P}=\frac{1}{n} b_{P}^{\alpha}, \tag{2.11}\\
& \underset{P}{H_{2}}=\frac{2}{n(n-1)} \sum_{\alpha<\beta} \kappa_{P} \kappa_{P} \kappa_{\beta}=\frac{1}{n(n-1)}\left(b_{P}^{r} b_{P}^{\gamma}-b_{P}^{\delta}-b_{P}^{\tau} b_{T}^{\delta}\right), \tag{2.12}
\end{align*}
$$

where ${\underset{P}{\alpha}}_{\kappa_{a}}$ means the principal curvature of V^{n} for the normal vector $N_{P}{ }^{i}$. By means of (2.11) and (2.12) we get

$$
\begin{equation*}
\underset{P}{H_{1}{ }^{2}-\underset{P}{H_{2}}=\frac{1}{n^{2}(n-1)} \sum_{\alpha<\beta}\left(\kappa_{P}-\kappa_{P}\right)^{2} ~ . ~} \tag{2.13}
\end{equation*}
$$

Let H^{i} be the contravariant component of the mean curvature vector of V^{n}, then from (2.6) and (2.11) we have

$$
\begin{equation*}
H^{i}=\frac{1}{n} B_{\alpha ; \beta}^{i} g^{\alpha \beta}=\frac{1}{n} \sum_{P=n+1}^{n+p} b_{P}^{\alpha}{\underset{P}{x}}_{N^{i}}=\sum_{P=n+1}^{n+p}{\underset{P}{P}}^{H_{P}} N_{P}^{i}, \tag{2.14}
\end{equation*}
$$

and the mean curvature H_{1} of V^{n} is given by

$$
\begin{equation*}
H_{1}=\left(g_{i j} H^{i} H^{j}\right)^{1 / 2} \tag{2.15}
\end{equation*}
$$

When the mean curvature H_{1} does not vanish on V^{n}, we have the unit normal vector ${\underset{E}{N}}_{N^{i}}$ at each point of V^{n}. In this case we get $H^{i}=H_{1} N_{E}^{i}$ and if we take a set of p mutually orthogonal unit normal vectors ${\underset{P}{P}}_{N^{i}}(P=$ $n+1, n+2, \cdots, n+p)$ in such a way that $\underset{n+1}{N_{i}^{i}=N_{E}}$, then from (2.14) and
(2.15) it follows that

$$
\begin{equation*}
H_{1}=H_{E}^{H_{1}}=\frac{1}{n} b_{E}^{\alpha}, \quad \underset{P}{H_{1}}=0 \quad(P=n+2, \cdots, n+p) . \tag{2.16}
\end{equation*}
$$

Let C^{i} be any normal vector of V^{n} and $\left(C^{i} ;\right)^{N}$ be the normal part of $C^{i}{ }_{; \alpha \cdot}$. When $\left(C_{; \alpha}^{i}\right)^{N}=0$, the vector C^{i} is said to be parallel with respect to the connection in the normal bundle. From (2.7), we can see that the vector ${\underset{E}{i}}_{N^{i}}$ is parallel with respect to the connection in the normal bundle if and only if $\Gamma_{F \alpha}^{\prime \prime P}=0(P=n+2, \cdots, n+p, \alpha=1, \cdots, n)$.
§3. The normal variation of the integral $\boldsymbol{J}\left[\boldsymbol{H}_{1}^{c}\right]$. Let V^{n} be an n-dimensional closed orientable submanifold in an $(n+p)$-dimensional Riemannian space R^{n+p}. In this section we assume that the mean curvature H_{1} of V^{n} does not vanish at each point of V^{n}. Let

$$
\begin{equation*}
\bar{x}^{i}\left(u^{\alpha}, \varepsilon\right)=x^{i}\left(u^{\alpha}\right)+\rho\left(u^{\alpha}\right) \underset{E}{N^{i}}\left(u^{\alpha}\right) \varepsilon, \tag{3.1}
\end{equation*}
$$

be a normal variation of V^{n} associated with a function ρ on V^{n}, where ε is a parameter in a small interval containing 0 . Then we have a family of admissible submanifolds $\bar{V}^{n}(\varepsilon)$ such that $\bar{V}^{n}(0)=V^{n}$. When $\bar{\Omega}(\varepsilon)$ be a geometric object on $\bar{V}^{n}(\varepsilon)$ such that $\bar{\Omega}(0)=\Omega$, we put

$$
\delta \Omega=\left(\frac{\partial}{\partial \varepsilon} \bar{\Omega}(\varepsilon)\right)_{t=0}
$$

From (3.1) it follows that

$$
\begin{equation*}
\bar{B}_{\alpha}^{i}=B_{\alpha}^{i}+\left(\rho_{E}^{N^{i}}\right)_{, \alpha} \varepsilon . \tag{3.2}
\end{equation*}
$$

Since we have

$$
\begin{equation*}
\underset{E}{N^{i} ;}{ }_{; \alpha}=\underset{E}{N^{i},{ }_{\alpha}}+\Gamma_{j k}^{i} \underset{E}{N_{j}^{j}} B_{\alpha}^{k}, \tag{3.3}
\end{equation*}
$$

by means of (2.7) and (3.2) we get

$$
\begin{equation*}
\delta B_{\alpha}^{i}=\rho_{; \alpha} \underset{E}{N^{i}}-\rho\left(\underset{E}{b_{\alpha}^{r}} B_{r}^{i}+\Gamma_{j k}^{i}{\underset{E}{j}}_{N^{j}}^{B_{\alpha}^{k}}-\Gamma_{E \alpha}^{\prime \prime P} \underset{P}{N_{i}}\right) . \tag{3.4}
\end{equation*}
$$

By means of (2.1) and (3.4) we get

$$
\begin{equation*}
\delta g_{\alpha \beta}=-2 \rho{\underset{E}{b \beta}}_{b_{\alpha \beta}} \tag{3.5}
\end{equation*}
$$

Sinec $\bar{g}^{\alpha \beta}(\varepsilon) \bar{g}_{\xi \gamma}(\varepsilon)=\delta_{\gamma}^{\alpha}$, from (3.5) we have

$$
\begin{equation*}
\delta g^{\alpha \beta}=2 \rho g^{\alpha \gamma} g^{\beta \delta} \underset{E}{b_{\gamma \delta}} \tag{3.6}
\end{equation*}
$$

Furthermore, from the relation $\delta \sqrt{g}=\frac{1}{2} \sqrt{g} g^{\alpha \beta} \delta g_{\alpha, s}$ and (3.5) we get

$$
\begin{equation*}
\delta d \sigma=-\rho b_{\alpha}^{\alpha} d \sigma=-n \rho H_{1} d \sigma . \tag{3.7}
\end{equation*}
$$

From (2.16) it follows that

$$
\delta H_{1}=\frac{1}{n}\left\{\left(\delta g^{\alpha \beta}\right) b_{a \beta}+g^{\alpha \beta} \delta b_{a \beta}\right\} .
$$

From the definition of the covariant differentiation along V^{n}, we have

$$
B_{\alpha ; \beta}^{i}=B_{\alpha, \beta}^{i}+\Gamma_{j k}^{i} B_{\alpha}^{j} B_{\beta}^{k}-\Gamma_{\alpha \beta}^{\prime \prime} B_{r}^{i},
$$

and from (3.2) we can see that

$$
\frac{\partial}{\partial \varepsilon}\left(\bar{B}_{\alpha, \beta}^{i}\right)=\left(\frac{\partial}{\partial \varepsilon} \bar{B}_{\alpha}^{i}\right)_{, \beta}=\left(\rho N_{F}^{i}\right)_{, \alpha, \beta}
$$

Then, by means of ${\underset{E}{\alpha \beta}}_{b_{\alpha \beta}}=B_{\alpha ; \beta}^{i} N_{i}$ we get

$$
\begin{align*}
& g^{\alpha \beta} \underset{E}{\delta b_{\alpha \beta}}=g^{\alpha \beta}\left\{\left(\rho N_{E}^{i}\right)_{, \alpha, \beta}+\rho \Gamma_{j k, k}^{i}{ }_{E}^{N_{k}^{n}} B_{\alpha}^{j} B_{\beta}^{k}+\Gamma_{j k}^{i}\left(\rho N_{E}^{j}\right)_{, \alpha} B_{\beta}^{k}\right. \tag{3.8}
\end{align*}
$$

Since $\bar{g}^{i j} \underset{N_{i}}{\underset{N}{i}} \underset{\mathcal{N}_{j}}{\overline{j_{j}}}=1$, it follows that

$$
\begin{equation*}
{\underset{F}{N}}_{N_{E}^{i}}^{i} N_{i}=\rho \Gamma_{j k}^{i} \underset{F}{N_{i}} \underset{F}{N_{j}^{j}} \underset{F}{N^{k}} . \tag{3.9}
\end{equation*}
$$

Making use of (3.3) and (3.9), from (3.8) we get

$$
g^{\alpha \beta}{\underset{E}{\alpha \beta}}^{b_{\alpha}}=g^{\alpha \beta}\left\{\left(\rho_{E}^{N^{i}}\right)_{; \alpha ; \beta} N_{E}-R_{i j k h} N_{E}^{i} B_{\alpha}^{j} B_{\beta}^{k} N_{E}^{n}\right\} .
$$

By virtue of (2.6) and (2.7) we find that

$$
g^{\alpha \beta}\left(\rho_{E}^{i}\right)_{; ; ; \beta} \frac{N_{i}}{i}=\Delta \rho-\rho\left(b_{B}^{\beta} b_{B}^{\alpha}-g^{\alpha \beta} \Gamma^{\prime \prime} \Gamma_{E \alpha}^{P} \Gamma^{\prime \prime \prime}{ }_{P \beta}^{\beta}\right) .
$$

Then we have

For any positive integer c we have

$$
\begin{equation*}
\delta\left(J\left[H_{1}^{c}\right]\right)=\int_{V^{n}} c H_{1}^{c-1}\left(\delta H_{1}\right) d \sigma+\int_{V^{n}} H^{c}(\delta d \sigma) . \tag{3.11}
\end{equation*}
$$

On the other hand, applying the Green's theorem to the closed orientable submanifold V^{n}, we have

$$
\int_{V^{n}} H_{1}^{c-1}(\Delta \rho) d \sigma=\int_{V^{n}}\left(\Delta H_{1}^{c-1}\right) \rho d \sigma .
$$

Consequently, by means of (3.7) and (3.10) we finally obtain

$$
\begin{align*}
& \delta\left(J\left[H_{1}^{c}\right]\right)=\int_{V^{n}} \rho\left\{\frac{c}{n}\left(\Delta H_{1}^{c-1}\right)+\frac{c}{n} H_{1}^{c-1} \underset{E}{\left(b_{\alpha}^{\beta}\right.} b_{B}^{\alpha}+g^{\alpha \beta} \Gamma_{E \alpha}^{\prime \prime P} \Gamma_{P \beta}^{\prime \prime E}\right. \tag{3.12}\\
&\left.\left.-R_{i j k h}{\underset{E}{i}}_{N_{\alpha}^{i}}^{B_{\alpha}^{j}} B_{\beta}^{k} \underset{E}{N^{h}} g^{\alpha \beta}-\frac{n^{2}}{c} H_{1}^{2}\right)\right\} d \sigma .
\end{align*}
$$

Lemma 3.1. Let V^{n} be a closed orientable submanifold in R^{n+p}, then V^{n} is stable with respect to $J\left[H_{1}{ }^{c}\right]$ if and only if

$$
\begin{align*}
& \frac{c}{n}\left(\Delta H_{1}^{c-1}\right)=-\frac{c}{n} H_{1}^{c-1}\left(b_{a}^{\beta} b_{B}^{\alpha}+g^{\alpha \beta} \Gamma^{\prime \prime P}{ }_{E \alpha} \Gamma^{\prime \prime \prime}{ }_{P \beta}\right. \tag{3.13}\\
&\left.\quad-R_{i j k h} N_{E}^{i} B_{\alpha}^{j} B_{\beta}^{k} N_{E}^{n} g^{\alpha \beta}-\frac{n^{2}}{c} H_{1}^{2}\right) .
\end{align*}
$$

(Proof) If V^{n} is stable with respect to $J\left[H_{1}{ }^{c}\right]$, then we must have $\delta(J$ $\left.\left[H_{1}^{c}\right]\right)=0$ for any function ρ. Therefore, from (3.12) we have (3.13). The converse is evident.
Q.E.D.

Theorem 3.2. Let V^{n} be a closed orientable submanifold in R^{n+p}. If
(i) N^{i} is parallel with respect to the connection in the normal bundle,
(ii) $R_{i j k k} N_{E}^{i} B_{\alpha}^{j} B_{\beta}^{k} N_{F}^{n} g^{\alpha \beta} \leqq 0$ on V^{n}, then every point of V^{n} is mubilic with respect to N^{i}.
(Proof) Putting $c=n$ in (3.13), from (2.12) and our hypothesis (i) we get

$$
\begin{equation*}
\Delta H_{1}^{n-1}=-H_{1}^{n-1}\left\{n(n-1)\left(H_{1}^{2}-\underset{E}{H_{2}}\right)-R_{i j k n} N_{E}^{i} B_{\alpha}^{j} B_{\beta}^{k}{\underset{E}{n}}_{N^{n}} g^{\alpha \beta}\right\} . \tag{3.14}
\end{equation*}
$$

From (2.13) and the hypothesis (ii), we find

$$
\begin{equation*}
n(n-1)\left(H_{1}^{2}-\underset{F}{H_{2}}\right)-R_{i j k t}{\underset{F}{i}}_{N^{i}} B_{\alpha}^{j} B_{\beta}^{k} N_{E}^{n} g^{\alpha \beta} \geqq 0 . \tag{3.15}
\end{equation*}
$$

On the other hand, since $H_{1} \neq 0$ on V^{n}, from the continuity, H_{1} has a fixed sign on V^{n}. Then from (3.14) we have $\Delta H_{1}^{n-1} \leqq 0$ on V^{n}. Consequently, applying the Hopf's theorem we get $\Delta H_{1}^{n-1}=0$ and since V^{n} is compact orientable we get $H_{1}=$ const. $(\neq 0)$. Then, from (3.14) the left hand member of (3.15) must vanish. This implies that $H_{1}{ }^{2}-\underset{E}{H_{2}}=0$. i.e., every point of V^{n} is umblic with respect to N_{E}^{i}.
Q. E. D.

In particular, when $p=1$, we may put $N_{F}^{i}=N^{i}$, where N^{i} is the unit normal vector of a hypersurface V^{n} in R^{n+1} and it is determined uniquely at each point on V^{n} without the assumption $H_{1} \neq 0$. In this case the hypothesis (i) in Theorem 3.2 is satisfied identically. Furthermore, by means of (2.5) we get

$$
R_{i j k h} N^{i} B_{a}^{j} B_{\beta}^{k} N^{h} g^{\alpha \beta}=R_{i h} N^{i} N^{h} .
$$

Then, when $p=1$, Theorem 3.2 gives us the result of T. J. Willmore and C. S. Jhaveri.

Theorem 3.3 Let $R^{n+p}(K)$ be a constant curvature space of curvature K and V^{n} be a closed orientable submanifold in $R^{n+p}(K)$. If
(i) N^{i} is parallel with respect to the connection in the normal bundle,
(ii) V^{n} is stable with respect to $J\left[H_{1}\right]$,
then $\mathrm{H}_{\mathrm{E}}=$ const.
(Proof) Putting $c=1$ in Lemma 3.1, by virtue of our hypothesis (i) we get

$$
\begin{equation*}
\frac{1}{n} b_{E}^{\beta} b_{E}^{\alpha}-n H_{1}^{2}-\frac{1}{n} R_{i j k h} N_{E}^{N_{a}^{i}} B_{\alpha}^{j} B_{\beta}^{k}{\underset{E}{n}}_{N^{n}} g^{\alpha\}}=0 . \tag{3.16}
\end{equation*}
$$

Substituting $R_{i j k h}=K\left(g_{i k} g_{j h}-g_{i n} g_{j k}\right)$ into (3.16), by means of (2.5), (2.11) and (2.12) we obtain ${\underset{E}{E}}_{\mathrm{H}_{2}}=K /(n-1)$.
Q.E.D.

In particular, when $p=1$ in Theorem 3.3, we have

$$
\begin{equation*}
\frac{1}{n} b_{\alpha}^{\beta} b_{\beta}^{\alpha}-n H_{1}^{2}-\frac{1}{n} R_{i j k h} N^{i} B_{\alpha}^{j} B_{\beta}^{k} N^{h} g^{\alpha \beta}=0, \tag{3.16}
\end{equation*}
$$

without the assumption $H_{1} \neq 0$. If R^{n+1} is an Einstein space, we have

$$
R_{i j k l} N^{i} B_{a}^{j} B_{\beta}^{k} N^{n} g^{\alpha \beta}=\frac{R}{n+1} .
$$

Then, from (3.16)' we have $(n-1) H_{2}=-R / n(n+1)$. Therefore, we have
Corollary 3.4. Let V^{n} be a closed orientable hypersurface in an Einstein space R^{n+1}. If V^{n} is stable with respect to $J\left[H_{1}\right]$, then $H_{2}=$ const.

In particular, when R^{n+1} in the above corollary is a constant curvature space, we get the result of R. C. Reilly.
§4. The variation of the integral $J\left[H_{1}{ }^{c}\right]$ in the direction of a vector field. Let ξ^{i} be a vector field in R^{n+p} and L_{ξ} be the operator of Lie derivation with respect to the vector field ξ^{i}. Then we have (K . Yano [8])

$$
\begin{align*}
& L_{\xi} g_{i j}=\xi_{i ; j}+\xi_{j ; i}, \tag{4.1}\\
& \xi_{; j ; k}^{i}=L_{\xi} \Gamma_{j k}^{i}-R_{j h k}^{i} \xi^{h} . \tag{4.2}
\end{align*}
$$

We now consider a variation of a geometrical object in R^{n+p}, defined by

$$
\begin{equation*}
\bar{x}^{i}=x^{i}+\xi^{i}\left(x^{j}\right) \varepsilon, \tag{4.3}
\end{equation*}
$$

where ε is a parameter near $\varepsilon=0$. Let V^{n} be an n-dimensional closed
orientable submanifold in R^{n+p} and the local expression of V^{n} be

$$
\begin{equation*}
x^{i}=x^{i}\left(u^{\alpha}\right) . \tag{4.4}
\end{equation*}
$$

In this section we assume that the submanifold V^{n} is imbedded in a regular domain with respect to the vector field ξ^{i}. Then, substituting (4.4) into (4.3) we have

$$
\begin{equation*}
\bar{x}^{i}\left(u^{\alpha}, \varepsilon\right)=x^{i}\left(u^{\alpha}\right)+\xi^{i}\left(x^{j}\left(u^{\alpha}\right)\right) \varepsilon, \tag{4.5}
\end{equation*}
$$

and by means of these $n+p$ functions we get a family of admissible submanifolds $\bar{V}^{n}(\varepsilon)$ parameterized by the real number ε such that $\bar{V}^{n}(0)=V^{n}$. From (4.5) it follows that

$$
\begin{equation*}
\bar{B}_{\alpha}^{i}=B_{\alpha}^{i}+\xi_{, \alpha}^{i} \varepsilon, \tag{4.6}
\end{equation*}
$$

$$
\begin{equation*}
\delta B_{\alpha}^{i}=\xi_{, \alpha}^{i} . \tag{4.7}
\end{equation*}
$$

Since we have

$$
\begin{equation*}
\xi_{; \alpha}^{i}=\xi^{i}, \alpha+\Gamma_{j k}^{i} \xi^{j} B_{\alpha}^{k}, \tag{4.8}
\end{equation*}
$$

by means of (2.1), (4.1) and (4.7) we have

$$
\left.\delta g_{\alpha \beta}=g_{i j}\left(\xi_{\xi ; \alpha}^{i} B_{\beta}^{j}+B_{\alpha}^{i} \xi_{; \beta}^{j}\right)=\left(L_{\xi} g_{i j}\right) B_{\alpha}^{i} B_{\beta}^{j} .{ }^{5}\right)
$$

From the last relation we get

$$
\begin{align*}
& \delta g^{\alpha \beta}=-g^{\alpha \gamma} g^{\beta_{j}}\left(L_{\xi} g_{i j}\right) B_{r}^{i} B_{\delta}^{j}, \tag{4.9}\\
& \delta d \sigma=\frac{1}{2} g^{\alpha \beta}\left(L_{\xi} g_{i j}\right) B_{\alpha}^{i} B_{\beta}^{j} d \sigma . \tag{4.10}
\end{align*}
$$

Let c be a positive integer. Then we have

$$
\begin{equation*}
\delta\left(J\left[H_{1}^{c}\right]\right)=\int_{V^{n}} \frac{c}{2} H_{1}^{c-2}\left(\delta H_{1}^{2}\right) d \sigma+\int_{V^{n}} H_{1}^{c}(\delta d \sigma), \tag{4.11}
\end{equation*}
$$

for $c \geqq 2$, and (4.11) is valid for $c=1$ under the hypothesis that $H_{1} \neq 0$ on V^{n}.
By means of (2.14) and (2.15) it follows that

$$
\begin{equation*}
\delta H_{1}^{2}=\frac{\partial g_{i j}}{\partial x^{k}} \xi^{k} H^{i} H^{j}+\frac{2}{n}\left\{\left(\delta B_{\alpha ; \beta}^{i}\right) g^{\alpha \beta}+B_{\alpha ; \beta}^{i}\left(\delta g^{\alpha \beta}\right)\right\} H_{i} \tag{4.12}
\end{equation*}
$$

From (4.6) we get

$$
\frac{\partial}{\partial \varepsilon}\left(\bar{B}_{\alpha, \beta}^{i}\right)=\left(\frac{\partial}{\partial \varepsilon} \bar{B}_{\alpha}^{i}\right)_{, \beta}=\xi_{, \alpha, \beta}^{i} .
$$

Therefore, by virtue of

[^2]$$
B_{\alpha ; \beta}^{i}=B_{\alpha, \beta}^{i}+\Gamma_{j k}^{i} B_{\alpha}^{j} B_{\beta}^{k}-\Gamma_{\alpha \beta}^{\prime{ }_{\alpha}^{r}} B_{r}^{i},
$$
we obtain
\[

$$
\begin{aligned}
\frac{2}{n}\left(\delta B_{\alpha ; \beta}^{i}\right) g^{\alpha \beta} H_{i} & =\frac{2}{n}\left(\xi_{\alpha, \beta}^{i}+\Gamma_{n k, p}^{i} \xi^{p} B_{\alpha}^{n} B_{\beta}^{k}\right. \\
& \left.+\Gamma_{n k}^{i} \xi^{h}{ }_{, \alpha} B_{\beta}^{k}+\Gamma_{n k}^{i} B_{\alpha}^{d} \xi^{k}{ }_{, \beta}-\Gamma_{\alpha \beta}^{\prime \prime} \xi^{i}{ }_{, r}^{i}\right) g^{\alpha \beta} H_{i}
\end{aligned}
$$
\]

On the other hand, by means of (2.14) we find that

$$
\frac{2}{n} \Gamma_{j k}^{i} \xi^{k} B_{\alpha ; \beta}^{j} g^{\alpha \beta} H_{i}=\frac{\partial g_{i j}}{\partial x^{k}} \xi^{k} H^{i} H^{j}
$$

Then by means of (4.8) we get

$$
\frac{2}{n}\left(\delta B_{\alpha ; \beta}^{i}\right) g^{\alpha \beta} H_{i}=\frac{2}{n}\left(\xi_{; \alpha ; \beta}^{i}+R_{h p k}^{i} \xi^{p} B_{\alpha}^{h} B_{\beta}^{k}\right) g^{\alpha \beta} H_{i}-\frac{\partial g_{i j}}{\partial x^{k}} \xi^{k} H^{i} H^{j} .
$$

By means of (2.14), (4.1) and (4.2) we have

$$
\begin{align*}
& \left(\xi_{; \alpha ; \beta}^{i}+R_{h p k}^{i} \xi^{p} B_{\alpha}^{a} B_{\beta}^{k}\right) g^{\alpha \beta} H_{i} \\
& \quad=\left\{\left(L_{\xi} \Gamma_{j k}^{i}\right) B_{\alpha}^{j} B_{\beta}^{k} g^{\alpha \beta} H_{i}+\frac{n}{2}\left(L_{\xi} g_{i j}\right) H^{i} H^{j}\right\} \tag{4.13}
\end{align*}
$$

Consequently, from (4.11) and (4.12) we have
Lemma 4.1. Let V^{n} be a closed orientable submanifold in $R^{n+p}(p \geqq 2)$. Then, with respect to the variation in the direction of a vector field ξ^{i} we have

$$
\begin{align*}
\delta\left(J\left[H_{1}^{c}\right]\right)= & \int_{\Gamma^{n}} \frac{c}{n} H_{1}^{c-2}\left\{\left(L_{\xi} \Gamma_{j k}^{i}\right) B_{\alpha}^{j} B_{\beta}^{k} a^{\alpha \beta} H_{i}+\frac{n}{2}\left(L_{\xi} g_{i j}\right) H^{i} H^{j}\right. \\
& \left.-B_{\alpha ; \beta}^{i} g^{\alpha \tau} g^{\beta 8}\left(L_{\xi} g_{j k}\right) B_{r}^{j} B_{\delta}^{k} H_{i}\right\} d \sigma \tag{4.14}\\
& +\int_{\Gamma^{n}} \frac{1}{2} H_{1}^{c} g^{\beta \beta}\left(L_{\xi} g_{i j}\right) B_{\alpha}^{i} B_{\beta}^{j} d \sigma
\end{align*}
$$

for any positive integer $c(\geqq 2)$ and (4.14) is valid for $c=1$ under the hypothesis that $H_{1} \neq 0$ on V^{n}.

When $p=1$, we have

$$
H^{i}=\frac{1}{n} B_{\alpha ; \beta}^{i} g^{\alpha \beta}=H_{1} N^{i},
$$

where N^{i} is the unit normal vector of a hypersurface V^{n} in R^{n+1}. Then we get for any positive integer c,

$$
\begin{align*}
\delta\left(J\left[H_{1}^{c}\right]\right)=\int_{V^{n}} \frac{c}{n} & H_{1}^{c-1}\left\{\left(\delta B_{\alpha ; \beta}^{i}\right) g^{\alpha \beta}+B_{\alpha ; \beta}^{i}\left(\delta g^{\alpha \beta}\right)\right\} N_{i} d \sigma \\
& +\int_{V^{n}} c H_{1}^{c} N^{i}\left(\delta N_{i}\right) d \sigma+\int_{V^{n}} H_{1}^{c}(\delta d \sigma) . \tag{4.15}
\end{align*}
$$

Since $\bar{g}^{i j} \bar{N}_{i} \bar{N}_{j}=1$, it follows that

$$
N^{i} \delta N_{i}=\frac{1}{2} \frac{\partial g_{i j}}{\partial x^{k}} \xi^{k} N^{i} N^{j}
$$

On the other hand, using the same way as in the case of submanifold, we have

$$
\begin{equation*}
\frac{1}{n}\left(\delta B_{\alpha ; \beta}^{i}\right) g^{\alpha \beta} N_{i}=\frac{1}{n}\left(\xi_{; \alpha ; \beta}^{i}+R_{h p k}^{i} \xi^{p} B_{\alpha}^{h} B_{\beta}^{k}\right) g^{\alpha \beta} N_{i}-\frac{1}{2} H_{1} \frac{\partial g_{i j}}{\partial x^{k}} \xi^{k} N^{i} N^{j} . \tag{4.16}
\end{equation*}
$$

By means of (4.13), (4.15) and (4.16) we have
Lemma 4.2. Let V^{n} be a closed orientable hypersurface in R^{n+1} and c be an arbitrary positive integer. Then, with respect to the variation in the direction of a vector field ξ^{i} we have

$$
\begin{align*}
\delta\left(J\left[H_{1}^{c}\right]\right)= & \int_{V^{n}} \frac{c}{n} H_{1}^{c-1}\left\{\left(L_{\xi} \Gamma_{j k}^{i}\right) B_{\alpha}^{j} B_{\beta}^{k} g^{\alpha s} N_{i}\right. \\
& \left.+\frac{n}{2} H_{1}\left(L_{\xi} g_{i j}\right) N^{i} N^{j}-b^{r o}\left(L_{\xi} g_{i j}\right) B_{r}^{i} B_{s}^{j}\right\} d \sigma \tag{4.17}\\
& +\int_{V^{n}} \frac{1}{2} H_{1}^{c} g^{\alpha s}\left(L_{\xi} g_{i j}\right) B_{\alpha}^{i} B_{\beta}^{j} d \sigma .
\end{align*}
$$

In particular, if ξ^{i} is a homothetic Killing vector field such that $L_{\text {s }}$ $g_{i j}=2 \phi g_{i j}$, where $\phi=$ const., then we have $L_{i} \Gamma_{j k}^{i}=0$ and we get the following relation from (4.14) and (4.17):

$$
\begin{equation*}
\delta\left(J\left[H_{1}^{c}\right]\right)=\int_{V^{n}}(n-c) \phi H_{1}^{c} d \sigma . \tag{4.18}
\end{equation*}
$$

Then we have
Therem 4.3. Let ξ^{i} be a homothetic Killing vector field in R^{n+p} and V^{n} be a closed orientabla svbmanifold in R^{n+p}. Then $\delta J\left(\left[H_{1}^{n}\right]\right)=0$ with respect to the variation in the direction of the vector field ξ^{i}.

When $c \neq n$, by virtue of Lemma 4.1 and Lemma 4.2 we have
Theorem 4.4. Let ξ^{i} be a homothetic Killing vector field in R^{n+p} and V^{n} be a closed orientable submanifold in R^{n+p}. If
(i) $c(\neq n)$ is an even positive integer,
(ii) $\delta\left(J\left[H_{1}{ }^{c}\right]\right)=0$ with respect to the variation in the direction of the vector field ξ^{i},
then V^{n} is the minimal submanifold.
Furthermore, in consequence of Lemma 4.1, we have
Theorem 4.5. Let ξ^{i} be a homothetic Killing vector field in R^{n+p} $(p \geqq 2)$ and V^{n} be a closed orientable submanifold in R^{n+p}. If
(i) $c(\neq n,>1)$ is an odd positive integer,
(ii) $\delta\left(J\left[H_{1}^{c}\right]=0\right.$ with respect to the variation in the direction of the vector field ξ^{i},
then V^{n} is the minimal submanifold.
When $p \geqq 2$, by virtue of Lemma 4.1, we have (4.18) for $c=1$ under the hypothesis $H_{1} \neq 0$. Therefore, Theorem 4.5 is not valid for the case $c=1$. However, when $p=1$, by virtue of Lemma 4.2 we get (4.18) for $c=1$. Then we have

Theorem 4.6. Let ξ^{i} be a homothetic Killing vector field in R^{n+1} and V^{n} be a closed orientable hypersurface in R^{n+1}. If
(i) $c(\neq n)$ is an odd positive integer,
(ii) $\delta\left(J\left[H_{1}^{c}\right]\right)=0$ with respect to the variation in the direction of the vector field ξ^{i},
(iii) H_{1} does not change its sign on V^{n},
then V^{n} is the minimal hypersurface.

References

[1] B. Y. ChEn: On a variation porblem on hypersurfaces, Jour, London Math. Soc. (2) 6 (1973), 321-325.
[2] M. Pinl and H. W. Trapp : Stationäre Krümmungsdichten auf Hyperflächen des euklidischen R_{n+1}, Math. Ann. 176 (1968), 257-292.
[3] R. C. Reilly: Variational properties of functions of the mean curvatures for hypersurfaces in space forms, Jour. Diff. Geom. 8 (1973), 465-477.
[4] T. J. Willmore and C. S. Jhaveri: An extension of a result of Bang-Yen Chen, Quart. Jour. Math. 23 (1972), 319-323.
[5] S. B. Myers: Curvature of closed hypersurfaces and non-existence of closed minimal hypersurfaces, Trans, Amer. Math. Soc. 71 (1951), 211-217.
[6] Y. Katsurada, T. Nagai and H. KôjYô: On submanifolds with constant mean curvature in a Riemannian manifolds, Publ. Study Group of Geom. 9 (1975).
[7] Y. Katsurada: On the isoperimetric problem in a Riemann space, Comm. Math. Helv. 41 (1966-67), 19-29.
[8] K. Yano: The theory of Lie derivatives and its applications, North-Holland, Amsterdam, 1957.
[9] L. P. Eisenhart: Riemannian Geometry, Princeton, 1949.
[10] J. A. Schouten : Ricci Calculus, Springer, Berlin, 1954.

[^0]: 1) Numbers in brackets refer to the references at the end of the paper.
[^1]: 4) In this paper the capital Latin indices P, Q, R, \cdots run from $n+1$ to $n+p$.
[^2]: 5) This relation, (49) and (4.10) have been given by Y. Katsurada [7],
