On the finite sum of Kronecker sets

- 3⁴ 34 B

By Enji SATO

(Received August 10, 1975)

Let G be a LCA group with dual \hat{G} , and E a compact subset of G. Following Rudin [5], we say that E is a Kronecker set if, to each $f \in C(E)$ with |f|=1 and $\varepsilon > 0$, there exists $\tilde{\tau} \in \hat{G}$ such that $||f-\tilde{\tau}||_{E} < \varepsilon$. Suppose G is a metrizable *I*-group, K is a compact subset of G, and E is a perfect totally disconnected, compact metric space. Then, as is well-known, there exist two Kronecker sets K_1 and $K_2 \subset G$, both homeomorphic to E, such that $K_1+K_2 \supset K$ (cf. [3; Lemma 3.4], [6], and [7; Lemma 7.2]).

In this note we prove two analogs to the above result. I thank Professor S. Saeki for his useful advices.

THEOREM 1 (cf. [7]) Let $T = \{|z|=1\}$ be the circle group, and T^{∞} the countable cartesian product thereof. Let also E be a compact metric space with a perfect subset. Then there exist two Kronecker sets K_1 and $K_2 \subset T^{\infty}$, both homeomorphic to E, such that $K_1 + K_2 = T^{\infty}$.

THEOREM 2 Let G be a metrizable LCA I-group, $E \subset G$ a compact set, and $N \ge 2$ a natural number. Then there exist disjoint Kronecker sets K_1, \dots, K_N , all homeomorphic to $D_2 = \{0, 1\}^{\infty}$, such that

(i) the sum $K_1 + \cdots + K_N$ contains E, and

(ii) the union of any N-1 sets of the K_j 's is a Kronecker set.

Theorem 1 is an easy consequence of the following.

LEMMA 1 Let E be a compact metric space, and $C(E; T^{\infty})$ the space of all continuous mappings from E into T^{∞} . Then, given $f_0 \in C(E; T^{\infty})$, there exists $f \in C(E; T^{\infty})$ such that both f(E) and $(f_0-f)(E)$ are Kronecker sets in T^{∞} homeomorphic to E.

PROOF Our proof follows Kaufman's idea in [2] (see also [1; pp. 184– 185]). First notice that $C(E; T^{\infty})$ forms a complete metric, topological group under the topology of uniform convergence. Since E is a compact metric space, C(E; T) is separable. Let $\{g_n\}_{n=1}^{\infty}$ be a countable dense set in C(E; T). We write $N = \bigcup_{m,n} A(m, n)$, where

 $A(m,n) = \left\{ f \in C(E; T^{\infty}) : \|g_m - \chi(f)\|_E \ge 1/n \text{ for all } \chi \in \widehat{T}^{\infty} \right\}.$

 $(\hat{T}^{\infty}$ denotes the dual group of T^{∞}). It is obvious that every A(m, n) is

closed in $C(E; T^{\infty})$. Moreover we claim that A(m, n) has no interior point. In fact, let $g \in C(E; T)$, $f \in C(E; T^{\infty})$, and U a neighborhood of fin $C(E; T^{\infty})$. We write $f=(f_1, f_2, \cdots)$, where $f_n \in C(E; T)$ is the *n*th component of f. By the definition of the product topology of T^{∞} , there exists a natural number n such that $h \in U$, where

$$h = (f_1, \cdots, f_n, g, f_{n+2}, f_{n+3}, \cdots).$$

Then, denoting by $\chi \in \hat{T}^{\infty}$ the canonical projection onto the n+1th factor, we have $\chi(h) = g$ on E. This proves that on A(m, n) has interior points and N is therefore of first category in $C(E; T^{\infty})$.

We now prove that every $f \in C(E; T^{\infty}) \setminus N$ is one-to-one. Choose any distinct points a_1 and $a_2 \in E$. Since $\{g_n\}_{n=1}^{\infty}$ is dense in C(E; T), there exists $g_m \in \{g_n\}_{n=1}^{\infty}$ such that $g_m(a_1) \neq g_m(a_2)$. Since $f \notin N$, we can find $\chi \in \hat{T}^{\infty}$ so that

$$\|g_m - \chi(f)\|_E < 3^{-1} |g_m(a_1) - g_m(a_2)|.$$

Then

$$\begin{aligned} \left| g_{m}(a_{1}) - g_{m}(a_{2}) \right| &\leq 2 \left\| g_{m} - \chi(f) \right\|_{E} + \left| \chi(f(a_{1})) - \chi(f(a_{2})) \right| \\ &\leq (2/3) \left| g_{m}(a_{1}) - g_{m}(a_{2}) \right| + \left| \chi(f(a_{1})) - \chi(f(a_{2})) \right| \end{aligned}$$

which confirms the one-to-oneness of f. Hence we obtain that f(E) is homeomorphic to E. Finally it is easy to see that f(E) is a Kronecker set whenever $f \notin N$ by the definition of N. Since $C(E; T^{\infty})$ is a complete topological group, $C(E; T^{\infty}) \setminus ((f_0 - N) \cup N)$ is non-empty and every element of this set has the required property.

PROOF OF THEOREM 1

If we construct a continuous mapping from E onto T^{∞} , we shall have Theorem 1 by an application of Lemma 1. Since E is a compact metric space which contains a perfect subset, it contains a compact subset homeomorphic to D_2 . Since D_2 is homeomorphic to the countable product space of D_2 with itself, and since [0, 1] is a continuous image of D_2 , the Tietze's extention theorem guarantees that $[0, 1]^{\infty}$ (and hence T^{∞}) is a continuous image of E. This comletes the proof.

To prove Theorem 2, we need a lemma.

LEMMA 2 Let G be a LCA group, $E \subset G$ a compact set, and n a natural number. Let also $V_i(1 \le i \le n)$ be open sets such that $\bigcup_{i=1}^n V_i \supset E$. Then there exist $W_i(1 \le i \le n)$, compact neighborhoods of 0, such that $\bigcup_{k=1}^n (w_k + V_k) \supset E$ for all $w_k \in W_k$.

PROOF First choose compact sets $K_i \subset V_i (1 \leq i \leq n)$ so that $\bigcup_{i=1}^n K_i \supset$

E. Sato

E. Next take a compact neighborhood W of 0 so that $K_i - W \subset V_i$ for all $1 \le i \le n$. Then $w_i \in W$ for $1 \le i \le n$ imply

$$\bigcup_{i=1}^{n} (w_i + V_i) \supset \bigcup_{i=1}^{n} K_i \supset E,$$

as was required.

PROOF OF THEOREM 2

To make the proof simple, we shall only prove Theorem 2 for N=3. Our proof is similar to that of Lemma 3.4 of [3].

For $r=1, 2, \dots$, we construct a finite collection \mathscr{K}_r of distinct compact sets in G with non-empty interior. First choose any compact sets $K_1, K_2, K_3 \subset G$ so that

int
$$K_1$$
 + int K_2 + int $K_3 \supset E$,

and put $\mathscr{K}_r = \{K_r\}$ for r=1, 2, 3. Suppose that $\mathscr{K}_n = \{K_{nj}\}_{j=1}^{p(n)}$ are constructed for all $1 \le n \le r+2$ and some $r \ge 1$, and that

int K_r + int K_{r+1} + int $K_{r+2} \supset E$,

where $K_n = \bigcup_{j=1}^{p(n)} K_{nj}$ for all *n*. Since *E* is compact, there exist distinct points $x_m \in \operatorname{int} K_r$ and $x'_m \in \operatorname{int} K_{r+1}(1 \le m \le n(r))$ such that $\bigcup_{m=1}^{n(r)} (x_m + x'_m + \operatorname{int} K_{r+2}) \supset E$. There is no loss of generality in assuming that all the K_{rj} (resp. $K_{(r+1)j}$) contain at least two x_m 's (resp. x'_m 's). Applying Lemma 2, we obtain disjoint compact neighborhoods $W_{r1}, \dots, W_{rn(r)} \subset \operatorname{int} K_r$ and $W'_{r1}, \dots, W'_{rn(r)} \subset \operatorname{int} K_{r+1}$ of these points such that

$$\bigcup_{m=1}^{n(r)} (w_m + w'_m + \operatorname{int} K_{r+2}) \supset E$$

for all choices of $w_m \in W_{rm}$ and $w'_m \in W'_{rm}$. Since G is an I-group, we can find $v_m \in \operatorname{int} W_{rm}$ and $v'_m \in \operatorname{int} W'_{rm}$ so that $\{v_m, v'_m : 1 \le m \le n(r)\}$ is a Kronecker set (see [5; 5.2]). Choose a finite set F_r of \widehat{G} so that to any real numbers a_m and $a'_m (1 \le m \le n(r))$ there corresponds a $\gamma \in F_r$ satisfying

(1)
$$|\exp(ia_m) - \tau(v_m)| < 1/r$$
 $(1 \le m \le n(r))$
(1)' $|\exp(ia'_m) - \tau(v_m)| < 1/r$ $(1 \le m \le n(r))$

Since F_r is a finite set, there exist disjoint compact neighborhoods $K_{(r+3)m}$ of v_m and $K_{(r+4)m}$ of v'_m such that $1 \le m \le n(r)$ imply

- (2) $|\Upsilon(x) \Upsilon(v_m)| < 1/r$ $(x \in K_{(r+3)m} \text{ and } \Upsilon \in F_r)$ (2)' $|\Upsilon(x) - \Upsilon(v'_m)| < 1/r$ $(x \in K_{(r+4)m} \text{ and } \Upsilon \in F_r)$
- (3) diam $K_{(r+3)m} < 1/r$ and $K_{(r+3)m} \subset W_{rm}$
- (3)' diam $K_{(r+4)m} < 1/r$ and $K_{(r+4)m} \subset W'_{rm}$.

Finally we define $\mathscr{K}_{r+k} = \{K_{(r+k)m}\}_{m=1}^{n(r)}$ for k=3 and 4, which completes our inductive construction of $\{\mathscr{K}_r\}_{r=1}^{\infty}$.

Putting

$$H_{k} = \bigcap_{q=0}^{\infty} \bigcup_{m} K_{(3q+k)m} \qquad (k = 1, 2, 3),$$

we claim that these three sets have the required properties. It is obvious that H_1 , H_2 , H_3 are disjoint, perfect, and totally disconnected, and that H_1 $+H_2+H_3\supset E$. Therefore we need only confirm that, say, $H_1\cup H_2$ is a Kronecker set.

Let $f \in C(H_1 \cup H_2; T)$ and $\varepsilon > 0$ be given. Choose a natural number q so that $1/(q-1) < \varepsilon/2$, and set r=3q-2. Since f is uniformly continuous, we can demand that there are real numbers a_m and a'_m $(1 \le m \le n(r))$ satisfying

(4)
$$|f(x) - \exp(ia_m)| < \varepsilon/2$$
 $(x \in H_1 \cap K_{(r+3)m} \text{ and } 1 \le m \le n(r))$
(4)' $|f(x) - \exp(ia'_m)| < \varepsilon/2$ $(x \in H_2 \cap K_{(r+4)m} \text{ and } 1 \le m \le n(r)).$

(Notice $\bigcup_{m=1}^{n(r)} K_{(r+3)m} = \bigcup_{m=1}^{n(r)} K_{(3q+1)m} \supset H_1$ and similarly for H_2 .) Choose $\gamma \in F_r$ as in (1) and (1)'. We then have by (2) and (4) that

$$\begin{split} \left| f(x) - \mathcal{T}(x) \right| &\leq \left| f(x) - \exp\left(ia_{m}\right) \right| + \left| \exp\left(ia_{m}\right) - \mathcal{T}(v_{m}) \right| + \left| \mathcal{T}(v_{m}) - \mathcal{T}(x) \right| \\ &\leq \varepsilon/2 + 1/r + 1/r < \varepsilon/2 + 1/(q-1) < \varepsilon \end{split}$$

whenever $x \in H_1 \cap K_{(r+3)m}$ for some $1 \le m \le n(r)$. Similarly we have by (2)' and (4)'

$$\left|f(x)-\mathcal{T}(x)\right| < \varepsilon \qquad (x \in H_2).$$

In other words, we have proved that $|f(x)-\Upsilon(x)| < \varepsilon$ for all $x \in H_1 \cup H_2$ and some $\Upsilon \in \widehat{G}$. This completes the proof.

REMARK After the first draft of this note was written, Professer S. Saeki pointed out that the following variance of Kaufman's theorem [2] yields an alternative and simple proof of Theorem 2.

Let G be a metrizable LCA I-group, H a σ -compact independent subset thereof, and D a totally disconnected compact metric space. Then quasiall $f \in C(D; G)$ have the properties that

- (i) f is one-to-one,
- (ii) f(D) is a Kronecker set, and
- (iii) $Gp(f(D)) \cap Gp(H) = \{0\}.$

If, in addition, H is a totally disconnected Kronecker set, then (ii) can be

strengthened to be (ii)' $f(D) \cup H$ is a Kronecker set. (cf. [6; Lemma]). Theorem 2 follows from an inductive application of this result. We omit the details.

References

- Y. KATZNELSON: An introduction to harmonic analysis. John Wiley & Sons, New York, 1968.
- [2] R. KAUFMAN: A functional method for linear sets. Israel J. Math, 5 (1967), 185-187.
- [3] T. W. KÖRNER: Some results on Kronecker, Dirichlet and Helson sets I. Ann Inst. Fourier (Grenoble), 20 (1970), 219-326.
- [4] L. A. LINDAHL and F. POULSEN, (Editors): Thin sets in harmonic analysis. New York, Marcel Dekker (1971).
- [5] W. RUDIN: Fourier analysis on groups. New York 1962.
- [6] S. SAEKI: On the sum of two Kronecker sets. to appera in Illinois J. Math.
- [7] N. Th. Varopoulos: Groups of continuous functions in harmonic analysis. Acta Math 125 (1970), 109-154.

Department of Mathematics Tokyo Metropolitan University Setagaya, Tokyo, Japan Department of Mathematics Yamagata University