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Let G be a LCA group with dual \hat{C_{X}}, and E a compact subset of G.
Following Rudin [5], we say that E is a Kroneclll er set if, to each f\in C(E)

with |f|=1 and \epsilon>0, there exists \gamma\in_{\acute{\iota J}}\wedge such that ||f-\gamma||_{E}<\epsilon . Suppose
G is a metrizable I-group, K is a compact subset of G, and E is a perfect
totally disconnected, compact metric space. Then, as is well-known, there
exist two Kronecker sets K_{1} and K_{2}\subset G, both homeomorphic to E, such
that K_{1}+K_{2}\supset K (cf. [3; Lemma 3.4], [6], and [7; Lemma 7.2]).

In this note we prove two analogs to the above result. I thank PrO-
fessor S. Saeki for his useful advices.

THEOREM 1 (cf. [7]) Let T=\{|z|=1\} be the circle group, and T^{\infty} the
countable cartesian product thereof. Let also E be a compact metric space
with a perfect subset. Then there exist two Kronecker sets K_{1} and K_{2}\subset T^{\infty},,

both homeomorphic to E, such that K_{1}+K_{2}=T^{\infty} .
THEOREM 2 Let G be a metrizable LCAI-group, E\subset G a compact

set, and N\geq 2 a natural number. Then there exist disjoint Kronecker sets
K_{1}, \cdots , K_{N}, all homeomorphic to D_{2}=\{0,1\}^{\infty}, such that

(i) the sum K_{1}+\cdots+K_{N} contains E, and
(ii) the union of any N-1 sets of the K_{f}’s is a Kronecker set.

Theorem 1 is an easy consequence of the following.
Lemma 1 Let E be a compact metric space, and C(E;T^{\infty}) the space

of dl continuous mappings from E into T^{\infty} . Then, given f_{0}\in C(E;T^{\infty}),
there exists f\in C(E;T^{\infty}) such that both f(E) and (f_{0}-f)(E) are Kronecker
sets in T^{\infty} homeomorphic to E.

PROOF Our proof follows Kaufman’s idea in [2] (see also [1; pp. 184-
185]). First notice that C(E;T^{\infty}) forms a complete metric, topological
group under the topology of uniform convergence. Since E is a compact
metric space, C(E;T) is separable. Let \{g_{n}\}_{n=1}^{\infty} be a countable dense set
in C(E;T). We write N= \bigcup_{m,n}A(m, n), where

A(m, n)=\{f\in C(E;T^{\infty}):||g_{m}-\chi(f)||_{E}\geq 1/n for all \chi\in\hat{T}^{\infty}\} .
\langle

T\wedge\infty denotes the dual group of T^{\infty} ). It is obvious that every A(m, n) is
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closed in C(E;T^{\infty}). Moreover we claim that A(m, n) has no interior
point. In fact, let g\in C(E;T), f\in C(E;T^{\infty}), and U a neighborhood of f
in C(E;T^{\infty}) . We write f–(f_{1},f_{2}, \cdots), where f_{n}\in C(E;T) is the nth com-
ponent of f. By the definition of the product topology of T^{\infty}, there exists
a natural number n such that h\in U, where

h=(f_{1^{ }},\cdots,f_{n}, g,f_{n+2},f_{n+3^{ }},\cdots) .
Then, denoting by \chi\in\grave{T}^{\infty} the canonical projection onto the n+1th factor,
we have \chi(h)=g on E. This proves that on A(m, n) has interior points
and N is therefore of first category in C(E;T^{\infty}) .

We now prove that every f\in C(E;T^{\infty})\backslash N is one-t0-0ne. Choose any
distinct points a_{1} and a_{2}\in E. Since \{g_{n}\}_{n=1}^{\infty} is dense in C(E;T), there
exists g_{m}\in\{g_{n}\}_{n=1}^{\infty} such that g_{m}(a_{1})\neq g_{m}(a_{2}) . Since f\not\in N, we can find \chi\in\hat{2^{\urcorner}}\infty

so that
||g_{m}-\chi(f)||_{E}<3^{-1}|g_{m}(a_{1})-g_{m}(a_{2})| .

Then
|g_{m}(a_{1})-g_{m}(a_{2})|\leq 2||g_{m}-\chi(f)||_{E}+|\chi(f(a_{1}))-\chi(f(a_{2}))|

\leq(2/3)|g_{m}(a_{1})-g_{m}(a_{2})|+|\chi(f(a_{1}))-\chi(f(a_{2}))|

which confirms the one-t0-0neness of f. Hence we obtain that f(E) is
homeomorphic to E. Finally it is easy to see that f(E) is a Kronecker
set whenever f\not\in N by the definition of N. Since C(E;T^{\infty}) is a complete
topological group, C(E;T^{\infty})\backslash ((f_{0}-N)\cup N) is non-empty and every element
of this set has the required property.

PROOF OF THEOREM 1
If we construct a continuous mapping from E onto T^{\infty} . we shall have

Theorem 1 by an application of Lemma 1. Since E is a compact metric
space which contains a perfect subset, it contains a compact subset home0-
morphic to D_{2} . Since D_{2} is homeomorphic to the countable product space
of D_{2} with itself, and since [0, 1] is a continuous image of D_{2}, the Tietze’s
extention theorem guarantees that [0, 1]^{\infty} (and hence T^{\infty}) is a continuous
image of E. This comletes the proof.

To prove Theorem 2, we need a lemma.
LEMMA 2 Let G be a LCA group, E\subset G a compact set, and n

a natural number. Let also V_{i}(1\leq i\leq n) be open sets such that \bigcup_{i=1}^{n}V_{i}\supset

E. Then there exist W_{i}(1\leq i\leq n), compact neighborhoods of 0, such that
\bigcup_{k=1}^{n}(w_{k}+V_{k})\supset E for all w_{k}\in W_{k} .

PROOF First choose compact sets K_{i}\subset V_{i}(1\leq i\leq n) so that \bigcup_{i=1}^{n}K_{i}\supset
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E. Next take a compact neighborhood W of 0 so that K_{i}-W\subset V_{i} for all
1\leq i\leq n . Then w_{i}\in W for 1\leq i\leq n imply

\bigcup_{i=1}^{n}(w_{i}+V_{i})\supset\bigcup_{9=1}^{n}K_{i}\supset E ,
as was required.

PROOF OF THEOREM 2
To make the proof simple, we shall only prove Theorem 2 for N=3.

Our proof is similar to that of Lemma 3.4 of [3].
For r=1,2, \cdots , we construct a finite co11ection.\mathscr{F}_{r} of distinct compact

sets in G with non-empty interior. First choose any compact sets K_{1} , K_{2},
K_{3}\subset G so that

int K_{1}+intK_{2} \dagger int K_{3}\supset E ,

and put.\mathscr{S}_{r}=\{Kr\} for r=1,2,3. Suppose that .\mathscr{F}_{n}=\{K_{nf}\rangle_{f=1}^{p(n)} are con-
structed for all 1\leq n\leq r+2 and some r\geq 1 , and that

int K_{r}+int K_{r+1}+int K_{r+2}\supset E ,

where K_{n}= \bigcup_{f=1}^{p(n)}K_{nf} for all n. Since E is compact, there exist distinct
points x_{m}\in intK_{r} and x_{m}’\in int K_{r+1}(1\leq m\leq n(r)) such that \bigcup_{m=1}^{n(r)}(x_{m}+x_{m}’+

int K_{r+2}) \supset E. There is no loss of generality in assuming that all the K_{rf}

(resp. K_{(r+1)f}) contain at least two x_{m}’s(resp. x_{m}’ ’s). Applying Lemma 2, we
obtain disjoint compact neighborhoods W_{r1} , \cdots , W_{rn(r)}\subset intK_{r} and W_{r1}’ , \cdots ,
W_{m(r)}’\subset int K_{r+1} of these points such that

\bigcup_{m=1}^{n(r)} (w_{m}+w_{m}’+ int K_{r+2}) \supset E

for all choices of w_{m}\in W_{m} and w_{m}’\in W_{rm}’ . Since G is an I-group, we can
find v_{m}\in intW_{rm} and v_{m}’\in int W_{m}’ so that \{v_{m}, v_{m}’ : 1\leq m\leq n(r)\} is a Krone-
cker set (see [5; 5.2]). Choose a finite set F_{r} of \hat{C_{J}} so that to any real
numbers a_{m} and a_{m}’(1\leq m\leq n(r)) there corresponds a \gamma\in F_{r} satisfying

(1) | exp (ia_{m})-\gamma(v_{m})|<1/r (1 \leq m\leq n(r))

(1)’ | exp (ia_{m}’)-\gamma(v_{m})|<1/r (1 \leq m\leq n(r))

Since F_{r} is a finite set, there exist disjoint compact neighborhoods K_{(r+3)m}

of v_{m} and K_{(r+4)m} of v_{m}’ such that 1\leq m\leq n(r) imply

(2) |\gamma(x)-\gamma(v_{m})|<1/r (x\in K_{(r+3)m} and \gamma\in F_{r})

(2)’ |\gamma(x)-\gamma(v_{m}’)|<1/r (x\in K_{(r+4)m} and \gamma\in F_{r})

(3) diam K_{(r+3)m}<1/r and K_{(r+3)m}\subset W_{m}

(1)’ diam K_{(r+4)m}<1/r and K_{(r+4)m}\subset W_{rm}’ .
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Finally we define - \mathscr{F}_{r+k}=\{K_{(r+k)m}\}_{m=1}^{n(r)} for k=3 and 4, which completes our
inductive construction of \{\mathscr{F}_{r}\}_{r=1}^{\infty} .
Putting

H_{k}= \bigcap_{q=0}\bigcup_{m}K_{(3q+k)m} (k=1,2,3) ,

we claim that these three sets have the required properties. It is obvious
that H_{1} , H_{2}, H_{3} are disjoint, perfect, and totally disconnected, and that H_{1}

+H_{2}+H_{3}\supset E . Therefore we need only confirm that, say, H_{1}\cup H_{2} is
a Kronecker set.

Let f\in C(H_{1}\cup H_{2} ; T) and \epsilon>0 be given. Choose a natural number
q so that l/(q– 1 ) <\epsilon/2 , and set r=3q-2. Since f is uniformly continuous,
we can demand that there are real numbers a_{m} and a_{m}’(1\leq m\leq n(r))

satisfying

(4) |f(x)- exp (ia_{m})|<\epsilon/2 (x\in H_{1}\cap K_{(r+3)m} and 1\leq m\leq n(r))

(4)’ |f(x)- exp (ia_{m}’)|<\epsilon/2 (x\in H_{2}\cap K_{(r+4)m} and 1\leq m\leq n(r)).

(Notice \bigcup_{m=1}^{n(r)}K_{(r+3)m}=\bigcup_{m=1}^{n(r)}K_{(3q+1)m}\supset H_{1} and similarly for H_{2}.)
Choose \gamma\in F_{r} as in (1) and (1)’. We then have by (2) and (4) that

|f(x)-\gamma(x)|\leq|f(x)- exp (ia_{m})|+|\exp(ia_{m})-\gamma(v_{m})|+|\gamma(v_{m})-\gamma(x)|

<\epsilon/2+1/r+1/r<\epsilon/2+1/(q-1)<\epsilon

whenever x\in H_{1}\cap K_{(r+3)m} for some 1\leq m\leq n(r) .
Similarly we have by (2)’ and (4)’

|f(x)-\gamma(x)|<\epsilon (x\in H_{2}) .
In other words, we have proved that |f(x)-\gamma(x)|<\epsilon for all x\in H_{1}\cup H_{2} and
some \gamma\in\hat{C_{J}} . This completes the proof.

REMARK After the first draft of this note was written, Professer S.
Saeki pointed out that the following variance of Kaufman’s theorem [2]
yields an alternative and simple proof of Theorem 2.

Let G be a metrizable LCA I-group, H a \sigma-compact independent subset
thereof, and D a totally disconnected compact metric space. Then quasi-
all f\in C(D;G) have the properties that

(i) f is one-t0-0ne,
(ii) f(D) is a Kronecker set, and
(iii) Gp(f(D))\cap Gp(H)=\{0\} .

If, in addtion, H is a totally disconnected Kronecker set, then (ii) can be



236 E. Sato

strengthened to be (ii)’ f(D)\cup H is a Kronecker set. (cf. [6; Lemma]).
Theorem 2 follows from an inductive application of this result. We omit
the details.
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