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\S 0. In this paper we study the elimination of the intersections of
manifolds which is a generalization of WHITNEY Lemma as follows.

WHITNEY Lemma {simply connected version) [see [R&S] ) : Let P^{p}, Q^{q}

be a pair of connected compact locally flat submanifolds of M^{m} which are
transverse, so that p+q=m. Suppose (1) p\geqq 3 , q\geqq 3 and \pi_{1}(M)=0 or
(2) p\geqq 2, q\geqq 3 and \pi_{1}(M-Q)=0 . If the intersection number of P and Q,
\epsilon(P, Q), is zero, we can ambient isotope P off Q, by an isotopy which has
compact support.

We work in the PL category ([Z]) throughout the paper.

MAIN RESULT I (BOUNDED VERS1ON) (COROLLARY To THEOREM 1).
Let P be a compact p-manifold and M be an m-manifold. Let Q be
a compact q-dim. submanifold of M and f:Parrow IntM be an embedding, so
that p+q=m+k. If (1) \partial P\neq\phi, P is k-connected, k\leqq p-3 and f(P)\cap Q

\subset f(Int P) or (2) \partial Q\neq\phi, Q is k-connected, k\leqq q-3 and f(P)\cap Q\subset IntQ,
thm there is an mbedding g:Parrow IntM which is ambimt isotopic to f and
g(P)\cap Q=\phi.

MAIN RESULT II (CLOSED VERS1ON) (THEOREM 2.) Let P, M be a con-
nected closed p- and m-manifolds and Q be a connected closed q-submani-
fold of M. Let f:Parrow M be an embedding and let p+q=m+k. Put
N=f(P)\cap Q .

(1) If P, Q are k-connected and M is (k+1) connected and if k+3\leqq p,
k+3\leqq qthm P-side and Q-side intersection classes \epsilon_{P}(N) and \epsilon_{Q}(N) are
&fifined (\S 2 for defifinition).

(2) Suppose p, q\leqq m-3 and \epsilon_{P}(N)=0 or \epsilon_{Q}(N)=0 provided min (p, q)
\geqq 2k+3 or \epsilon_{i}(N)=0 provided \max(p, q)\geqq 2k+3 where i=Q if \max(p, q)=p

and i=P if max (p, q)=q. Thm there is an embedding g:Parrow M so that g

is ambimt isotopic to f and g(P)\cap Q=\phi.
(1) If P, Q are (k+1)-connected and M is (k+2) connected and if

k+4\leqq p, k+4\leqq q, \epsilon_{P}(N) and \epsilon_{Q}(N) are uniquely determined for N(i.e. they
do not d\varphi md on the choice of K, L and J at the &fifinition of \epsilon_{P}(N),
\epsilon_{Q}(N)) .
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(4) Let P, Q, M and k,p, q are all the same as above (3). Then \epsilon_{P}(N)

and \epsilon_{Q}(N) are isotopy invariants (i.e. if f_{0}, f_{1} : Parrow M are isotopic embedded
ings, \epsilon_{P}(N_{0})=\epsilon_{P}(N_{1}) and \epsilon_{Q}(N_{0})=\epsilon_{Q}(N_{1}) where N_{i}=f_{i}(P)\cap Q(i=0,1)) .

D^{p}, S^{p} denote standard p-ball and p-sphere. \Sigma^{p} means an embedded
p-sphere in some manifold. |K| means the underlying space of a complex
K. For compact manifolds M, N a proper embedding f:Marrow N means an
embedding such that f(\partial M)\subset\partial N and f(IntM)\subset IntN.

\S 1. Bounded version

It is easy to prove the following lemma.

LEMMA 1. Let I^{n}, f^{k}, f^{kk} be the cartesian products of closed intervals as
\underline{m}-

follows where I^{m}=[0,1]\cross\cdots\cross[0,1] .

I^{n}\supset\tilde{I}^{k}\equiv I^{k-1}\cross[0, \frac{3}{4}]\cross[-\frac{1}{2} , \frac{1}{2}]^{n-k}\supset[\frac{1}{4} , \frac{3}{4}]^{k-1}

\cross[\frac{1}{4}, \frac{3}{4}]\cross[-\frac{1}{2} , \frac{1}{2}]^{n-k}\equiv F_{0}

Then there is an ambimt isotopy of I^{n} keeping the boundary fifixed and
carrying f^{k} onto Cl(I^{k}-I^{kk}) .

I^{TL}

Fig. 1.

DEFINITION. We say that &-dim. complex K has singular dim. p (briefly
5-dim. p) if for any x\in|K-K^{(p)}| there is a neighborhood U(x) of x in
|K| so that U(x)\cong R^{k} and if for some y\in|K-K^{(p-1)}| there is no neighbor-
hood U(y) so that U(y)\cong R^{k} where K^{(p)} is the p-skeleton of K. In particular
if for any x\in|K| there is a neighborhood U(x) of x in |K| so that U(x)\cong R^{k}

we say that K has 5-dim. -1. So if |K| is a manifold, K has S-dim.
-1. On the other hand any k complex has S-\dim\leqq k-1 . We denote
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S(K)=\{x\in|K||^{\ni}U(x)\ni U(x)\cong R^{k}\}(

If K has 5-dim. p, S(K)\subset K^{(p)} . Let F(K) be the frontier set of Ki.e.
F(K)= {\Delta\in K|\Delta has at least one free face)..

THEOREM 1. Let M^{m} be an m-manifold and K be a k-dim. complex with
5-dim. p. Let L be an l-dim. complex with 5-dim. q which is a subcomplex
in Int M and f;Karrow IntM be an embedding. Put r=k+l-m and W=
f(K)\cap L.

(1) F(K)\neq\phi, W\cap f(F(K))=\phi and a connected component, say X, of
f(K-S(K)) which contains a connected componmt of W is r-connected
where r< \min(k-p, k-2) and X\cap f(F(K)-S(K))\neq\phi.

(2) F(L)\neq\phi, W\cap F(L)=\phi and a connected component, say X_{1} , of
L-S(L) which contains a connected component of W is r connected where
r< \min(l -- p, l -- 2) and X_{1}\cap(F(L)-S(L))\neq\phi. If the above (1) or (2) is
satisfified, there is an mbedding g:Karrow Int M which is ambient isotopic to

f and so that g(K)\cap L=\phi.
PROOF. We will show (1). In (2) we may change f(K) with L. Since
dim (f(K)\cap L)\leqq k+l-m=r, we can translate f by \epsilon-isotopy to \hat{\acute{f}} so that
|\tilde{f}(K)\cap L|\cap.\tilde{f}(|K^{(p)}|)=\phi because r+p-k<0 . Let \overline{W}=|.\tilde{f}(K)\cap L| then a
connected component \tilde{X} of \tilde{f}(K-S(K)) containing a connected component
of \overline{W} is r connected (r\leqq k-3) by the assumption. And K-S(K) is a k-
manifold, By ZEEMAN’S ENGULFING THEOREM ([Z. CHAP. 7]) there is a
collapsible polyhedron A^{r+1} in \tilde{X}\subset\tilde{f}(K-S(K)) such that A\supset|\tilde{f}(K)\cap L|=\overline{W} .
Since \tilde{X}\cap\tilde{f}(F(K)-S(K))\neq\phi, we can take a simple are \alpha in \tilde{f}(K-S(K))

joining a and b(a\in A, b\in\tilde{f}(F(K)-S(K)) .
Since dim.A\leqq r+1\leqq dim . (K-S(K))-2 and K–S(K) is a manifold, by

the general position technique we may assume A\cap\alpha=a . So A\cup\alpha is a col-
lapsible polyherdron and N(A\cup\alpha, K’)\equiv B_{0}^{k} , N(B_{0}^{k}, K’’)\equiv B^{k} and N(B_{0}^{k}, M’’)

\equiv B^{n} are all balls. Then by Lemma 1 there is an ambient isotopy H of
B^{m} keeping \partial B^{n} fixed and carrying B^{k} onto Cl(B^{k}-B_{0}^{k}) and so H_{1}\tilde{f}(K)\cap

L=\phi. We may put g=H_{1}\tilde{f}.
PROOF 0F COROLLARY. Any manifold has 5-dim. -1. So S(P)=S(Q)=\phi.
Hence by THEOREM 1 we obtain a required embedding g:Parrow IntM.

\S 2. Closed version.

DEFINITION 2. A link L= (S^{n} : \Sigma^{p}, \Sigma^{q}) is weak homotopically trivial if \Sigma^{p}

is homotopic to zero in S^{n}-\Sigma^{q} or if \Sigma^{q} is homotopic to zero in S^{n}-\Sigma^{p} .
A link L=(S^{n} ; \Sigma^{p}, \Sigma^{q}) is strong slice if there are disjoint locally flat (p+1)-
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and (q+1)-balls B^{p+1} , B^{q+1} in B^{n+1} so that \partial B^{p+1}=\Sigma^{p} and \partial B^{q+1}=\Sigma^{q} where
\partial B^{n+1}=S^{n} .
LEMMA 2. Let L= (S^{n} ; \Sigma^{p}, \Sigma^{q}) be a link with p+q=n+k-1(k\geqq 1),
p, q\leqq n-3 .

(1) p, q\geqq 2k+2 and L is weak homotopically trivial.
(2) max (p, q)\geqq 2k+2 and \Sigma^{m\ln(p,q)} is homotopic to zero in S^{n}-\Sigma^{\max(p,q)} .

If (1) or (2) is satisfified, L is a trivial link i.e. there are disjoint locally
flat (p+1) and (q+1)-balls B^{p+1}, B^{q+1} in S^{n} such that \partial B^{p+1}=\Sigma^{p}, \partial B^{q+1}=\Sigma^{q} .
REMARK 1. By LICKORISH ([L]) any strong slice link is a trivial link when
p, q\leqq n-3 .
PROOF OF Lemma 2. We will show that L is trivial when max (p, q)=q
\Sigma^{p_{\sim}}0 in S^{n}-\Sigma^{q} . Since q\leqq n-3 , (S^{n}, \Sigma^{q}) is a trivial knot and so S^{n}-\Sigma^{q}

=S^{n-q-1}\cross R^{q+1}=S^{p-k}\cross R^{n-p+k} . Since \Sigma^{p_{\sim}}0 in S^{n}-\Sigma^{q}, there is a PL map
\tilde{f}:D^{p+1}arrow S^{n}-\Sigma^{q} such that \tilde{f}(\partial D^{p+1})=\Sigma^{p} and dim. S(\tilde{f})\leqq 2(p+1)-n\leqq p-1 .
There is a (p+1)-ball D_{1}^{p+1} in Int D^{p+1} such that D_{1}^{p+1}\cap S(f)=\phi and \tilde{f}(\partial D^{p+1})

is homotopic to \tilde{f}(\partial D_{1}^{p+1}) in S^{n}-\Sigma^{q} . And the link L_{1}=(S^{n} ; \tilde{\dot{f}}(\partial D_{1}^{p+1}), \Sigma^{q}) is
trivial because \tilde{f}(\partial D_{1}^{1^{z+1}}) bounds a non-singular (p+1)-ball \tilde{f}(D_{1}^{p+1}) in S^{n}-\Sigma^{q} .
Since S^{n}-\Sigma^{q} is (p-k-1)-connected and p-k-1\geqq 2p-n+2,\tilde{f}(\partial D^{p+1}) is
ambient isotopic to \tilde{f}(\partial D_{1}^{p+1}) in S^{n}-\Sigma^{q} by ISOTOPY THEOREM ([Z. CHAP.
8]). Hence L=(S^{n} ; \Sigma^{p}, \Sigma^{q}) is the same link type of (S^{n} ; \tilde{f}(\partial D_{1}^{p+1}), \Sigma^{q}) and
L is a trivial. The other cases are followed by the same ways.
DEFINITION 3. Let P^{p}, M^{m} be closed p- and m-manifold and Q^{q} be a closed
q-submanifold of M^{m} with p+q=m+k. Let f:P^{p}arrow M^{m} be an embedding.
Put N=f(P)\cap Q . If p, q\leqq m-3 , by ([A&Z]) we may assume f(P) intersect
Q transversally, and so N is a closed k-manifold. (It may not be connected).

Now suppose that there are subcomplexs K, L, J as follows;

(1) K\subset P and f^{-1}(N)\subset K\grave{4}0 in P.
(2) L\subset Q and N\subset L\searrow 0 .
(3) J\subset M , J\cap f(P)=f(K) , J\cap Q=L and J\searrow 0 in M.

Then we defined P-side&Q-side intersection classes \epsilon_{P}(N), \epsilon_{Q}(N) of f(P) and
Q as follows. Let B(K)=U(K, P’), B(L)=U(L, Q’) and B(J)=U(J, M’)
be second derived neighborhood of K, L and J respectively then they are
all p-, q- and n-balls and f(B(K)), B(L) are properly embedded in B(J) .
So \partial(B(J);f(B(K)), B(L))=(\partial B(J);f(\partial B(K)), \partial B(L)) is a link such as (S^{m-1} ;
\Sigma^{p-1}, \Sigma^{q-1}) . We define \epsilon_{P}(N)=\{f(\partial B(K))\}\in\pi_{p-1}(S^{p-k-1})\cong\pi_{p-1}(\partial B(J)-\partial B(L))

and \epsilon_{Q}(N)=\{\partial B(L)\}\in\pi_{q-1}(S^{q-k-1})\cong\pi_{q-1}(\partial B(J)-f(\partial B(K))) .
PROOF OF THEOREM 2. (1) Since P is k-connected and p\geqq k+3, by
ZEEMAN’S ENGULFING THEOREM ([Z. CHAP. 7]) there is a (k+1)- dim. col-
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lapsible polyhedron K_{1} in P containing f^{-1}(N) . And since Q is k-connected
(q\geqq k+3), there is a (k+1)- dim. collapsible polyhedron L_{1} in Q containing
N. Furthermore since m\geqq k+4 and M is (k+1)-connected, there is a
(k+2)- dim. collapsible polyhedron J_{1} in M containing f(K_{1})\cup L_{1} . Let F_{1}=

Cl(((J_{1}\cap f(P))-f(K_{1})) and G_{1}=Cl((J_{1}\cap Q)-L_{1} then dim F_{1}\leqq(k+2)+p-m\leqq

k-1 and dim G_{1}\leqq k+2+q-m\leqq k-1 . Now we will proceed induction as
follows.

\Phi(i) : There exist collapsible polyhedra K_{i} , L_{t} , J_{i} so that f^{-1}(N)\subset K_{t}\subset P,
N\subset L_{i}\subset Q and f\{Ki) \cup L_{i}\subset J_{i}\subset Int M. And dim F_{i}\leqq k-i dim G_{i}\leqq k-i

where F_{i}=Cl ((J_{i}\cap f(P)-f(K_{i})) and G_{i}=Cl(J_{i}\cap Q)–Lt). We already showed
the case i=1 in the above. We will show \Phi(i+1) by assuming \Phi(i) . Since
dim F_{i}\leqq k-i, by ENGULFING THEOREM there is a (k-i+1)- dim. polyhedron
\overline{K}_{i+1} in P containing f^{-1}(F_{i}) so that K_{i}\cup\overline{K}_{i+1}\searrow 0 . And there is a (k-i+1)-

dim. polyhedron \tilde{L}_{i+1} in Q containing G_{i} so that L_{i}\cup\tilde{\Gamma_{i+1}\lrcorner}\searrow 0 . Furthermore
there is a (k-i+2)- dim. polyhedron \tilde{J}_{i+1} in M so that f(\overline{K}_{i+1})\cup\tilde{L}_{i+1}\subset\tilde{J}_{i+1}

and J_{i}\cup J_{i+1}\searrow 0 . Let K_{i+1}=K_{i}\cup\overline{K}_{i+1} , L_{i+1}=L_{i}\cup\tilde{L}_{i+1} and J_{i+1}=J_{i}\cup\tilde{J}_{i+1} .
As F_{i}\subset f(\overline{K}_{i+1})\subset\tilde{J}_{i+1} , (J_{i+1}\cap f(P))-f(K_{i+1})\subset(\tilde{J}_{i+1}\cap f(P))-f(K_{i+1}) and so
\dim F_{i+1}=\dim Cl((J_{i+1}\cap f(P))-f(K_{i+1}))\leqq k-i+2+p-m=k-i+2+k-q\leqq k-

i-1 . Similarly since G_{i}\subset\tilde{J}_{i+1}\subset\tilde{J}_{i+1} , (J_{i+1}\cap Q)-L_{i+1}\subset(.\tilde{J}_{i+1}\cap Q)-L_{i+1} and
so dim G_{i+1}=\dim Cl(J_{i+1}\cap Q)-L_{i+1}\leqq k-i+2+q-m=k-i+2+k-p\leqq k-

i-1 . This completes the proof of \Phi(i+1) . \Phi(k+1) tell us that there are
collapsible polyhedra K_{k+1} , L_{k+1} , J_{k+1} such that f^{-1}(N)\subset K_{k+1}\subset P, N\subset L_{k+1}\subset Q

and f(K_{k+1})\cup L_{k+1}\subset J_{k+1}\subset IntM. And F_{k+1}=Cl((J_{k+1}\cap f(P))-f(K_{k+1}))=\phi,
G_{k+1}=Cl((J_{k+1}\cap Q)-L_{k+1})=\phi . So we may put K=K_{k+1} , L=L_{k+1} and
J=J_{k+1} for K, L, J of the definition of P-side and Q-side intersection
classes.

(2) We will show the case min (p, q)=p\geqq 2k+3 and \epsilon_{P}(N)=0 . Let
K, L and J be polyhedra of the definition of P-side intersection class.
Then (\partial B(J) ; f(\partial B(K)), \partial B(L)) is a link such as (S^{m-1} ; \Sigma^{p-1}, \Sigma^{q-1}) where
B(J)=U(J, M’), B(K)=U(K, P’) and B(L)=U(L, Q’) are all second derived
neighborhood. (See DEF. 3). Since \epsilon_{P}(N)=0 , \Sigma^{p-1} is homotopic to zero
in S^{m-1}-\Sigma^{q-1} . Hence by (1) of Lemma 2 (S^{m-1} ; \Sigma^{p-1}, \Sigma^{q-1}) is trivial i.e.
(\partial B(J);f(\partial B(K)), \partial B(L)) is a trivial link.
So there is a locally flat embedding g_{1} : B^{p}arrow\partial B(J) so that g_{1}(\partial B^{p})=f(\partial B(K))

and g_{1}(B^{p})\cap\partial B(L)=\phi . Using the collar of \partial B(J) in B(J) we can deform
g_{1} to a locally flat proper embedding g_{2} : B^{p}arrow B(J) so that g_{2}(\partial B^{p})=f(\partial B(K))

and g_{2}(B^{p})\cap B(L)=\emptyset. Since p\leqq m-3 , by ISOTOPY THEOREM ([Z, CHAP. 8])

f(B(K)) and g_{2}(B^{p}) is ambient isotopic in B(J) keeping the boundary f(\partial B(K))

fixed. Let g:Parrow M be an embedding defined by
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g=\{\begin{array}{l}fonP-IntB(K)g_{2}onB(K).\end{array}

Then g is ambient isotopic to f and g(P)\cap Q=\phi .
Similarly we can prove the other cases.

(3) Let (K_{i}, L_{i}, J_{i})(i=1,2) be two systems of subpolyhedra with the
following properties,

(a) K_{t}\subset P and f^{-1}(N)\subset K_{i}\searrow 0.
,

(b) L_{i}\subset Q and N\subset L_{i}\searrow 0j

(c) J_{i}\subset M
-

J_{i}\cap f(P)=K_{i} , J_{i}\cap Q=L_{i} and J_{i}\searrow 0 .

Let B(K_{i})=U(K_{i}, P’), B\{Lt) =B\{Lt )Q’) and B(J_{i})=U(J_{i}, M’)(i=1,2) be
second derived neighborhood. Then l_{i}=(\partial B(J_{i}):f(\partial B(K_{i})), \partial B(L_{i}) are
links such as (S^{m-1}, \Sigma^{p-1}, \Sigma^{q-1}) . It is sufficient to show that l_{1} is ambient
isotopic to l_{2}i.e . for an orintation preserving homeomorphism g:\partial B(J_{1})arrow

\partial B(J_{2}) there is a level preserving homeomorphism H:\partial B(J_{2})\cross Iarrow\partial B(J_{2})\cross I

so that H_{0}=id. and H_{1}gf(\partial B(K_{1}))=f(\partial B(K_{2})), H_{1}g(\partial B(L_{1}))=\partial B(L_{2}) .
CASE 1. We first consider the case B(J_{1})\subset B(J_{2}), B(K_{1})\subset B(K_{2}), B(L_{1})\subset

B(L_{2}) . In the case we may assume B(J_{1})\subset IntB(J_{2}) , B(K_{1})\subset IntB(K_{2}) and
B(L_{1})\subset IntB(L_{2}) using the collars. By the weak SCHOENFLIES THEOREM
([H \ Z]_{1}, [H \ Z]_{2})

A(J)\equiv B(J_{2})- Int B(J_{1})\cong S^{m-1}\cross I

A(K)\equiv B(K_{2})- Int B(K_{1})\cong S^{p-1}\cross I and
A(L)\equiv B(L_{2})- Int B(L_{1})\cong S^{q-1}\cross I

Then A(L) and f(A(K)) are properly embedded in A(J) . Now f(A(K))\cap

A(L)=\phi because f(A(K))\cap A(L)\subset f(P)\cap Q=N\subset L_{1}\subset IntB(L_{1}) . So l_{1} and
l_{2} are link cobordant. l_{1} and l_{2} are ambient isotopic by [L].

CASE 2. General case. As dim N=k, we may assume dim K_{i}\leqq k+1 ,
dim L_{i}\leqq k+1 and dim J_{i}\leqq k+2 . And k+4\leqq p, k+4\leqq q and k+5<m .
P, Q are (k+1)-connected and M is (k+2)-connected. So by ENGULFING
THEOREM there are collapsible subspaces K_{3} , L_{3}, J_{3} so that K_{1}\cup K_{2}\subset K_{3}\subset P,
L_{1}\cup L_{2}\subset L_{3}\subset Q, J_{1}\cup J_{2}\subset J_{3}\subset M, f(P)\cap J_{3}=K_{3} , Q\cap J_{3}=L_{3} . Let B(K_{3})=

U(K_{3}, P’), B(L_{3})=U(L_{3}, Q’) and B(J_{3})=U(J_{3}, M’) . Then B(K_{1})\cup B(K_{2})\subset

B(K_{3}), B(L_{1})\cup B(L_{2})\subset B(L_{3}) and B(J_{1})\cup B(J_{2})\subset B(J_{3}) . By case 1 l_{1}\simeq l_{3^{\overline{\wedge}}}l_{2}

where l_{3}=(\partial B(J_{3});f(\partial B(K_{3})), \partial B(L_{3})) and where\simeq means ambient isotopic.
(4) Let F:P\cross I- M\cross I be a level preserving embedding so that F_{0}=f_{0}

and F_{1}=f_{1} . W=F(P\cross I)\cap(Q\cross I) , N_{0}=F_{0}(P)\cap Q and N_{1}=F_{1}(P)\cap Q . Since
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P, Q are (k+1)-connected and M is (k+2)-connected, by ENGULFING THEO-
REM there are collapsible subspaces K_{i}^{k+1} , L_{i}^{k+1} and J_{i}^{k+2}(i=0, i) so that

(d) F^{-1}(N_{i})\subset K_{i}\subset P\cross\{i\}

(e) N_{i}\subset L_{i}\subset Q\cross\{i\}

(f) F_{i}(K_{i})\cup L_{i}\subset J_{i}\subset M\cross\{i\} , J_{i}\cap F_{i}(P\cross\{i\})=F(K_{i})

J_{i}\cap(Q\cross\{i\})=L_{i}\tau

Let S=K_{0}^{k+1}\cup F^{-1}( W)\cup K_{1}^{k+1} and T=L_{0}^{k+1}\cup W\cup L_{1}^{k+1} . Then by BOUNDED
VERS1ON 0F ENGULFING THEOREM (see [I. Th. 4. 3]) there are collapsible
subspaces K, L and J so that

(g) S\subset K\subset P\cross I , K\cap(P\cross\{i\})=K_{i} (i=0,1)

(h) T\subset L\subset Q\cross I , L\cap(Q\cross\{i\})=L_{i} (i=0,1)

(i) F(K)\cup L\subset J\subset M\cross I_{:} J\cap F(P\cross I)=F(K) , J\cap(Q\cross I)=L ,

(J\cap(M\cross\{i\}))\cap F(K)=J_{i}\cap F(K)=F(K_{i}) (i=0,1) ,

(J\cap(M\cross\{i\}))\cap L=J_{i}\cap L=L_{i} (i=0,1) .

Then (\partial B(J) ; F(\partial B(K)), \partial B(L))=(S^{m} ; \Sigma^{p}, \Sigma^{q}) where B(J)=U(J, M\cross I),
B(K)=U(K, P\cross I) and B(L)=U(L, Q\cross I) are second derived neighborhoods.
And \partial(B(J);F(B(K)), B(L))- Int (B(J_{0});F(B(K_{0})), B(L_{0}))\cup Int (B(J_{1});F(B(K_{1})),
B(L_{1}))\cong(S^{m-1}\cross I;\Sigma^{p-1}\cross I, \Sigma^{q-1}\cross I) where \partial(X ; Y, Z)=(\partial X ; \partial Y, \partial Z) and
Int (X;Y, Z)= (Int X ; Int Y_{j} Int Z). It gives a link cobordism between
\swarrow_{0}^{\nearrow}=\partial(B(J_{0});F(B(K_{0})), B(L_{0})) and l_{1}=\partial(B(J_{1});F(B(K_{1})), B(L_{1})) . Hence
l_{0}and\swarrow 1 are ambient isotopic by ([L]). This completes the theorem.
REMARK 2. We can define the intersection classes \epsilon_{P}(N_{i}), \epsilon_{Q}(N_{i}) at the
connected componentwise N_{1} , N_{2} , \cdots , N_{n} of N=f(P)\cap Q same as WHITNEY
Lemma. And we can also prove (2) of THEOREM 2 under \sum_{i}\epsilon_{p}(N_{i})=0 or

\sum_{i}\epsilon_{Q}(N_{i})=0 with other sutable conditions. But in particular (1) of THEOREM

2 requires a stronger assumption so that p, q\underline{\geq}2(k+1) . So we define the
intersection classes \epsilon_{P}, \epsilon_{Q} for the whole N=f(P)\cap Q .
REMARK 3. Let P_{i}^{p}(i=1,2), Q^{q} be closed submanifolds in a closed manifold
M^{m} with p+q=m+k and p, q\leqq m-3 . We may assume P_{i} transversally
intersect Q. So N_{i}=P\cap Q is a closed k manifold (N_{i} may be empty). Let
[P_{i}]\in H_{p}(M), [Q]\in H_{q}(M) be homology classes represented by P_{i} , Q. And
let [P_{i}]^{*}\in H^{m-p}(M) be a cohomology class corresponding to [P_{i}] by POINCARE
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DUALITY. Then [P_{i}]^{*}\cap[Q]=[N_{i}]\in H_{k}(M) . So if P_{1} is homologous to
P_{2} in M, [N_{1}]=[N_{2}] . That is, the homology class of N in M is uniquely
determined by the homology classes of P and Q. But for p+q=m+k
(k\geqq 1), we can not obtain WHITNEY TYPE LEMMA from [N] only.
Contrary to THEOREM 2, if M has a high connectivity we can obtain
a following by global deformation.

THEOREM 3. Let P^{p}, M^{m} be closed p- and m-manifold and Q^{q} be a closed
q-manifold of M. Let f:Parrow M be an embedding and min (p, q)\leqq m-3 .
If M is min (p, q)-connected, there is a homeomorphism g:Marrow M which is
isotopic to identity and gf(P)\cap Q=\phi .
From (4) of THEOREM 2 and THEOREM 3 we obtain the following.

COROLLARY. Let P, Q, M and f be the same as THEOREM 3 and let
p+q=m+k, k+4\leqq p, q. If P and Q are (k+1)-connected, the intersection
classes \epsilon_{P}(N)=\epsilon_{Q}(N)=0 where N=f(P)\cap Q .
PROOF OF THEOREM 3. We may assume min (p, q)=p without loss of
generality.
Since p\leqq m-3 and M is p-connected, by ENGULFING THEOREM there is
an m-ball B^{m} in M so that f(P)\subset Int B^{m} . We take another m-ball B_{1}^{m} in
M so that B_{1}\cap Q=\phi. Then by the homogeneity of the ball ([N]) there is
a homeomorphism g:Marrow M which is isotopic to id. and g(B^{m})=B_{1}^{m} . Hence
gf(P)\cap Q\subset g(B^{m})\cap Q=B_{1}^{m}\cap Q=\phi .

\S 3. Example with non-trivial intersection class.

Let p, q, m, k be all non-negative integers with p+q=m+k and suppose
m\geqq p+k+2 , m\geqq p+3 and m\geqq q+3 . Given a non zero element
\epsilon_{P}\in\pi_{p-1}(S^{p-k-1}) . We will first construct a link l =(S^{n-1} ; \Sigma^{p-1}, \Sigma^{q-1}) with
\{\Sigma^{p-1}\}=\epsilon_{P}\in\pi_{p-1}(S^{p-k-1})\cong\pi_{p-1}(S^{m-1}-\Sigma^{q-1}) . Let f_{0} : S^{p-1}arrow S^{p-k-1}\cross Int D^{m-p+k}

be a map so that \{f_{0}\}=\epsilon_{P}\in\pi_{p-1}(S^{p-k-1}) . Since m\geqq p+k+2 and m\geqq p+3 ,
by EMBEDDING THEOREM ([Z. CHAP. 8]) there is an embedding f:S^{p-1}arrow

S^{p-k-1}\cross Int D^{m-p+k} which is homotopic to f_{0} . Since S^{p-k-1}\cross D^{m-p+k}=S^{m-q-1}

\cross D, we paste the boundary \partial(S^{p-k-1}\cross D^{m-p+k}) with the boundary \partial(D^{m-q}

\cross S^{-1}) so that (S^{p-k-1} \cross D^{m-p+k})\bigcup_{\partial}(D^{m-q}\cross S^{q-1})=S^{m-1} . Then (S^{m-1} ; f(S^{p-1}),

D^{m-q}(O\cross.S^{q-1}))\equiv(S^{m-1}
;
^{\Sigma^{p-1}}

is required link l where O is the center of

We can construct proper locally flat embeddings \phi:D^{p}arrow D^{n}, \psi:D^{\alpha}arrow D^{m}

so that \psi(\partial l\})=\Sigma^{p-1}, \psi(\partial l\})=\Sigma^{q-1} and \phi intersects transversally to \psi (see
[A&Z] ). Let N=\phi(D^{p})\cap\psi(ly)\subset Int D^{m} then N is a closed k-dim. manifold.
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Since (S^{m-1}, \Sigma^{p-1}) and (S^{m-1}, \Sigma^{q-1}) are trivial knots, we can extent \phi|\partial D^{p},
\psi|\partial D^{q} to the embeddings \Phi:\partial D^{p}\cross D^{m-p}arrow S^{m-1}, \Psi:\partial D^{p}\cross D^{m-p}arrow S^{m-1} .
Let W=D^{m} \bigcup_{\phi}(D^{p}\cross D^{m-q})\bigcup_{\Phi}(ffl\cross D^{m-q}) and let D(W) be the double of W.
Then we may consider M, f(P), Q, N in the above theorem D(W),
\phi(D^{p})\bigcup_{\partial\phi}(D^{p}\cross\{0\}), \psi(D^{q})\bigcup_{\partial\phi}(P\cross\{0\}) and \phi(D^{p})\cap\psi(lf) . \phi(D^{p}), \psi(LX) and D^{n}

are f(B(K)), B(L) and B(J) at the definition of the intersection classes.
And \epsilon_{P}(N)=\epsilon_{P}(\neq 0)\in\pi_{p-1}(S^{p-k-1}) .
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