A generalization of Whitney Lemma

By Kazuaki KOBAYASHI

(Received June 5, 1975)

§0. In this paper we study the elimination of the intersections of manifolds which is a generalization of WHITNEY LEMMA as follows.

WHITNEY LEMMA (simply connected version) (see [R & S]): Let P^p , Q^q be a pair of connected compact locally flat submanifolds of M^m which are transverse, so that p + q = m. Suppose (1) $p \ge 3$, $q \ge 3$ and $\pi_1(M) = 0$ or (2) $p \ge 2$, $q \ge 3$ and $\pi_1(M-Q) = 0$. If the intersection number of P and Q, $\varepsilon(P, Q)$, is zero, we can ambient isotope P off Q, by an isotopy which has compact support.

We work in the PL category ([Z]) throughout the paper.

MAIN RESULT I (BOUNDED VERSION) (COROLLARY TO THEOREM 1). Let P be a compact p-manifold and M be an m-manifold. Let Q be a compact q-dim. submanifold of M and $f: P \rightarrow \text{Int } M$ be an embedding, so that p+q=m+k. If (1) $\partial P \neq \phi$, P is k-connected, $k \leq p-3$ and $f(P) \cap Q \subset f(\text{Int } P)$ or (2) $\partial Q \neq \phi$, Q is k-connected, $k \leq q-3$ and $f(P) \cap Q \subset \text{Int } Q$, then there is an embedding $g: P \rightarrow \text{Int } M$ which is ambient isotopic to f and $g(P) \cap Q = \phi$.

MAIN RESULT II (CLOSED VERSION) (THEOREM 2.) Let P, M be a connected closed p- and m-manifolds and Q be a connected closed q-submanifold of M. Let $f: P \rightarrow M$ be an embedding and let p + q = m + k. Put $N = f(P) \cap Q$.

(1) If P, Q are k-connected and M is (k+1)-connected and if $k+3 \leq p$, $k+3 \leq q$ then P-side and Q-side intersection classes $\varepsilon_P(N)$ and $\varepsilon_Q(N)$ are defined (§2 for definition).

(2) Suppose $p, q \leq m-3$ and $\varepsilon_P(N)=0$ or $\varepsilon_Q(N)=0$ provided $\min(p,q) \geq 2k+3$ or $\varepsilon_i(N)=0$ provided $\max(p,q)\geq 2k+3$ where i=Q if $\max(p,q)=p$ and i=P if $\max(p,q)=q$. Then there is an embedding $g:P \rightarrow M$ so that g is ambient isotopic to f and $g(P) \cap Q = \phi$.

(3) If P, Q are (k+1)-connected and M is (k+2)-connected and if $k+4 \leq p$, $k+4 \leq q$, $\varepsilon_P(N)$ and $\varepsilon_Q(N)$ are uniquely determined for N (i.e. they do not depend on the choice of K, L and J at the definition of $\varepsilon_P(N)$, $\varepsilon_Q(N)$).

(4) Let P, Q, M and k, p, q are all the same as above (3). Then $\varepsilon_P(N)$ and $\varepsilon_Q(N)$ are isotopy invariants (i.e. if $f_0, f_1: P \rightarrow M$ are isotopic embeddings, $\varepsilon_P(N_0) = \varepsilon_P(N_1)$ and $\varepsilon_Q(N_0) = \varepsilon_Q(N_1)$ where $N_i = f_i(P) \cap Q$ (i=0,1)).

 D^p , S^p denote standard *p*-ball and *p*-sphere. Σ^p means an embedded *p*-sphere in some manifold. |K| means the underlying space of a complex K. For compact manifolds M, N a proper embedding $f: M \rightarrow N$ means an embedding such that $f(\partial M) \subset \partial N$ and $f(\operatorname{Int} M) \subset \operatorname{Int} N$.

§1. Bounded version

It is easy to prove the following lemma.

LEMMA 1. Let I^n , \tilde{I}^k , \tilde{I}^k_0 be the cartesian products of closed intervals as follows where $I^m = [0, 1] \times \cdots \times [0, 1]$.

$$I^{n} \supset \tilde{I}^{k} \equiv I^{k-1} \times \left[0, \frac{3}{4}\right] \times \left[-\frac{1}{2}, \frac{1}{2}\right]^{n-k} \supset \left[\frac{1}{4}, \frac{3}{4}\right]^{k-1} \times \left[\frac{1}{4}, \frac{3}{4}\right] \times \left[-\frac{1}{2}, \frac{1}{2}\right]^{n-k} \equiv I_{0}^{k}$$

Then there is an ambient isotopy of I^n keeping the boundary fixed and carrying \tilde{I}^k onto $Cl(\tilde{I}^k - \tilde{I}^k_0)$.

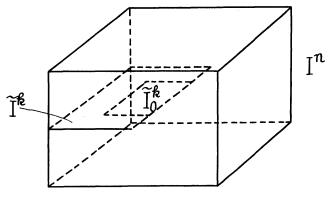


Fig. 1.

DEFINITION. We say that k-dim. complex K has singular dim. p (briefly S-dim. p) if for any $x \in |K - K^{(p)}|$ there is a neighborhood U(x) of x in |K| so that $U(x) \cong R^k$ and if for some $y \in |K - K^{(p-1)}|$ there is no neighborhood U(y) so that $U(y) \cong R^k$ where $K^{(p)}$ is the p-skeleton of K. In particular if for any $x \in |K|$ there is a neighborhood U(x) of x in |K| so that $U(x) \cong R^k$ we say that K has S-dim. -1. So if |K| is a manifold, K has S-dim. -1. On the other hand any k-complex has S-dim $\leq k-1$. We denote

$$S(K) = \left\{ x \in |K| \mid \stackrel{\mathfrak{s}}{\to} U(x) \ni U(x) \cong R^k \right\}.$$

If K has S-dim. p, $S(K) \subset K^{(p)}$. Let F(K) be the frontier set of K i.e. $F(K) = \{ \Delta \in K | \Delta \text{ has at least one free face} \}.$

THEOREM 1. Let M^m be an m-manifold and K be a k-dim. complex with S-dim. p. Let L be an l-dim. complex with S-dim. q which is a subcomplex in Int M and $f; K \rightarrow \text{Int } M$ be an embedding. Put r = k + l - m and $W = f(K) \cap L$.

(1) $F(K) \neq \phi$, $W \cap f(F(K)) = \phi$ and a connected component, say X, of f(K-S(K)) which contains a connected component of W is r-connected where $r < \min(k-p, k-2)$ and $X \cap f(F(K)-S(K)) \neq \phi$.

(2) $F(L) \neq \phi$, $W \cap F(L) = \phi$ and a connected component, say X_1 , of L-S(L) which contains a connected component of W is r-connected where $r < \min(l-p, l-2)$ and $X_1 \cap (F(L) - S(L)) \neq \phi$. If the above (1) or (2) is satisfied, there is an embedding $g: K \rightarrow \operatorname{Int} M$ which is ambient isotopic to f and so that $g(K) \cap L = \phi$.

PROOF. We will show (1). In (2) we may change f(K) with L. Since $\dim (f(K) \cap L) \leq k+l-m = r$, we can translate f by ε -isotopy to \tilde{f} so that $|\tilde{f}(K) \cap L| \cap \tilde{f}(|K^{(p)}|) = \phi$ because r + p - k < 0. Let $\widetilde{W} = |\tilde{f}(K) \cap L|$ then a connected component \tilde{X} of $\tilde{f}(K-S(K))$ containing a connected component of \widetilde{W} is r-connected $(r \leq k-3)$ by the assumption. And K-S(K) is a k-manifold. By ZEEMAN'S ENGULFING THEOREM ([Z. CHAP. 7]) there is a collapsible polyhedron A^{r+1} in $\widetilde{X} \subset \tilde{f}(K-S(K))$ such that $A \supset |\tilde{f}(K) \cap L| = \widetilde{W}$. Since $\widetilde{X} \cap \tilde{f}(F(K) - S(K)) \neq \phi$, we can take a simple are α in $\tilde{f}(K-S(K))$ joining a and $b(a \in A, b \in \tilde{f}(F(K) - S(K))$.

Since dim. $A \leq r+1 \leq \dim (K-S(K))-2$ and K-S(K) is a manifold, by the general position technique we may assume $A \cap \alpha = a$. So $A \cup \alpha$ is a collapsible polyherdron and $N(A \cup \alpha, K'') \equiv B_0^k$, $N(B_0^k, K'''') \equiv B^k$ and $N(B_0^k, M'''') \equiv B^m$ are all balls. Then by LEMMA 1 there is an ambient isotopy H of B^m keeping ∂B^m fixed and carrying B^k onto $Cl(B^k-B_0^k)$ and so $H_1\tilde{f}(K) \cap L = \phi$. We may put $g = H_1\tilde{f}$.

PROOF OF COROLLARY. Any manifold has S-dim. -1. So $S(P)=S(Q)=\phi$. Hence by THEOREM 1 we obtain a required embedding $g: P \rightarrow \text{Int } M$.

§2. Closed version.

DEFINITION 2. A link $L = (S^n; \Sigma^p, \Sigma^q)$ is weak homotopically trivial if Σ^p is homotopic to zero in $S^n - \Sigma^q$ or if Σ^q is homotopic to zero in $S^n - \Sigma^p$. A link $L = (S^n; \Sigma^p, \Sigma^q)$ is strong slice if there are disjoint locally flat (p+1)- and (q+1)-balls B^{p+1} , B^{q+1} in B^{n+1} so that $\partial B^{p+1} = \Sigma^p$ and $\partial B^{q+1} = \Sigma^q$ where $\partial B^{n+1} = S^n$.

LEMMA 2. Let $L = (S^n; \Sigma^p, \Sigma^q)$ be a link with p + q = n + k - 1 $(k \ge 1)$, $p, q \le n-3$.

(1) $p, q \ge 2k+2$ and L is weak homotopically trivial.

(2) $\max(p,q) \ge 2k+2$ and $\Sigma^{\min(p,q)}$ is homotopic to zero in $S^n - \Sigma^{\max(p,q)}$. If (1) or (2) is satisfied, L is a trivial link i.e. there are disjoint locally flat (p+1)-and (q+1)-balls B^{p+1} , B^{q+1} in S^n such that $\partial B^{p+1} = \Sigma^p$, $\partial B^{q+1} = \Sigma^q$. REMARK 1. By LICKORISH ([L]) any strong slice link is a trivial link when $p, q \le n-3$.

PROOF OF LEMMA 2. We will show that L is trivial when $\max(p,q) = q$ $\Sigma^p \sim 0$ in $S^n - \Sigma^q$. Since $q \leq n-3$, (S^n, Σ^q) is a trivial knot and so $S^n - \Sigma^q = S^{n-q-1} \times R^{q+1} = S^{p-k} \times R^{n-p+k}$. Since $\Sigma^p \sim 0$ in $S^n - \Sigma^q$, there is a PL map $\tilde{f}: D^{p+1} \rightarrow S^n - \Sigma^q$ such that $\tilde{f}(\partial D^{p+1}) = \Sigma^p$ and dim. $S(\tilde{f}) \leq 2(p+1) - n \leq p-1$. There is a (p+1)-ball D_1^{p+1} in Int D^{p+1} such that $D_1^{p+1} \cap S(f) = \phi$ and $\tilde{f}(\partial D^{p+1})$ is homotopic to $\tilde{f}(\partial D_1^{p+1})$ in $S^n - \Sigma^q$. And the link $L_1 = (S^n; \tilde{f}(\partial D_1^{p+1}), \Sigma^q)$ is trivial because $\tilde{f}(\partial D_1^{p+1})$ bounds a non-singular (p+1)-ball $\tilde{f}(D_1^{p+1})$ in $S^n - \Sigma^q$. Since $S^n - \Sigma^q$ is (p-k-1)-connected and $p-k-1 \geq 2p-n+2$, $\tilde{f}(\partial D^{p+1})$ is ambient isotopic to $\tilde{f}(\partial D_1^{p+1})$ in $S^n - \Sigma^q$ by ISOTOPY THEOREM ([Z. CHAP. 8]). Hence $L = (S^n; \Sigma^p, \Sigma^q)$ is the same link type of $(S^n; \tilde{f}(\partial D_1^{p+1}), \Sigma^q)$ and L is a trivial. The other cases are followed by the same ways.

DEFINITION 3. Let P^p , M^m be closed p- and m-manifold and Q^q be a closed q-submanifold of M^m with p+q=m+k. Let $f:P^p \to M^m$ be an embedding. Put $N=f(P)\cap Q$. If $p, q \leq m-3$, by ([A & Z]) we may assume f(P) intersect Q transversally, and so N is a closed k-manifold. (It may not be connected). Now suppose that there are subcomplexs K, L, J as follows;

- (1) $K \subset P$ and $f^{-1}(N) \subset K \searrow 0$ in P.
- (2) $L \subset Q$ and $N \subset L \searrow 0$.
- (3) $J \subset M$, $J \cap f(P) = f(K)$, $J \cap Q = L$ and $J \searrow 0$ in M.

Then we defined P-side & Q-side intersection classes $\varepsilon_P(N)$, $\varepsilon_Q(N)$ of f(P) and Q as follows. Let B(K) = U(K, P''), B(L) = U(L, Q'') and B(J) = U(J, M'') be second derived neighborhood of K, L and J respectively then they are all p-, q- and n-balls and f(B(K)), B(L) are properly embedded in B(J). So $\partial(B(J); f(B(K)), B(L)) = (\partial B(J); f(\partial B(K)), \partial B(L))$ is a link such as $(S^{m-1}; \Sigma^{p-1}, \Sigma^{q-1})$. We define $\varepsilon_P(N) = \{f(\partial B(K))\} \in \pi_{p-1}(S^{p-k-1}) \cong \pi_{p-1}(\partial B(J) - \partial B(L))$ and $\varepsilon_Q(N) = \{\partial B(L)\} \in \pi_{q-1}(S^{q-k-1}) \cong \pi_{q-1}(\partial B(J) - f(\partial B(K)))$.

PROOF OF THEOREM 2. (1) Since P is k-connected and $p \ge k+3$, by ZEEMAN'S ENGULFING THEOREM ([Z. CHAP. 7]) there is a (k+1)-dim. col-

lapsible polyhedron K_1 in P containing $f^{-1}(N)$. And since Q is k-connected $(q \ge k+3)$, there is a (k+1)-dim. collapsible polyhedron L_1 in Q containing N. Furthermore since $m \ge k+4$ and M is (k+1)-connected, there is a (k+2)-dim. collapsible polyhedron J_1 in M containing $f(K_1) \cup L_1$. Let $F_1 = Cl(((J_1 \cap f(P)) - f(K_1)))$ and $G_1 = Cl((J_1 \cap Q) - L_1)$ then dim $F_1 \le (k+2) + p - m \le k-1$ and dim $G_1 \le k+2+q-m \le k-1$. Now we will proceed induction as follows.

 $\Phi(i)$: There exist collapsible polyhedra K_i, L_i, J_i so that $f^{-1}(N) \subset K_i \subset P$, $N \subset L_i \subset Q$ and $f(K_i) \cup L_i \subset J_i \subset \text{Int } M$. And $\dim F_i \leq k - i \dim G_i \leq k - i$ where $F_i = Cl((J_i \cap f(P) - f(K_i))$ and $G_i = Cl(J_i \cap Q) - L_i)$. We already showed the case i=1 in the above. We will show $\Phi(i+1)$ by assuming $\Phi(i)$. Since dim $F_i \leq k-i$, by ENGULFING THEOREM there is a (k-i+1)-dim. polyhedron \widetilde{K}_{i+1} in P containing $f^{-1}(F_i)$ so that $K_i \cup \widetilde{K}_{i+1} \searrow 0$. And there is a (k-i+1)dim. polyhedron \tilde{L}_{i+1} in Q containing G_i so that $L_i \cup \tilde{L}_{i+1} \searrow 0$. Furthermore there is a (k-i+2)-dim. polyhedron \tilde{J}_{i+1} in M so that $f(\tilde{K}_{i+1}) \cup \tilde{L}_{i+1} \subset \tilde{J}_{i+1}$ and $J_i \cup J_{i+1} \searrow 0$. Let $K_{i+1} = K_i \cup \widetilde{K}_{i+1}$, $L_{i+1} = L_i \cup \widetilde{L}_{i+1}$ and $J_{i+1} = J_i \cup \widetilde{J}_{i+1}$. As $F_i \subset f(\tilde{K}_{i+1}) \subset \tilde{J}_{i+1}, (J_{i+1} \cap f(P)) - f(K_{i+1}) \subset (\tilde{J}_{i+1} \cap f(P)) - f(K_{i+1})$ and so $\dim F_{i+1} = \dim Cl((J_{i+1} \cap f(P)) - f(K_{i+1})) \leq k - i + 2 + p - m = k - i + 2 + k - q \leq k - 2 + p - m = k - i + k - i + k - i$ *i*-1. Similarly since $G_i \subset \tilde{I}_{i+1} \subset \tilde{J}_{i+1}$, $(J_{i+1} \cap Q) - L_{i+1} \subset (\tilde{J}_{i+1} \cap Q) - L_{i+1}$ and *i*-1. This completes the proof of $\Phi(i+1)$. $\Phi(k+1)$ tell us that there are collapsible polyhedra $K_{k+1}, L_{k+1}, J_{k+1}$ such that $f^{-1}(N) \subset K_{k+1} \subset P, N \subset L_{k+1} \subset Q$ and $f(K_{k+1}) \cup L_{k+1} \subset J_{k+1} \subset Int M$. And $F_{k+1} = Cl((J_{k+1} \cap f(P)) - f(K_{k+1})) = \phi$, $G_{k+1} = Cl((J_{k+1} \cap Q) - L_{k+1}) = \phi.$ So we may put $K = K_{k+1}$, $L = L_{k+1}$ and $J = J_{k+1}$ for K, L, J of the definition of P-side and Q-side intersection classes.

(2) We will show the case $\min(p,q) = p \ge 2k+3$ and $\varepsilon_P(N) = 0$. Let K, L and J be polyhedra of the definition of P-side intersection class. Then $(\partial B(J); f(\partial B(K)), \partial B(L))$ is a link such as $(S^{m-1}; \Sigma^{p-1}, \Sigma^{q-1})$ where B(J) = U(J, M''), B(K) = U(K, P'') and B(L) = U(L, Q'') are all second derived neighborhood. (See DEF. 3). Since $\varepsilon_P(N) = 0, \Sigma^{p-1}$ is homotopic to zero in $S^{m-1} - \Sigma^{q-1}$. Hence by (1) of LEMMA 2 $(S^{m-1}; \Sigma^{p-1}, \Sigma^{q-1})$ is trivial i.e. $(\partial B(J); f(\partial B(K)), \partial B(L))$ is a trivial link.

So there is a locally flat embedding $g_1: B^p \to \partial B(J)$ so that $g_1(\partial B^p) = f(\partial B(K))$ and $g_1(B^p) \cap \partial B(L) = \phi$. Using the collar of $\partial B(J)$ in B(J) we can deform g_1 to a locally flat proper embedding $g_2: B^p \to B(J)$ so that $g_2(\partial B^p) = f(\partial B(K))$ and $g_2(B^p) \cap B(L) = \phi$. Since $p \leq m-3$, by ISOTOPY THEOREM ([Z, CHAP. 8]) f(B(K)) and $g_2(B^p)$ is ambient isotopic in B(J) keeping the boundary $f(\partial B(K))$ fixed. Let $g: P \to M$ be an embedding defined by K. Kobayashi

$$g = \left\{ \begin{array}{l} f \text{ on } P - \operatorname{Int} B(K) \\ g_2 \text{ on } B(K) \, . \end{array} \right.$$

Then g is ambient isotopic to f and $g(P) \cap Q = \phi$. Similarly we can prove the other cases.

(3) Let (K_i, L_i, J_i) (i=1, 2) be two systems of subpolyhedra with the following properties,

- (a) $K_i \subset P$ and $f^{-1}(N) \subset K_i \searrow 0$,
- (b) $L_i \subset Q$ and $N \subset L_i \searrow 0$,
- (c) $J_i \subset M$, $J_i \cap f(P) = K_i$, $J_i \cap Q = L_i$ and $J_i \searrow 0$.

Let $B(K_i) = U(K_i, P'')$, $B(L_i) = U(L_i, Q'')$ and $B(J_i) = U(J_i, M'')$ (i = 1, 2) be second derived neighborhood. Then $\mathscr{C}_i = (\partial B(J_i): f(\partial B(K_i)), \partial B(L_i)$ are links such as $(S^{m-1}, \Sigma^{p-1}, \Sigma^{q-1})$. It is sufficient to show that \mathscr{C}_1 is ambient isotopic to \mathscr{C}_2 i.e. for an orintation preserving homeomorphism $g: \partial B(J_1) \rightarrow \partial B(J_2)$ there is a level preserving homeomorphism $H: \partial B(J_2) \times I \rightarrow \partial B(J_2) \times I$ so that $H_0 = id$. and $H_1gf(\partial B(K_1)) = f(\partial B(K_2)), H_1g(\partial B(L_1)) = \partial B(L_2)$.

CASE 1. We first consider the case $B(J_1) \subset B(J_2)$, $B(K_1) \subset B(K_2)$, $B(L_1) \subset B(L_2)$. In the case we may assume $B(J_1) \subset \operatorname{Int} B(J_2)$, $B(K_1) \subset \operatorname{Int} B(K_2)$ and $B(L_1) \subset \operatorname{Int} B(L_2)$ using the collars. By the weak SCHOENFLIES THEOREM ([H & Z]₁, [H & Z]₂)

$$\begin{split} A(J) &\equiv B(J_2) - \operatorname{Int} B(J_1) \cong S^{m-1} \times I \\ A(K) &\equiv B(K_2) - \operatorname{Int} B(K_1) \cong S^{p-1} \times I \\ A(L) &\equiv B(L_2) - \operatorname{Int} B(L_1) \cong S^{q-1} \times I \end{split} \quad \text{and} \quad \end{split}$$

Then A(L) and f(A(K)) are properly embedded in A(J). Now $f(A(K)) \cap A(L) = \phi$ because $f(A(K)) \cap A(L) \subset f(P) \cap Q = N \subset L_1 \subset \text{Int } B(L_1)$. So \mathscr{C}_1 and \mathscr{C}_2 are link cobordant. \mathscr{C}_1 and \mathscr{C}_2 are ambient isotopic by [L].

(4) Let $F: P \times I \rightarrow M \times I$ be a level preserving embedding so that $F_0 = f_0$ and $F_1 = f_1$. $W = F(P \times I) \cap (Q \times I)$, $N_0 = F_0(P) \cap Q$ and $N_1 = F_1(P) \cap Q$. Since *P*, *Q* are (k+1)-connected and *M* is (k+2)-connected, by ENGULFING THEO-REM there are collapsible subspaces K_i^{k+1} , L_i^{k+1} and J_i^{k+2} (i=0, i) so that

(d) $F^{-1}(N_i) \subset K_i \subset P \times \{i\}$ (e) $N_i \subset L_i \subset Q \times \{i\}$ (f) $F_i(K_i) \cup L_i \subset J_i \subset M \times \{i\}, \quad J_i \cap F_i(P \times \{i\}) = F(K_i)$ $J_i \cap (Q \times \{i\}) = L_i.$

Let $S = K_0^{k+1} \cup F^{-1}(W) \cup K_1^{k+1}$ and $T = L_0^{k+1} \cup W \cup L_1^{k+1}$. Then by BOUNDED VERSION OF ENGULFING THEOREM (see [I. Th. 4.3]) there are collapsible subspaces K, L and J so that

- (g) $S \subset K \subset P \times I$, $K \cap (P \times \{i\}) = K_i$ (i=0,1)
- (h) $T \subset L \subset Q \times I$, $L \cap (Q \times \{i\}) = L_i$ (i=0, 1)
- $\begin{array}{ll} ({\rm i}\) & F(K)\cup L\subset J\subset M\times I\,, \qquad J\cap F(P\times I)=F(K)\,, \qquad J\cap (Q\times I)=L\,,\\ & \left(J\cap \left(M\times \{i\}\right)\right)\cap F(K)=J_i\cap F(K)=F(K_i)\qquad (i=0,\,1)\,,\\ & \left(J\cap \left(M\times \{i\}\right)\right)\cap L=J_i\cap L=L_i\qquad (i=0,\,1)\,. \end{array}$

Then $(\partial B(J); F(\partial B(K)), \partial B(L)) = (S^m; \Sigma^p, \Sigma^q)$ where $B(J) = U(J, M \times I), B(K) = U(K, P \times I)$ and $B(L) = U(L, Q \times I)$ are second derived neighborhoods. And $\partial(B(J); F(B(K)), B(L)) - \text{Int}(B(J_0); F(B(K_0)), B(L_0)) \cup \text{Int}(B(J_1); F(B(K_1)), B(L_1)) \cong (S^{m-1} \times I; \Sigma^{p-1} \times I, \Sigma^{q-1} \times I)$ where $\partial(X; Y, Z) = (\partial X; \partial Y, \partial Z)$ and Int(X; Y, Z) = (Int X; Int Y, Int Z). It gives a link cobordism between $\mathscr{C}_0 = \partial(B(J_0); F(B(K_0)), B(L_0))$ and $\mathscr{C}_1 = \partial(B(J_1); F(B(K_1)), B(L_1))$. Hence \mathscr{C}_0 and \mathscr{C}_1 are ambient isotopic by ([L]). This completes the theorem. REMARK 2. We can define the intersection classes $\varepsilon_P(N_i), \varepsilon_Q(N_i)$ at the connected componentwise N_1, N_2, \dots, N_n of $N = f(P) \cap Q$ same as WHITNEY LEMMA. And we can also prove (2) of THEOREM 2 under $\sum_i \varepsilon_p(N_i) = 0$ or $\sum_i \varepsilon_Q(N_i) = 0$ with other sutable conditions. But in particular (1) of THEOREM 2 requires a stronger assumption so that $p, q \ge 2(k+1)$. So we defined the intersection classes $\varepsilon_P(P) \cap Q$.

REMARK 3. Let P_i^p (i=1, 2), Q^q be closed submanifolds in a closed manifold M^m with p+q=m+k and $p, q \leq m-3$. We may assume P_i transversally intersect Q. So $N_i=P\cap Q$ is a closed k-manifold $(N_i \text{ may be empty})$. Let $[P_i] \in H_p(M)$, $[Q] \in H_q(M)$ be homology classes represented by P_i, Q . And let $[P_i]^* \in H^{m-p}(M)$ be a cohomology class corresponding to $[P_i]$ by POINCARÉ

DUALITY. Then $[P_i]^* \cap [Q] = [N_i] \in H_k(M)$. So if P_1 is homologous to P_2 in M, $[N_1] = [N_2]$. That is, the homology class of N in M is uniquely determined by the homology classes of P and Q. But for p + q = m + k $(k \ge 1)$, we can not obtain WHITNEY TYPE LEMMA from [N] only.

Contrary to THEOREM 2, if M has a high connectivity we can obtain a following by global deformation.

THEOREM 3. Let P^p , M^m be closed p- and m-manifold and Q^q be a closed q-manifold of M. Let $f: P \rightarrow M$ be an embedding and $\min(p, q) \leq m - 3$. If M is $\min(p, q)$ -connected, there is a homeomorphism $g: M \rightarrow M$ which is isotopic to identity and $gf(P) \cap Q = \phi$.

From (4) of THEOREM 2 and THEOREM 3 we obtain the following.

COROLLARY. Let P, Q, M and f be the same as THEOREM 3 and let $p+q=m+k, k+4 \leq p, q$. If P and Q are (k+1)-connected, the intersection classes $\varepsilon_P(N) = \varepsilon_Q(N) = 0$ where $N = f(P) \cap Q$.

PROOF OF THEOREM 3. We may assume $\min(p, q) = p$ without loss of generality.

Since $p \leq m-3$ and M is *p*-connected, by ENGULFING THEOREM there is an *m*-ball B^m in M so that $f(P) \subset \operatorname{Int} B^m$. We take another *m*-ball B_1^m in M so that $B_1 \cap Q = \phi$. Then by the homogeneity of the ball ([N]) there is a homeomorphism $g: M \to M$ which is isotopic to *id*. and $g(B^m) = B_1^m$. Hence $gf(P) \cap Q \subset g(B^m) \cap Q = B_1^m \cap Q = \phi$.

§ 3. Example with non-trivial intersection class.

Let p, q, m, k be all non-negative integers with p+q=m+k and suppose $m \ge p+k+2, m \ge p+3$ and $m \ge q+3$. Given a non zero element $\varepsilon_P \in \pi_{p-1}(S^{p-k-1})$. We will first construct a link $\mathscr{C} = (S^{m-1}; \Sigma^{p-1}, \Sigma^{q-1})$ with $\{\Sigma^{p-1}\} = \varepsilon_P \in \pi_{p-1}(S^{p-k-1}) \cong \pi_{p-1}(S^{m-1}-\Sigma^{q-1})$. Let $f_0: S^{p-1} \to S^{p-k-1} \times \operatorname{Int} D^{m-p+k}$ be a map so that $\{f_0\} = \varepsilon_P \in \pi_{p-1}(S^{p-k-1})$. Since $m \ge p+k+2$ and $m \ge p+3$, by EMBEDDING THEOREM ([Z. CHAP. 8]) there is an embedding $f: S^{p-1} \to S^{p-k-1} \times \operatorname{Int} D^{m-p+k}$ which is homotopic to f_0 . Since $S^{p-k-1} \times D^{m-p+k} = S^{m-q-1} \times D^q$, we paste the boundary $\partial(S^{p-k-1} \times D^{m-p+k})$ with the boundary $\partial(D^{m-q} \times S^{q-1})$ so that $(S^{p-k-1} \times D^{m-p+k}) \bigcup_{\vartheta} (D^{m-q} \times S^{q-1}) = S^{m-1}$. Then $(S^{m-1}; f(S^{p-1}), (O \times S^{q-1})) \equiv (S^{m-1}; \Sigma^{p-1}, \Sigma^{q-1})$ is required link \mathscr{C} where O is the center of D^{m-q} .

We can construct proper locally flat embeddings $\phi: D^p \to D^m$, $\psi: D^q \to D^m$ so that $\psi(\partial D^q) = \Sigma^{p-1}$, $\psi(\partial D^q) = \Sigma^{q-1}$ and ϕ intersects transversally to ψ (see [A & Z]). Let $N = \phi(D^p) \cap \psi(D^q) \subset \operatorname{Int} D^m$ then N is a closed k-dim. manifold. Since (S^{m-1}, Σ^{p-1}) and (S^{m-1}, Σ^{q-1}) are trivial knots, we can extent $\phi | \partial D^p$, $\phi | \partial D^q$ to the embeddings $\Phi : \partial D^p \times D^{m-p} \to S^{m-1}$, $\Psi : \partial D^p \times D^{m-p} \to S^{m-1}$. Let $W = D^m \cup_{\phi} (D^p \times D^{m-q}) \cup_{\phi} (D^q \times D^{m-q})$ and let D(W) be the double of W. Then we may consider M, f(P), Q, N in the above theorem D(W), $\phi(D^p) \bigcup_{\delta\phi} (D^p \times \{0\}), \ \phi(D^q) \bigcup_{\delta\phi} (D^q \times \{0\})$ and $\phi(D^p) \cap \phi(D^q)$. $\phi(D^p), \ \phi(D^q)$ and D^m are f(B(K)), B(L) and B(J) at the definition of the intersection classes. And $\varepsilon_P(N) = \varepsilon_P(\neq 0) \in \pi_{p-1}(S^{p-k-1})$.

References

- [A & Z] ARMSTRONG, M. A. and ZEEMAN, E. C.: Transversality for piecewise linear manifolds. Topology Vol. 6 (1967), 433-466.
- [H & Z]1 HUDSON, J. F. P. and ZEEMAN, E. C.: On the regular neighborhood, Proc. London Math. Soc. (3) 14 (1964), 719-745.
- [H & Z]₂ HUDSON, J. F. P. and ZEEMAN, E. C.: Correction to "On the regular neighborhood", Pro. London Math. Soc. (3) (1970), 512-524.
- [I] IRWIN, M. C.: Embedding of polyhedral manifolds, Ann. Math. Vol. 82 (1965), 1-14.
- [L] LICKORISH, W. B. R.: The piecewise linear unknotting of cones, Topology Vol. 4 (1965), 67-91.
- [N] NOGUCHI, H.: Classical combinatorial topology, (mimeographed note Univ. of Illinois (1967).
- [R & S] ROURKE, C. P. and SANDERSON, B. J.: Introduction to piecewise linear topology. Ergeb. Math. Vol. 69. Spriger-Verlag (1972).
- [Z] ZEEMAN, E. C.: Seminar on combinatorial topology (mimeographed note), Institute des Hautes Etudes Scientifiques, Paris (1963).

Department of Mathematics Hokkaido University.