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Introduction.

We consider an (m+2)-dimensional orientable Riemannian space S^{m+2}

with constant curvature of class C^{\nu}(\nu\geqq 3) which admits a continuous dif-
ferentiable one-parameter group G of 1–1 mappings T_{\tau} of S^{m+2} onto itself
(the group parameter \tau, -\infty<\tau<+\infty , is assumed to be always canonic
i.e. , T_{\tau_{1}}\cdot T_{\tau_{2}}=T_{\tau_{1}+\tau_{2}}) . We assume that the orbits (or streamlines) of the
points of S^{m+2} produced by T_{\tau} are regular curves covering S^{n\iota+2} simply.

The purpose of the present paper is to generalize the following the0-
rem given by H. Hopf and the present author [2] for two orientable closed
submanifolds of codimension 2.

THEOREM. Let W^{m+1} and \overline{W}^{m+1} be two orientable closed hypersurfaces
in S^{m+2} and p and \overline{\overline{p}} be the corresponding points of these hypersurfaces
along an orbit, and H_{r}(p) and \overline{H}_{r}(p) be the r-th mean curvature at these
points respectively. Assume that the set of points in which the orbit is
tangent to W^{m+1} or \overline{W}^{m+1} has no inner point and that the second funda-

def
mental form of W^{m+1}(t)=(1-t)W^{m+1}+t\overline{W}^{m+1},0\leqq t\leqq 1 is positive definite.
If G is a group of isometries of S^{m+2} and if the relation H_{r}(p)=\overline{H}_{r}(p)

holds for each point p\in W^{m+1}, then W^{n\iota+1} and \overline{W}^{m+1} are congruent mod G.
Especially, in case of r=m, that is, the generalized theorem relating

to the Gauss curvature was already proved in the previous paper [1].

\S 1. Generalized theorem.

We suppose an (m+2)-dimensional orientable Riemannian space S^{m+2}

with constant curvature of class C^{\nu}(\nu\geqq 3) which admits an infinitesimal
isometric transformation
(1. 1) \hat{x}^{i}=x^{i}+\xi^{i}(x)\delta\tau

1) Numbers in brackets refer to the references at the end of the paper.
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i=1, \cdots , m+2, \alpha=1 , \cdots , m

where x^{i} are local coordinates in S^{m+2} and \xi^{i} are the components of a con-
travariant vector \xi . We assume that orbits of the transformations gen-
erated by \xi cover S^{m+2} simply and that \xi is everywhere continuous and
\neq 0 . Let us choose a coordinate system such that the orbits of transfor-
mations are new x^{1}-coordinate curves, that is, a coordinate system in
which the vector \xi^{i} has components \xi^{i}=\delta_{1}^{i}, where the symbol \delta_{f}^{i} denotes
Kronecker’s delta ; then (1. 1) becomes as follows
(1. 2) \hat{x}^{i}=x^{i}+\delta_{1}^{i}\delta\tau

and S^{m+2} admits a one-parameter continuous group G of transformations
which are 1–1-mappings of S^{m+2} onto itself and are given by the expres-
sion \hat{x}^{i}=x^{i}+\delta_{1}^{i}\tau in the new special coordinate system ([3]).

Now we consider two orientable closed submanifolds W^{m} and \overline{W}^{m} of
codimension 2 (of class C^{\nu}) imbedded in S^{m+2} which are given as follows

(1. 3) \{\begin{array}{l}W^{m}.. x^{i}=x^{i}(u^{a})\overline{W}^{m}.\cdot \overline{x}^{t}=x^{i}(u^{\alpha})+\delta_{1}^{i}\tau(u^{\alpha})\end{array}

where u^{\alpha} are local coordinates of W^{m} and \tau is a continuous function
attached to each point of the submanifold W^{n\iota} . We shall henceforth
confine ourselves to Latin indices running from 1 to rn+2 and Greek
indices from 1 to m, and we assume that the set of points in which the
orbit is tangent to W^{m} or \overline{W}^{m} does not have an inner point.

Then we can take the family of the submanifolds
W^{m}(t)=(1-t)W^{m}+t\overline{W}^{m} , 0\leqq t\leqq 1

generated by W^{m} and \overline{W}^{m} whose points correspond along the orbits of the
transformations where W^{m} and \overline{W}^{m} mean W^{m}(0) and W^{m}(1) respectively.
Thus according to (1. 3), W^{m}(t) is given by the expression

(1. 4) W^{m}(t) : x^{i}(u^{\alpha}, t)=(1-t)x^{i}(u^{\alpha})+t\overline{x}^{i}(u^{\alpha}) 0\leqq t\leqq 1 ,

and (1. 4) may be rewritten as follows
(1. 5) W^{m}(t) : x^{i}(u^{\alpha}, t)=x^{i}(u^{\alpha})+\delta_{1}^{i}t\tau(u^{\alpha}) 0\leqq t\leqq 1t

We shall indicate by n^{i}(t)(P=1,2) the contravariant unit vectors nor-
P

mal W^{m}(t) and suppose that they are mutually orthogonal. For a point
on W^{m}(t) such that the orbit is not tangent to W^{m}(t), let n^{i} be in the

1
vector space spanned by m+1 independent vectors \partial x^{i}(u^{\alpha}, t)/\partial u^{\alpha}(\alpha=1 , \cdots ,
m) and \delta_{1}^{i} be the unit vector normal W^{n\iota}(t) . Then we can determine n_{2}^{i}

from the vectors x_{\alpha}^{i}(u, t) and n^{i}1 ’ where x_{\alpha}^{i}(u, t) means \partial x^{i}(u, t)/\partial u^{\alpha} .
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Let us denote the metric tensor of S^{m+2} by g_{ij} and the derivative
with respect to t by the dash. Throughout this paper repeated lower case
Latin indices call for summation from 1 to m+2 and repeated lower case
Greek indices for summation from 1 to m. Then differentiating the fol-
lowing relations with respect to t

g_{ij}n^{i}(t)x_{\alpha}^{f}(t)=01 ’ g_{if}n^{i}(t)n^{f}(t)=111 ’ g_{if}n^{i}(t)n^{f}(t)12=0

since the transformation group G is isometric, that is, \partial g_{if}/\partial x^{1}=0, we have
(1. 6) g_{if}n^{\prime i}(t)x_{\alpha}^{f}+g_{ij}n^{i}x_{\alpha}^{\prime.i}(t)=011 ’

(1. 7) g_{if}n^{\prime i}(t)n^{f}(t)=011 ’

(1. 8) g_{if}n^{\prime i}(t)n^{j}(t)+g_{if}n^{i}(t)n^{\prime f}(t)=01212 ’

where we can express as follows

(1. 9) n^{i}(t)=\rho\delta_{1}^{i}+\varphi^{\alpha}x_{a}^{i}(t)1 ’

then we have
n^{\prime i}(t)=\rho’\delta_{1}^{i}+\varphi^{\prime\alpha}x_{\alpha}^{i}(t)+\varphi^{\alpha}x_{\alpha}^{\prime i}(t)1 ’

and from (1. 5), putting \partial\tau/\partial u^{\alpha}=\tau_{\alpha} , we obtain

(1. 10) x_{\alpha}^{\prime i}(t)=\tau_{\alpha}0_{1}^{si} ,

therefore we have
n^{\prime i}(t)=(\rho’+\varphi^{\alpha}\tau_{\alpha})\delta_{1}^{i}+\varphi^{\prime\alpha}x_{\alpha}^{i}(t)1^{\cdot}

Consequently we get

(1. 11) g_{if}n^{\prime i}n^{f}=012^{\cdot}

From (1. 6), (1. 7) and (1. 11), we have

g_{if}n^{\prime i}x_{\alpha}^{f}(t)g^{\alpha\beta}(t)x_{\beta}^{k}(t)=-g_{if}n^{i}\delta_{1}^{f}\tau_{\alpha}g^{\alpha\beta}(t)x_{\beta}^{k}(t)11 ’

g_{if}n^{\prime i}n^{f}n^{k}=0111 ’

g_{ij}n^{\prime i}n^{j}n^{k}=0122 ’

where g^{\alpha\beta}(t) is the contravariant metric tensor of W^{m}(t) . Since

g^{fk}=x_{\alpha}^{f}(t)x_{\beta}^{k}(t)g^{\alpha\beta}(t)+n^{f}(t)n^{k}(t)+n^{f}(t)n^{k}(t)1122

we have
g_{if}n^{\prime i}g^{fk}=-g_{if}n^{i}(t)\delta_{1}^{f}\tau_{\alpha}g^{\alpha\beta}(t)x_{\beta}^{k}(t)11^{\cdot}

Thus we get
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(1. 12) n_{1}^{\prime i}=-g^{\alpha\beta}(t)\tau_{\alpha}\delta_{1}^{k}n_{k}(t)x_{\beta}^{i}(t)1^{\cdot}

Furthermore differentiating the following relations with respect to t

g_{if}n^{i}(t)x_{\alpha}^{f}(t)=02 ’ g_{if}n^{i}(t)n^{f}(t)=1zz

we have
g_{if}n^{\prime i}(t)x_{\alpha}^{f}(t)2=-g_{ij}n^{i}(t)\tau_{\alpha}\delta_{1}^{f}2 ’

g_{ij}n^{\prime i}(t)n^{j}(t)=022 ’

since from (1. 9) n_{i}(t)\delta_{1}^{i}=02 and from (1. 8) and (1. 11) g_{if}n^{\prime i}(t)n^{f}(t)=021’ we
get

g_{if}n^{\prime i}(t)x_{\alpha}^{f}(t)g^{\alpha\beta}(t)x_{\beta}^{k}(t)2=0 ,

g_{if}n^{\prime i}(t)n^{f}(t)n^{k}(t)=0222 ’

g_{if}n^{\prime i}(t)n^{j}(t)n^{k}(t)=0211 ’

then we have
(1. 13) g_{if}n^{\prime i}(t)g^{fk}=n^{\prime k}(t)=022^{\cdot}

Let us denote the operation of D-symbol due to van der Waerden-
Bortolotti ([4] p. 254) by the symbol “ ;” and the symbol \delta v by v.adua.
Then as well-known on the theory of a submanifold in a Riemannian
space, we have

(1. 14) x_{\alpha;\beta}^{i}= \frac{\partial x_{\alpha}^{i}}{\partial u^{\beta}}+\Gamma_{fk}^{i}x_{\alpha}^{f}x_{\beta}^{k}-*\Gamma_{\alpha\beta}^{f}x_{\gamma}^{i} ,

(1. 15) n_{;\alpha}^{i}= \frac{\partial n^{i}P}{\partial u^{\alpha}}+\Gamma_{fk}^{i}n^{f}x_{\alpha}^{k}-\sum_{QPP}**\Gamma_{P\alpha}^{Q}n^{i}o’.

where \Gamma_{jk}^{i} and *\Gamma_{\alpha\beta}^{\gamma} are the christoffel symbols with respect to g_{if} and the
metric tensor g_{\alpha\beta} of W^{m} respectively, and

def
\partial n^{i}

** \Gamma_{P\alpha}^{Q}\equiv\frac{P}{\partial u^{\alpha}}n_{i}+\Gamma_{fk}^{i}n^{f}x_{\alpha}^{k}n_{i}QPQ^{\cdot}

Since n^{i}n_{i}=\delta_{PQ}PQ’**\Gamma_{P\alpha}^{Q} is anti-symmetric with respect to the indices P and

Q. Consequently we have
**\Gamma_{P\alpha}^{P}=0 for any P.

Calculating (\delta n^{i})’1 ’ we have

\delta n^{i}1=dn^{i}1+\Gamma_{jk}^{i}n^{f}x_{\gamma}^{k}du^{\gamma}-**\Gamma_{1\alpha}^{2}n_{2}^{i}du^{\alpha}1 ’
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(\delta n^{i})’=1(dn^{i})’1+(\Gamma_{jk}^{i})’n^{j}x_{\gamma}^{k}du^{\gamma}+\Gamma_{jk}^{i}n^{\prime j}x_{r}^{k}du^{\gamma}11

+\Gamma_{jk}^{i}n^{j}1(x_{\gamma}^{k})’du^{\gamma}-(^{**}\Gamma_{1\alpha}^{2})’n^{i}du^{\alpha}-**2\Gamma_{1\alpha}^{2} (\begin{array}{l}n^{i}2\end{array})

’ du^{\alpha} ,

since G is isometric, that is, \partial g_{if}/\partial x^{1}=0 , we have \partial\Gamma_{fk}^{i}/\partial x^{1}=0, and we have
n^{\prime i}=0 from (1. 13). Consequently we obtain the following relation between
2

\delta n^{\prime i}1 and (\delta n^{i})’1

(1. 16) (\delta n^{i})’=\delta n^{\prime i}11+\Gamma_{j1}^{i}n^{j}(t)\tau_{\gamma}du^{\gamma}-(^{**}\Gamma_{1\alpha}^{2})’n^{i}(t)du^{\alpha}12^{\cdot}

We claim that the following theorem holds
THEOREM. Let W^{m} and \dot{T}\overline{V}^{m} be two orientable closed submanifolds of

codimension 2 in S^{m+2} and p and \overline{p} be the corresponding points of these
submanifolds along an orbit, and H_{r}(p)1 and \overline{H}_{r}(p)1 be the r-th mean cur-

vatures with respect to
n_{1}

at these points respectively. Assume that the set

of points in which the orbit is tangent to W^{m} or \overline{Vf}^{m} has no inner point
and that the second fundamental form with respect to

n_{1} of W^{m}(t), 0\leqq t\leqq 1

is positive definite. If G is a group of isometries of S^{m+2} and if the rela-
tion H_{r}(p)=\overline{\dot{H}}_{r}(p)11 holds for each p\in W^{m}, then W^{m} and \overline{W}^{m} are congruent

mod G.
PROOF. We consider the following differential form of degree m-1

attached to each point p on the submanifold W^{m}(t)

((n1’, n_{2}, \delta_{1}\tau, \delta n,\cdots,n, dx, \cdots, dx))\frac{11\delta}{r-1}

(1. 17) def\equiv\sqrt{g}(n1’, n_{2}, \delta_{1}\tau, \delta n_{1}, \cdots, \delta n_{1}, dx, \cdots, dx)

=(-1)^{r-1}\sqrt{g}(n1’, _{2}n, ^{\delta_{1}\tau}, \cdots, x_{\alpha_{r-1}}, x_{\beta},, \cdots, x_{\beta_{m-1}})

\cross b_{\beta_{1}^{1}}^{\alpha}(t)\cdots b_{\rho_{r-1}^{r-1}}^{\alpha}(t)du^{\beta_{1}}\Lambda du^{\beta_{2}}\Lambda\cdots\Lambda du^{\beta_{r-1}}\Lambda du^{\beta_{r}}\Lambda\cdots\Lambda du^{p_{m-1}}11

where g is the determinant of the metric tensor g_{if} of S^{m+2},\cdot the symbol
( ) means a determinant of order m+2 whose columns are the comp0-
nents of respective vectors, Pb_{\alpha\beta}(t) is the second fundamental tensor with
respect to Pn and Pb_{\alpha}^{\beta}(t) denotes Pb_{\alpha\gamma}(t)g^{\beta\gamma}(t) .

Then the exterior differential of the differential form (1. 17) becomes
as follows
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d((n1’, _{2}n, ^{\delta_{1}\tau}, \cdots, \delta n_{1}, dX^{ },\cdots, dx))

=((\delta n1’, _{2}n, ^{\delta_{1}\tau}11’\ldots, dx))

(1. 18) +((n1’, ^{\delta n}2’ ^{\delta_{1}\tau}11’\ldots, dx))

+((n1’, _{2}n, \delta(\delta_{1})\tau, \delta n_{1}, \cdots, \delta n_{1}, dX^{ },\cdots, dx))

+((n1’, n, \delta_{1}d\tau, \delta n, 21\cdots, \delta n, ^{dx}1’\ldots, dx)) j

because since S^{m+2} is a space of constant curvature, we have

((n1’, _{2}n, ^{\delta_{1}\tau}111’\ldots, dx))=0

and also we have

((n1’, _{2}n, 0_{1}’\tau, \delta n, 1\cdots, \delta n, ^{\delta dx}1’ \ldots, dx))--0 .

Let \epsilon_{i_{1}\cdots i_{m+2}} and \epsilon_{\alpha_{1}\cdots\alpha_{m}} be the \epsilon-symbol of S^{m+2} and W^{m}(t) respectively,

\epsilon_{i_{1}\cdot\cdot i_{m+2}}.\equiv\sqrt\overline{g}e_{i_{1}\cdots i_{m+z}}def , \epsilon_{\alpha_{1}\cdots\alpha_{m}}\equiv\sqrt\overline{g^{*}(t)}e_{\alpha_{1}\cdots\alpha_{m}}def

the symbol e_{i_{1}\cdots i_{m+}2} meaning plus one or minus one, depending on whether
the indices i_{1}\cdots i_{m+2} denote an even permutation of 1, 2, \cdots , m+2 or odd
permutation, and zero when at least any two indices have the same value,
and also the symbol e_{\alpha_{1}\cdots\alpha_{m}} meaning similarly for the indices \alpha_{1} , \cdots , \alpha_{m} run-
ning from 1 to m, where g^{*}(t) means the determinant of g_{\alpha\beta}(t) .

Then making use of the relation
n_{i}(t)\epsilon_{\alpha\alpha_{1}\cdots\alpha_{m-1}}=\epsilon_{jii_{1}\cdot\cdot i_{m}}n^{j}x_{\alpha}^{i_{1}}x_{\alpha_{1}^{2}}^{i}\cdots x_{\alpha_{m-1}}^{i_{m}}z1 ’

we have
((n’, \delta_{1}\tau, x_{\alpha}, x_{\alpha_{1}}1’\ldots, x_{\alpha_{m-1}}))

=n_{i}1(t)\delta_{1}^{i}\tau((n1’, _{1}n, X_{\alpha}, X_{\alpha_{1}}^{ },\cdots, X_{\alpha_{m-1}}))

=-\tau n_{l}(t)\delta_{1}^{l}n_{i}n^{\prime i}(t)\epsilon_{\alpha\alpha_{1}\cdot\cdot\alpha_{m-1}}121

=0

from (1. 11), consequently we get

((n1’, ^{\delta n}2’ ^{\delta_{1}\tau}1\cdots, dn, ^{dx}1’\ldots, dx))

(1. 19)
=-((n’, \delta_{1}\tau, x_{\alpha}, x_{\alpha_{1}}1’\ldots, x_{\alpha_{r-1}}, x_{p_{r}^{ }},\cdots, x_{\beta_{m-1}}))

\cross(-1)^{r}b_{\beta}^{\alpha}(t)b_{\beta_{1}^{1}}^{\alpha}21(t)\cdots b_{p_{r-1}^{r-1}}^{\alpha}1(t)du^{\beta}\Lambda du^{\beta_{1}}\Lambda\cdots\Lambda du^{\rho_{r-1}}\Lambda du^{\beta_{r\wedge}}\cdots
\Lambda du\beta_{m-} ,

=0 .
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Next making use of the relation
n_{i}1(t)\epsilon_{\alpha_{1}\cdots\alpha_{m}}=\epsilon_{ifi_{1}\cdots i_{m_{2}}}n^{f}(t)x_{\alpha_{1}}^{i_{1}}\cdots x_{\alpha_{m}}^{i}m ,

we have
n_{i}(t)\delta_{1}^{i}\epsilon_{\alpha_{1}\cdots\alpha_{m}}=\epsilon_{ifi_{1}\cdots i_{m_{2}}}\delta_{1}^{i}n^{f}x_{\alpha_{1}}^{i_{1}}\cdots x_{\alpha_{m}}^{i_{m}}1 ,

since G is isometric, we have

(1n_{i}(t)\delta_{1}^{i}\epsilon_{\alpha_{1}\cdots\alpha_{m}})’=\epsilon_{ifi_{1}\cdots i_{m}}\delta_{1}^{i}n^{\prime j}x_{\alpha_{1}^{1}}^{i}\cdots x_{\alpha_{m}}^{i_{m}}2

+\epsilon_{ijii\cdots i12m_{2}}\delta_{1}^{i}n^{f}x_{\alpha_{1}}^{\prime i_{1}}x_{\alpha_{2}^{2}}^{i}\cdots x_{\alpha_{ll}}^{i_{m}}

+\cdots\cdots\cdots

+\epsilon_{ifi_{1}\cdots i_{m}}\delta_{1}^{i}n^{f}x_{\alpha_{1}}^{i_{1}}\cdots x_{\alpha_{m-1}}^{i_{m-1}}x_{\alpha_{m}}^{\prime i_{m}}2 ,

on substituting (1. 10) and (1. 13) into the terms of the right-hand member
of the above equation, we have

(1n_{i}(t)\delta_{1}^{i}\epsilon_{\alpha_{1}\cdots\alpha_{m}})’=0 .

Therefore the quantity n_{i}1(t)\delta_{1}^{i}\sqrt{g^{*}(t)} is independent of t, then we have

r(((\delta n)’, n ,^{\delta_{1}\tau}12X^{ }\cdots ,
(1. 20)

=(-1)^{r-1}m ! H_{r}’n_{i}\delta_{1}^{i}\tau 11 dA (t)

where dA(t) is the area element of W^{m}(t), and using (1. 12), we obtain

((n1’, n, \delta_{1}d\tau, \delta n, 21\cdots, \delta n, ^{dx}1’\ldots, dx))

=-((\delta_{1}d\tau, _{2}n, _{1}n’, ^{\delta n}11’ \ldots, dx))

=(-1)^{r+1}((\delta_{1\theta}\tau, _{2}n, _{1}n_{i}\delta_{1}^{i}\tau_{\alpha}g^{\alpha\gamma}x_{\gamma}, x_{\alpha_{1}}\cdots x_{\alpha_{r-1}}x_{\beta_{r}}\cdots, x_{\rho_{m-1}}))

\cross b_{\beta}^{\alpha};\cdots b_{\beta^{r-1}1}^{\alpha},.du^{\theta}-\Lambda du^{\beta_{1}}\Lambda\cdots\Lambda du^{\beta_{r-}}‘\Lambda du^{\beta}’\Lambda\cdots\Lambda du^{\beta_{m-1}}11

=(-1)^{r+1}(n_{i}\delta_{1}^{i})^{2}\epsilon_{\gamma\alpha_{1}\cdots\alpha_{r-1}\rho_{\gamma}\cdots p_{m-1}}g^{\gamma\alpha_{11}}b_{\beta_{1}^{1}}^{\alpha}\cdots b_{\beta_{r-1}^{r-1}}^{\alpha}\epsilon\tau_{\alpha}\tau_{\theta}1\theta\beta_{1}\cdots\beta_{m-1} dA (t).

Putting
(m-1) ! c_{(r)}^{\alpha\beta}=\epsilon_{\alpha_{1}\cdot\cdot\alpha_{r-1}\alpha_{r}\cdots\alpha_{m-1}}^{\alpha}\epsilon^{\beta\beta_{1}\cdots\rho,.\beta_{r}\cdots\alpha_{m-1}}-1b_{\beta_{1}^{1}}^{\alpha}\cdots b_{\beta_{r-1}^{r-1}}^{\alpha}111 ,

we get
((n1’, _{2}n, ^{\delta_{1}d\tau}11’\ldots, dx))

\langle 1. 21)
=(-1)^{r-1}(m–1) ! c_{(r)}^{\alpha\beta}\tau_{\alpha}\tau_{\beta}1(n_{i}\delta_{1}^{t})^{2}1 dA.

By making use of (1. 16), (1. 18), (1. 19), (1. 20), (1. 21) and the relation
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\delta(\delta_{1}^{i})=\Gamma_{f1}^{i}x_{\gamma}^{f}du^{\gamma} ,

we have

d((n’, n, ^{\delta_{1}\tau}121’ \ldots, dx))

= \frac{(-1)^{r-1}m!}{r}\{1H_{r}’n_{i}\delta_{1}^{i}\tau dA+\frac{r}{m}c_{(r)}^{\alpha\beta}(n_{i}\delta_{1}^{i})^{2}\tau_{\alpha}\tau_{\beta}dA\}111

+((n’, _{2}^{n}1 ’
^{\tau\Gamma_{j1}x_{\gamma}^{j}du^{\gamma}}

-((\Gamma_{f1}n^{f}\tau_{\gamma}du^{\gamma}, n, \delta_{1}\tau, \delta n, \cdots, \delta n_{1}, dX^{ },\cdots, dx))121^{\cdot}

After some calculations, we have

((n1’, _{2}n, \tau\Gamma_{f1}x_{\gamma}^{f}du^{\gamma}, \delta n_{1}, \cdots, \delta n_{1}, dX^{ },\cdots, dx))

=(-1)^{r-1}\tau(m-1) ! n_{i}(t)\delta_{1}^{i}\Gamma_{fk1}n^{k}(t)x_{\alpha}^{j}\tau_{\beta}c_{(r)}^{\alpha\beta}111 dA (t),

since c_{(r)}^{\alpha\beta}1 is the symmetric tensor, using the symbol (\alpha\beta) for the symmetric
part for the indices \alpha and \beta, we get

((n1’, _{2}n, ^{\tau\Gamma_{f1}x_{\gamma}^{f}du^{\gamma}}1’\ldots, dx))

(1. 22)
=(-1)^{r-1}\tau (m-1) ! n_{i}(t)\delta_{1}^{i}\Gamma_{fk1}n^{k}(t)x_{(\alpha}^{j}\tau_{\beta)}c_{(r)}^{\alpha\beta}111 dA(t),

where \Gamma_{fk1} means g_{kl}\Gamma_{f1}^{l} .
On the other hand, since G is isometric, that is, \partial g_{ij}/\partial x^{1}=0 , we obtain

\Gamma_{f1}^{i}n^{f}(t)n_{i}(t)11=\frac{1}{2}g^{ik}(\frac{\partial g_{kf}}{\partial x^{1}}+\frac{\partial g_{1k}}{\partial x^{f}}-\frac{\partial g_{f1}}{\partial x^{k}})_{11}n^{f}(t)n_{i}(t)

= \frac{1}{2}\frac{\partial g_{kf}}{\partial x^{1}}n^{j}(t)n^{k}(t)=011^{\cdot}

Making use of the vector \delta_{1}^{i} by the expression

\delta_{1}^{i}=n_{l}(t)\delta_{1}^{l}n^{i}(t)+\phi^{\beta}x_{\beta}^{i}(t)11 ’

we get

-((\Gamma_{j1}n^{f}(t)\tau_{\gamma}du^{\gamma}, _{2}n, ^{\delta_{1}\tau}111

(1. 23)
=(-1)^{r-1}\tau(m-1) ! n_{i}(t)\delta_{1}^{i}\Gamma_{fk1}n^{j}x_{(\alpha}^{k}\tau_{\beta)}c_{(r)}^{\alpha\beta}111 dA (t).

Thus from (1.22), (1.23) and \Gamma_{if1}+\Gamma_{ji1}=\partial g_{if}/\partial x^{1}=0, we can see the fol-
lowing result



64 Y. Katsurada

((n’, n,12x_{r_{1}}^{f}\tau\Gamma_{j1}du^{\gamma},\delta n ,\cdots ,\delta n_{1} ,^{dx} \cdots ,

-((\Gamma_{j1}n^{j}(t)\tau_{\gamma}du^{\gamma}, _{2}n, ^{\delta_{1}\tau}11

=(-1)^{r-1}(m-1) ! \tau n_{i}(t)\delta_{1}^{i}(\Gamma_{fk1}+\Gamma_{kf1})n^{f}(t)x_{(\alpha}^{k}\tau_{\beta)}c_{(r)}^{\alpha\beta}111 dA (t)

=0 .
Finally we have

d((n’, _{2}1 ^{\delta_{1}\tau}n,1\cdots, \delta n, ^{dx}1’ \ldots, dx))

(1. 24)
= \frac{(-1)^{r-1}m!}{r}\{1H_{r}’n_{i}(t)\delta_{1}^{i}\tau dA1+\frac{r}{m}C_{(r)}^{\alpha\beta}(n_{i}(t)\delta_{1}^{i})^{2}\tau_{\alpha}\tau_{\beta}dA\}11^{\cdot}

Integrating both members of (1. 25) over the interval 0\leqq t\leqq 1 , and putting

1C_{(r)}^{\alpha} \rho=g(*0)^{1,12}\int^{1}0g^{*}(t)^{-1/2}c_{(r)}^{\alpha\beta}dt1

’

we have
m(\overline{H}_{r}-H_{r})n_{i}(0)\delta_{1}^{i}\tau 111 dA (0)+r_{11}C_{(r)}^{\alpha\beta}\tau_{\alpha}\tau_{\beta}(n_{i}(0)\delta_{1}^{l})^{2} dA (0)

(1. 25)
= \frac{r(-1)^{r-1}}{(m-1)!}d\int_{0}^{1}((n^{\prime _{n}}1’ 21 \delta n1 , dt .

Furthermore integrating both members of (1. 25) and applying Stokes’
theorem

\frac{m}{r}\int\int_{W^{m}111}(\overline{H}_{r}-H_{r})n_{i}(0)\delta_{1}^{i}\tau dA (0)+ \int\int W^{n\iota}(n_{i}(0)\delta_{1}^{i})^{2}C_{(r)}^{\alpha\beta}\tau_{\alpha}\tau_{\beta}11 dA (0)

= \frac{(-1)^{r-1}}{(m-1)!}\int_{\partial W^{m}}\int_{0}^{1} ((n1’, _{21}n, \delta_{1}\tau, \delta n, \cdots, \delta n, ^{dX^{ }}1’\cdots, dx)) dt .

Since W^{m} is closed, we have

\frac{m}{r}\int\int_{W^{m}111}(\overline{H}_{r}-H_{r})n_{i}(0)\delta_{1}^{i}\tau dA (0) \dagger\int\int_{W^{m}1}(n_{i}(0)\delta_{1}^{i})_{1}^{2}C_{(r)}^{\alpha\beta}\tau_{\alpha}\tau_{\beta} dA(0)=0 ,

using the hypotheses \overline{H}_{r}=H_{r}11 ’ we obtain

\int\int_{W^{m}1}(n_{i}(0)\delta_{1}^{i})_{1}^{2}C_{(r)}^{\alpha\beta}\tau_{\alpha}\tau_{\beta} dA (0)=0 .

On the other hand, from that the second fundamental form with respect
to n of W^{m}(t) is positive definite everywhere in W^{m}(t), 0\leqq t\leqq 1 , the quantity

1

C_{(r)}^{\alpha\beta}v_{\alpha}v_{\beta}1 becomes positive definite. From that the set of points in which
the orbit of transformation is tangent to W^{m} or \overline{W}^{m} has no inner point,
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a point on W^{m} such that n_{i}(0)\delta_{1}^{i}1=0 must be an isolate point. Moreover

since \tau is a continuous function of W^{m}, then we have

\tau=constant

for all points of W^{m} . Consequently we can arrive at the following result
W^{m}\equiv\overline{W}^{m} mod G .
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