Remarks on characterization of locally compact abelian groups

By Hiroshi OTAKI

(Received March 24, 1976)

§1. Introduction

In this note G is a locally compact Abelian group with ordered dual Γ . This means that there exists a closed semigroup P such that $P \cap (-P) = \{0\}$ and $P \cup (-P) = \Gamma$.

Let M(G) denote the usual Banach algebra of all complex measures on G and $\hat{\mu}(\mathcal{I})$ the Fourier-Stieltjes transform of measure $\mu \in M(G)$. $L^1(G)$ is the set of all functions integrable on G. H. Helson and D. Lowdenslager proved the following generalized F. and M. Riesz theorem.

THEOREM 0. Suppose G is compact, μ belongs to M(G) and μ is of analytic type. If $d\mu = d\mu_s + f(x)dx$, where μ_s is singular with respect to Haar measure dx of G and f belongs to $L^1(G)$.

Then, (1) both μ_s and f are of analytic type, (2) $\hat{\mu}_s(0) = 0$

In general, however, the conclusion of theorem 0 cannot be strengthened to " $\mu_s = 0$ ". Indeed, we can see such an example in Rudin's book (1).

In theorem 1 and 2 below we shall show that the necessary and sufficient condition that $\mu \in L^1(G)$ if μ is of analytic type is G = T or R.

§2. Compact case

THEOREM 1. Suppose G is compact. Then, the following statements (A) and (B) are equivalent.

(A) Let $\mu \in M(G)$ be of analytic type, then $\mu \in L^1(G)$.

(B) G = T.

We shall show some lemmas before we prove theorem 1.

LEMMA 1. [(1)]. Suppose G is compact. If there exists a non-zero singular measure $\mu_s \in M(G)$ which is of analytic type, $E_{\mu} = \{ \mathcal{T} \in \Gamma ; \hat{\mu}(\mathcal{T}) \neq 0, \mathcal{T} > 0 \}$ has no minimum element.

LEMMA 2. Suppose G is compact, then the following statemets (A)' and (B)' are equivalent.

- (A)' there exists a measure $\mu \in M(G)$ such that $\mu \in L^1(G)$ and μ is of analytic type.
- (B)' there exists a positive element $\gamma_0 \in \Gamma$ such that $\{\gamma \in \Gamma ; 0 < \gamma < \gamma_0\}$ is an infinite set.

[proof of lemma 2]

 $(B)' \Longrightarrow (A)'$

(case 1) We suppose that Γ is an Archimedean ordered group. Then, we may assume that Γ is a discrete subgroup of R. [(1): 8.1.2.]. We define a function f(x) be max ($|2\Gamma_0| - x, 0$). Then, f(x) is a positive definite function on R. If ϕ is the restriction function of f to Γ , it follows that ϕ is positive definite on Γ .

Hence, by Bochner's theorem, there exists a measure $\mu \in M(G)$ such that $\hat{\mu}(\hat{\tau}) = \phi(\hat{\tau})$ on Γ . We define a measure $\mu \in M(G)$ by $\hat{\mu}(\hat{\tau}) = \hat{\mu}(\hat{\tau} - 2\hat{\tau}_0)$. Clearly, μ is of analytic type.

By the hypothesis, $\{\gamma \in \Gamma; \hat{\mu}(\gamma) > \delta\}$ is an infinite set for some positive number δ . Hence, by Riemann-Lebesgue's lemma, μ is not absolutely continuous with respect to the Haar measure on G.

(case 2) We suppose that Γ is not an Archimedean ordered group. Then, there exists some positive elements $\gamma_1, \gamma_2 \in \Gamma$ such that $n\gamma_1 < \gamma_2$ for any $n \in \mathbb{Z}$.

We put $\Lambda = \{n \mathcal{I}_1; n \in \mathbb{Z}\}$. Since Λ is a subgroup of Γ , there existe a measure $\mu \in M(G)$ such that $\hat{\mu}(\mathcal{I}) = \chi_{\mathcal{I}_2 - \Lambda}(\mathcal{I})$.

Where $\chi_{r_2-\Lambda}$ is a characteristic function of $\gamma_2-\Lambda$.

It is easy to verify that μ is of analytic type. Since Λ is an infinite subgroup, by Riemann-Lebesgue's lemma, μ is not absolutely continuous with respect to the Haar measure on G.

(A)' \Longrightarrow (B)'. Suppose that there exists a measure $\mu \in M(G)$ such that μ is of analytic type, but does not belong to $L^1(G)$.

By theorem 0, we may assume that μ is singular with respect to the Haar measure on G. Since $\mu \neq 0$, there exists a positive element $\gamma_0 \in \Gamma$ such that $\hat{\mu}(\gamma_0) \neq 0$. Hence, by lemma 1, $\{\gamma \in \Gamma; 0 < \gamma < \gamma_0\}$ is an infinite set. q. e. d.

[proof of theorem 1]

 $(B) \Longrightarrow (A)$ trivial

 $(A) \Longrightarrow (B)$ By lemma 2, $\{ \mathcal{I} \in \Gamma ; 0 < \mathcal{I} < \mathcal{I}_0 \}$ is a finite set for any positive element $\mathcal{I}_0 \in \Gamma$. Hence, Γ is an Archimedean ordered group. So, Γ is a subgroup of R and $\{ \mathcal{I} \in \Gamma ; \mathcal{I} > 0 \}$ has a minimal element $\mathcal{I}_0 \in \Gamma$. Hence, G = T because of $\Gamma = \{ n\mathcal{I}_0 ; n \in Z \}$.

§ 3. Non-compact case

THEOREM 2. We suppose that G is not compact.

If any measure $\mu \in M(G)$ which is of analytic type belongs to $L^1(G)$, then G=R.

[proof of theorem 2]

 $\Gamma = G$ is a non-discrete ordered group. Hence, by (1) 8. 1. 5, $\Gamma = R \oplus D$. Where D is a discrete group.

We suppose $D \neq \{0\}$. Let P denote the closed semi-group which induces the order into Γ .

claim 1. There exists a non-zero element $d_0 \in D$ such that $(R+d_0) \cap P \neq \phi$.

Because, we assume $(R+d) \cap P = \phi$ for any $d \in D \setminus \{0\} = C$.

Then $(\bigcup_{d \in C} (R+d)) \cap P = \phi$.

Since $\widetilde{P\cup}(-P)=\Gamma$, $\bigcup_{d\in C}(R+d)\subset -P$. We fixe a non-zero element $-d_0 \in D$. Then, $R-d_0\subset -P$. Hence $R+d_0\subset P$.

We have a contradiction.

claim 2. $R+d_0 \subset P$ for d_0 of claim 1.

Because, by claim 1, $(R+d_0) \cap P \neq \phi$. Since $0 \in R+d_0$, $R+d_0 = (R+d_0) \cap (P \setminus \{0\}) \cup ((R+d_0) \cap P^c)$.

Since $(R+d_0)\cap (P\setminus\{0\}) \neq \phi$ and $R+d_0$ is connected, We have $(R+d_0)\cap P^c = \phi$. Hence, $R+d_0 \subset P$. Now, let denote δ_0 a dirac measure at 0 in R and m a Haar measure on \hat{D} . We define a measure $\mu \in M(G)$ by

$$d\mu(s, x) = d\delta_0(s) \times d\lambda(x)$$

Where $d\lambda(x) = (x, d_0) dm(x)$. $(s \in R, x \in \hat{D})$.

Since $\hat{\mu}(q, d) = \int_{R \times \hat{D}} (-s, q) (-x, d) d\delta_0(s) \times d\lambda(x)$ $= \hat{m} (d - d_0)$ $= \chi_{R \times \{d_0\}}(q, d) \quad (q \in R, d \in D)$

Hence, $\operatorname{supp}(\hat{\mu}) \subset R + d_0 \subset P$. Therefore, μ is of analytic type. But, by Riemann-Lebesgue's lemma, μ does not belong to $L^1(G)$. This is contrary to the hypothesis. q. e. d.

REMARK. Let P be a closed semi-group of R such that (i) $P \cup -(P) = R$ and (ii) $P \cap (-P) = \{0\}$. Then, P is $[0, \infty)$ or $(-\infty, 0]$. Hence, the converse of theorem 2 is the F. and M. Riesz theorem on R.

References

[1] W. RUDIN: Fourier analysis on groups. New York interscience, 1962.

Department of Mathematics Hokkaido University