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Primitive extensions of rank 3 of 2^{n}\cdot GL(n, 2)
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1. Introduction.

As is well known, (n+1)-dimensional general linear group GL(n 1, 2)
=PSL(n+1,2) over GF(2), the field with two elements is simple for n\geqq 2

and acts doubly transitively on P(n, 2), the set of the points of n-dimen-
sional projective space over GF(2) . Taking a point p in P(n, 2), set \Delta=

P(n, 2)-\{p\} and let H be the stabilizer of p in GL\{n 1, 2). Then H is
the semi-direct product of an elementary abelian group of order 2^{n} and
GL(n 2). The transitive permutation group {H,\Delta) has rank 2 extension
(GL(n+1,2), P(n, 2)). In this note, we determine primitive extensions of
rank 3 of (H, \Delta) .

THEOREM. Let (G, \Omega) be a primitive extension of rank 3 of (H, \Delta).
Then

(i) n=1 and (G, \Omega) is isomorphic to the dihedral group of order
10 acting on 5 letters, or

(ii) n=2 and (G, \Omega) is isomorphic to the alternating group A_{6} acting
on the unordered pairs of {1, 2, 3, 4, 5, 6}.

The idea of the proof of our Theorem is due to Bannai [2], which
determined primitive extensions of rank 3 of (PSL(n, 2^{f}), P(n-1,2^{f})), and
the author thanks Dr. E. Bannai. He is also grateful to the referee for
setting Lemma 7 a better form.

NOTATION. We follow the notation of Higman [4] mostly and use
[4] frequently. In a transitive permutation group G on a finite set \Omega, we
denote by a^{g} the image of a\in\Omega under g\in G, and for a subset X of \Omega, G_{X}

denotes the pointwise stabilizer of X, G_{X}= {g\in G|x^{g}=x for all x\in X}. If
X=\{a, b, \cdots\} , G_{X} is written G_{ab}\cdots . For a subset Y of G and g\in G, we let
Y^{g}=g^{-1}Yg , g^{Y}=\{g^{y}=y^{-1}gy|y\in Y\} and a^{Y}=\{a^{y}|y\in Y\} . The number of G_{a}-

orbit (a\in\Omega) counting \{a\} , is called the rank of (G, \Omega) .
The following notation will be fixed throughout this note. Let (G, \Omega)

be a primitive extension of rank 3 of (H, \Delta), that is, 1) (G, \Omega) is a primi-
tive permutation group of rank 3, and 2) there exists an orbit \Delta(a) of the
stabilizer G_{a} of a point a\in\Omega such that G_{a} acts faithfully on \Delta(a) and (G_{a} ,
\Delta(a)) is isomorphic to (H, \Delta) .
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Let \Gamma(a) be another non-trivial orbit of G_{a} and we may assume \Delta(a)^{g}

=\Delta(a^{g}) and \Gamma(a)^{g}=\Gamma(a^{g}) for all a\in f2 and all g\in G . Set k=|\Delta(a)|(=|\Delta|=

2(2^{n}-1)) and l=|\Gamma(a)| . The intersection numbers \lambda, \mu for G are defined by

|\Delta(a)\cap\Delta(b)|=(\begin{array}{l}\lambda if b\in\Delta(a)\mu if b\in\Gamma(a).\end{array}

Then the relation \mu l=k(k-\lambda-1) holds by [4, Lemma 5].

2. Proof of Theorem.

In case n=1, we easily obtain (i) of Theorem and so we assume
n\geqq 2 (so k=2(2^{n}-1)\geqq 6) in the following. Since (G_{a}, \Delta(a)), (H, \Delta) and
(GL(n+1,2)_{(10\cdot\cdot 0)} , P(n, 2)-\{(10\cdots 0)\}) are isomorphic to one another, we may
assume G_{a}=H=GL(n+1,2)_{(10\cdots 0)} and \Delta(a)=\Delta=P(n, 2)-\{(10\cdots 0)\} . Take
b=(010\cdots 0)\in\Delta(a) . It is easily seen that G_{ab} has the orbits-length 1, 1, k–2
on \Delta . As G has even order, \Delta(a) and \Gamma(a) are self-paired by Wielandt
[6, Theorem 16.5]. By [5], one of the following holds.

(*) l>1 is a divisor of k, and \lambda=0 or k–2,
(^{**}) l>k-2 and l is a divisor of k(k-2), and \lambda=0 or 1.
LEMMA 1. The cases (^{**}) with \lambda=0 and (^{*}) do not occur.
PROOF. Since \mu l=k(k-\lambda-1) and 0\leqq|\Gamma(a)\cap\Gamma(c)|=l-k+\mu-1 for c\in

\Gamma(a), we have

\mu=k-1 and l=k in case (^{*}) with \lambda=0 or (^{**}) with \lambda=0 ,

\mu=1 and l=k in case (^{*}) with \lambda=k-2 .
In all the cases, by Higman [4, Lemma 7], (\lambda-\mu)^{2}+4(k-\mu)=(k-1)^{2}+4

must be a square, say e^{2}, e>0 . But, since 4=(e+k-1)(e-(k-1)), we have
2 (i)=(e+k-1)-(e-(k-1))=3 or 0, a contradiction.

So we are left with the case (^{**}) with \lambda=1 and throughout the rest
of the paper we consider this case in detail. \Delta(a)\cap\Gamma(b) is a G_{ab} orbit of
length k–2 and take a point c\in\Delta(a)\cap\Gamma(b) . As \Delta(a) is self-paired, G
contains an element g interchanging a and b by [6, Theorem 16.4]. Set
d=c^{g}\in\Delta(b)\cap\Gamma(a) . Then |G_{ab} : G_{abd}|=|G_{ab} : G_{abc}^{g}|=|G_{ab} : G_{abe}|=k-2 .

Now we want to know the possible values of \mu, for then the possible
values of l are known from \mu l=k(k-2) and we can apply Higman [4,
Lemma 7]. Since \mu=|\Delta(a)\cap\Delta(d)| is a sum of lengths of some G_{ad} (or
G_{abl},) orbit on \Delta(a), it is sufficient to know the structure of G_{abd} and the
lengths of G_{abd} orbit on \Delta(a) . Let us set
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i

G^{(n,i)}=\{(\underline{*}*|*\underline{0})^{\}i}\in GL(n, 2)\} ,

R^{(n,i)}= \{(\underline{I_{i}}|*\frac{0}{I_{n-i}})\in GL(n, 2)\}whereI_{idenotesidentitymatrix},i\cross i

S^{(n,i)}= \{(\frac{I_{i}}{0}|*\underline{0})|*\in GL(n-i, 2)\} .

Moreover, set K=G_{ab}, M=G_{abd}, R=R^{(n+1,2)} and S=S^{(n+1,2)} . Then we have
K=Rs_{D}>R , R\cap S=1 and |K : M|=k-2 . We denote by \pi and \rho, the
natural homomorphism Karrow S and the natural isomorphism Sarrow GL (n –1, 2),
respectively. Furthermore, set N=\rho\pi(M) and m=|S : \pi(M)|=|GL(n–1,
2): N| . Then we obtain m=(k-2)|M\cap R|/|R| . Note that ] R|=2^{2(n-1)} and
m is a divisor of k– 2=2^{2}(2^{n-1}-1) .

LEMMA 2. If n\geqq 6 , then N^{t}\subseteq G^{(n-1,1)} or G^{(n-1,n-2)} for some t\in GL (n – 1, 2).
PROOF. From the above remark, it follows that m\neq 1 and m is not

divisible by 2^{(n-1)-2} . Hence by Bannai [1, Lemma 2], N fixes some complete
subspace W of dimension, say i-1 of P(n-2,2). Noting that GL(n
2) is transitive on the set of all (i-1)-dimensional complete subspaces of
P(n – 2, 2), we have N^{t}\subseteq G^{(n-1,i)} for some t\in GL (n –1, 2). But, since
|GL(n-1,2) : G^{(n-1,i)}|=(2^{n-1}-1)(2^{n-2}-1)\cdots(2^{n-1-(i-1)}-1)/(2^{i}-1)(2^{i-1}-1)\cdots (2

-1) and |GL(n-1,2):N^{t}| is a divisor of 2^{2}(2^{n-1}-1), i must be 1 or n –2.
Lemma 3. For n\geqq 4 , G^{(n,1)} and G^{(n,n-1)} have no proper subgroup of

index\leqq 6 .
PROOF. Let T be a subgroup of G^{(n,1)}=R^{(n,1)}S^{(n,1)} with |G^{(n,1)} : T|\leqq 6.

Then T\supseteq S^{(n,1)} , for otherwise simple group S^{(n,1)}\cong GL(n-1,2) would have
a proper subgroup T\cap S^{(n,1)} of index\leqq 6 and S^{(n,1)} would be contained in
the symmetric group of degree 6, which is a contradiction.
Hence T=(R^{(n,1)}\cap T)S^{(n,1)} and S^{(n,1)} normalizes R^{(n,1)}\cap T as G^{(n,1)}\ddagger>R^{(n,1)} .
Since R^{(n,1)}\cap T\neq 1 , take

r=(_{r_{n}}^{\frac{1}{r_{2}}}.\cdot.|I_{n-1})^{\in R^{(n,1)}\cap T-\{1\}}\underline{0}

Noting that



42 S. Iwasaki

( \frac{1}{0}|\frac{0}{A})r(\frac{1}{0}|\frac{0}{A^{-1}})=(^{\frac{1}{A}}|I_{n-1}]\underline{0}

and GL (n– 1, 2) is transitive on the set of non-zero elements of the (n-1)-
dimensional vector space over GF(2), we obtain R^{(n,1)}-\{1\}\subseteq r^{s^{(n,1)}}\subseteq T and
so G^{(n,1)}=R^{(n,1)}S^{(n,1)}\subseteq T. As for G^{(n,n-1)} , a similar argument yields the
result.

Combining Lemmas 2 and 3, we have N^{t}=G^{(n-1,1)} or G^{(n-1,n-2)} for
some t\in GL(n–1, 2) if n\geqq 6 , that is,

Lemma 4. If n\geqq 6 , then \pi(M)=M_{1}^{s} or M_{2}^{s} for some s\in S and m=
(k-2)/4, where

M_{1}= \{(’\frac{I_{2}}{0}|_{*}^{\frac{0}{10\cdots 0}})\in GL(n+1,2)\} and

M_{2}=|[^{\frac{I_{2}}{0}}|^{\frac{0}{*0\dot{0}1}}.\cdot]\in GL(n+1,2)|

Lemma 5. If n\geqq 6 , then \pi(M)\subseteq M.
PROOF. Since m=(k-2)|M\cap R|/|R|=(k-2)/4 , |MR:M|=4 . On the

other hand, \pi(M)\subseteq MR and so |\pi(M) : M\cap\pi(M)|\leqq 4 . Hence, Lemmas 3
and 4 yield \pi(M)=M\cap\pi(M) .

Now immediate calculations show
Lemma 6. The lengths of the orbits of M_{1} and M_{2} on \Delta(a) are

respectively

\underline{1,}\cdots\frac{\cdots,1}{6}

, (
\underline{k-6)/4,\cdots}\underline{(k-6)/4},4

’ and

1, 1, (k-6)/8, \cdots , (k-6)/8, (k+2)/8, \cdots , (k+2)/8 .
—-4 —-4

Lemma 7. If n\geqq 6 , the lengths of the orbits of M on \Delta(a) are
(1) 1, 1 ; 1, 1, 1, 1 ; k–6, or

(A subsum of these may be an orbit-length of M).
(2) 1, 1 ; (k-6)/2, (k+2)/2

\overline{(The}sum maybe an orbit-length of M).
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and R_{2}=\{

PROOF. Using s\in S(\subseteq K\subseteq G_{a}) in Lemma 4, set M’–M^{s^{-1}} Then the
lengths of the orbits of M on \Delta(a) are equal to those of the orbits of M’
on \Delta(a)^{s^{-1}}=\Delta(a) . Therefore it suffices to examine the orbits-structure of
M’ on \Delta(a) . Of course, M’(\subseteq K) fixes b=(010\cdots 0) and (110\cdots 0) .
Here we set

R_{1}=\{(^{\frac{I_{2}}{*0*\dot{0}}}...\cdot.||I_{n-1})\underline{0}\in R| (^{\frac{I_{2}}{\dot{0}*0*}}....\cdot||I_{n-1}]\underline{0}\in R|

Then |M’\cap R_{i}|\geqq 2^{n-3} , i=1,2 since |K:M’|=2^{2}(2^{n-1}-1) and |R_{i}|=2^{n-1}.
Take elements

r_{1}=(... \frac{I_{2}}{\alpha_{n+1}\dot{0}\alpha_{3}0}..|I_{n-1}]|\underline{0}\neq 1\in M’\cap R_{1} and r_{2}=(_{\dot{\beta}}^{\frac{I_{2}}{0\beta_{3}\dot{0}n+1}}...\cdot|I_{n-1})\underline{0}\neq 1\in M’\cap R_{2} .

By Lemmas 4 and 5, M’\supseteq\pi(M)^{s^{-1}}=M_{1} or M_{2} . Firstly, suppose that M’
\supseteq M_{1} . Clearly the followings are M_{1} orbits on \Delta(a) of length (k-6)/4=
2(2^{n-2}-1) ;

(00010\cdots 0)^{M_{1}}=\{(0,0, a_{3}, a_{4}, \cdots, a_{n+1})|(a_{4^{ }},\cdots, a_{n+1})\neq(0, \cdots, 0)\} ,
(10010\cdots 0)^{M_{1}}=\{(1,0, a_{3}, a_{4}, \cdots, a_{n+1})|(a_{4^{ }},\cdots, a_{n+1})\neq(0, \cdots, 0)\} ,
(01010\cdots 0)^{M_{1}}=\{(0,1, a_{3}, a_{4}, \cdots, a_{n+1})|(a_{4}, \cdots, a_{n+1})\neq(0, \cdots, 0)\}

and
(11010\cdots 0)^{M_{1}}=\{(1,1, a_{3}, a_{4^{ }},\cdots, a_{n+1})|(a_{4}, \cdots, a_{n+1})\neq(0, \cdots, 0)\}

r

On the other hand, it is easily seen that r_{1} carries an element of the first
(resp. the third) to one of the second (resp. the fourth), and r_{2} carries an
element of the first to one of the third. Therefore, the above four M_{1}-

orbits are contained in one M’-0rbit. Also, though four points (0010\cdots 0),
(0110\cdots 0), (1010\cdots 0) and (1110\cdots 0) are M_{1}Mrinvariant, these may or may not
be moved one another through r_{1} and r_{2} . The case M’\supseteq M_{2} is treated
similarly.

Since \mu is a subsum of the lengths of the orbits of M on \Delta(a) and is
a divisor of k(k-2), from Lemma 7 we have (note that \mu\neq 0, k by [4,
Corollary 3])

LEMMA 8. If n\geqq 6 , \mu is equal to one of the values ; 1,2,3,4,5,6,
(k-2)/2 and k–2.

LEMMA 9. The case (^{**}) with \lambda=1 and n\geqq 6 does not occur.
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PROOF. Noting that \mu l=k(k-2), by Lemma 8 we can apply [4, Lem-
ma 7] to conclude the result. For instance (set D=(\mu-1)^{2}+4(k-\mu)),

\mu=2 : D=4k-7 is a square and divides (2k+(1-\mu)(k+l))^{2}=(k(k-4)/
2)^{2} and so does 7^{2}\cdot 3^{4}, which is impossible since k=2(2^{n}-1) .

\mu=3 : D=4 (k–2) and so (k-2)/4=2^{n-1}-1 is a square, say e^{2}, e>0 .
Hence 2 (2^{n-2}-1)=(e-1)(e+1), which is a contradiction since e–l and
e+1 are even or odd simultaneously.

\mu=(k-2)/2 : D=(k/2)^{2}+8 is a square, say e^{2}, e>0 . Hence 8=(e-
(k/2))(e+(k/2)) and so k=7 or 2, a contradiction.

Now we are left with the (^{**}) with \lambda=1 and 2\leqq n\leqq 5 .
LEMMA 10. The case (^{**}) with \lambda=1 and 3\leqq n\leqq 5 does not occur.
PROOF. Since \mu is a divisor of k(k-2), k=2(2^{n}-1), we know the

possible values of \mu . In case n=3 with \mu\neq 2,4 and n=4,5, we have
a contradiction by [4, Lemma 7]. When n=3, the order of any proper
normal subgroup T of H is a divisor of 8. In fact, H=G^{(4,1)}=R^{(4,1)}S^{(4,1)}

and T\cap S^{(4,1)}\infty S^{(4,1)} , Hence T\cap S^{(4,1)}=1 or S^{(4,1)} . The former implies |T|

is a divisor of 8. The latter yields T=S^{(4,1)}(R^{(4,1)}\cap T) and, since R^{(4,1)}\cap

T\neq 1 , as in the proof of Lemma 3, we obtain T=H. On the other hand,
|G|=2^{6}\cdot 3^{3}\cdot 7\cdot 11 and 2^{6}\cdot 3^{2}\cdot 7\cdot 19 in case \mu=2 and 4, respectively. In both
cases G is not simple (e.g. , Hall [3]). In the former case, for a minimal
normal subgroup T of G, |H\cap T| is a divisor of 8 by the above remark.
Hence |T|=2^{i}\cdot 3^{2}\cdot 11,0\leqq i\leqq 3 . Since T is characteristic simple and |T|

contains the prime 11 to the first power only, T must be simple. This is
impossible from the order of T. Likewise we have a contradiction in
case \mu=4 .

LEMMA 11. In case (^{**}) with \lambda=1 and n=2, (G, \Omega) is isomorphic to
the alternating group A_{6} acting on the unordered pairs of {1, 2, 3, 4, 5, 6}.

PROOF. It is easily checked that {H,\Delta) is isomorphic to the symmetric
group S_{4} acting on the unordered pairs of {1, 2, 3, 4}. By [4, Lemma 7],

the case \mu=3 , |\Omega|=15 , |G|=360 remains. If G is not simple and has
a minimal normal subgroup T, then |T|=3\cdot 5,2^{2}\cdot 3\cdot 5 or 2^{2}\cdot 3^{2}\cdot 5 and T is
simple since T is characteristic simple. Hence T\cong A_{5} and G is isomorphic
to a subgroup of AutT\cong S_{5} , which contradicts |G|=360 . Thus G is
simple and isomorphic to A_{6} . On the other hand, the following is checked:
A_{6} has two conjugate classes of elementary abelian subgroups of order 4,
whose representatives are V_{1}=\{1 , (12) (34), (13) (24), (14) (23) \} and V_{2}=\langle 1 ,
(12) (34), (12) (56), (34) (56) \} . A_{6} has two conjugate classes of subgroups
isomorphic to S_{4} , whose representatives are the normalizers N_{A_{t}}(V_{1}) and
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N_{A_{6}}(V_{2}), whose 3-elements have one 3-cycle and two 3-cycles, respectively,
and there exists an outer automorphism of A_{6} taking one class into the
other. This establishes the lemma.

Thus we complete the proof of Theorem.
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