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In [9] we proved the following

THEOREM Let M be a \sigma-submanifold of a generalized complex space
form \overline{M}(\mu, \alpha) . The following conditions are equivalent if the real codimen-
sion is>2 :

(i) the normal connection of M is trivial;
(ii) \mu=\alpha and M is totally geodesic in \overline{M} .

\mu=\alpha means that the ambient space is a space of constant curvature. On
the other hand, the following theorem of Chern [1] is well-known:

THEOREM Let M (with real dimension>3 ) be a K\"ahler-Einstein

hypersurface of a complex space form \overline{M}(\mu). Then M is totally geodesic in
\overline{M} or \mu>0 .

The main purpose of this paper is to extend the first theorem to the
case of a real codimension 2 and nonpositive \alpha. Therefore we prove the
following extension of Chern’s theorem. We suppose that \overline{M}(\mu, \alpha) is
locally symmetric.

THEOREM Let M (with real dimension n>3 ) be a \sigma hypersurface of
a generalized complex space form \overline{M}(\mu, \alpha) . If M is Einstein, then M is
totally geodesic in \overline{M} or \mu-\alpha+n\nu>0 , \nu denoting the antiholomorphic
sectional curvature.

Finally, we give some considerations about \sigma-submanifolds and in
particular we give a new proof of the fact that S^{6}, considered with the
usual nearly K\"ahler structures, has no holomorphic hypersurfaces [3].

1. Let \overline{M} be an m-dimensional C^{\infty} Riemannian manifold with Levi-Civita
connection \tilde{\nabla} . Then the curvature tensor \tilde{R} of \overline{M} is given by \overline{R}(X, Y)=

\tilde{\nabla}_{[X,Y]^{-}}[\tilde{\nabla}_{X},\overline{\nabla}_{Y}] for any X, Y\in \mathscr{H} ( \overline{M}) where \mathscr{H}(\overline{M}) is the Lie algebra of C^{\infty}

vector fields on \overline{M} . Further, let \{E_{i}\} be a local orthonormal frame field
on \overline{M} . Then the Ricci tensor \tilde{S}(X, Y) is defined by

\tilde{S}(X, Y)=\sum_{i=1}^{m}\tilde{R}(X, E_{i}, Y, E_{i})

where \tilde{R}(X, E_{i}, Y, E_{i})=\tilde{g}(\tilde{R}(X, E_{i})Y, E_{i}) and \overline{g} is the metric tensor of \overline{M} .
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Let M be an n-dimensional submanifold immersed in \overline{M} . Then we
have

\overline{\nabla}_{X}Y=\nabla_{X}Y+\sigma(X, Y)

where \nabla_{X}Y denotes the component of \tilde{\nabla}_{X}Y tangent to M and X, Y\in \mathscr{H}(M) .
\sigma is a symmetric covariant tensor field of degree 2 with valqes in \mathscr{S}^{0}(M)^{\perp} .
We have further

\overline{\nabla}_{X}N=-A_{N}X+D_{X}N

where N is a normal vector field. -A_{N}X(resp. D_{X}N) denotes the tangen-
tial (resp. normal) component of \tilde{\nabla}_{X}N. D is the linear connection in the
normal bundle (called the normal connection) T(M)^{L} and A is a cross-
section of a vector bundle Hom (T(M)^{\perp}, S(M)) where S(M) is the bundle
whose fibre at each point is the space of symmetric linear transformations
of T_{x}(M)-T_{x}(M), x\in M, i.e. for any normal vector N\in T_{x}(M)^{\perp} , A_{N} : T_{x}(M)

arrow T_{x}(M) . We have
\tilde{g} (\sigma(X, Y), N)=g(A_{N}X, Y)=g(X, A_{N}Y)

where g denotes the induced metric tensor on M. \sigma and A are called both
the second fundamental form.

H= \frac{1}{n} trace \sigma is the mean curvature vector of M in \overline{M} and the subnEni-
fold is minimal if H=0 . If the second fundamental form \sigma vanishes
identically, M is called a totally geodesic submanifold.

Let R^{L} be the curvature tensor associated with D, i.e. R^{L}(X, Y)=

D_{[X,Y]}-[D_{X}, D_{Y}] . Then the normal connection is flat (or trivial) if R^{L}

vanishes identically. Note that the normal connection is flat if the (real)
codimension is one and if the (real) codimension is higher, then the normal
connection is not flat in general.

The equations of Gauss and Ricci are given respectively by
\tilde{R}(X, Y, Z, W)=R(X, Y, Z, W)

(1)
+\tilde{g}\{\sigma(X, W), \sigma(Y, Z)-\overline{g}\{\sigma(X, Z), \sigma(Y, W)

and
\{\tilde{R}(X, Y)N\}^{\perp}=R^{\perp}(X, Y)N-\sigma(A_{N}X, Y)+\sigma(X, A_{N}Y) (2)

or
\tilde{R}(X, Y, N, N’)=R^{L}(X, Y, N, N’)+g([A_{N}, A_{N},]X, Y) (2)’

where X, Y, Z, W\in \mathscr{H}(M) and N, N’\in \mathscr{H}(M)^{L} .
2. Let (\overline{M}, g, J) be a C^{\infty} Riemannian manifold which is almost Hermitian,
that is, the tangent bundle has an almost complex structure J and a
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Riemannian metric g such that g(JX, JY)=g(X, Y) for all X, Y\in \mathscr{H}(\overline{M}) .
Then dim \overline{M}=m=2p and \overline{M} is orientable.

A subspace T’ of T_{x}(\overline{M}) is holomorphic if JT’\subset T’ and a submanifold
M immersed in \overline{M} is a holomorphic submanifold if each tangent space of
M is holomorphic. The sectional curvature of \overline{M} restricted to a hol0-
morphic 2-plane is called the holomorphic sectional curvature

Studying almost Hermitian manifolds \overline{M} we find for some classes nice
identities for the curvature tensor [5], [6]. One of these is of particular
interest, namely

\tilde{R}(X, Y, Z, W)=\tilde{R}(JX, JY, JZ, JW)

for all X, Y, Z, W\in \mathscr{H}(\overline{M}) . A manifold such that the curvature tensor

satisfies this identity is called an RK-manifold [8].

We say further that an almost Hermitian manifold is of constant type
[4], [8] at x\in\overline{M} provided that for all X\in T_{x}(\overline{M}) we have

\lambda(X, Y)=\lambda(X, Z) (3)

with
\lambda(X, Y)=\tilde{R}(X, Y, X, Y)-\tilde{R}(X, Y, JX, JY)

whenever the planes defined by X, Z and X, Y are antiholomorphic and
g(Y, Y)=g(Z, Z). We recall that asubspace T’ of T_{x}(\overline{M}) is antiholomorphic
if JT’\subset T^{\prime\perp} , where T^{\prime\perp} is the orthogonal space of T’ in T_{x}(\overline{M}) . If the
condition (3) holds for all x\in\overline{M} , we say that \overline{M} has (pointwise) constant

type. Finally, if X, Y\in^{c}\mathscr{S}(\overline{M}) with g(X, Y)=g(JX, Y)=0, \lambda(X, Y) is con-
stant whenever g(X, X)=g(Y, Y)=1, then \overline{M} is said to have global con-
stant type.

We proved in [8] that an RK-manifold has (pointwise) constant type

if and only if there exists a C^{\infty} function \alpha such that
\lambda(X, Y)=\alpha\{g(X, X)g(Y, Y)-g(X, Y)^{2}-g(JX, Y)^{2}\} (4)

for all X, Y\in \mathscr{H}, (\overline{M}) . Furthermore, \overline{M} has global constant type if and only
if (4) holds with a constant function \alpha . This \alpha is called the constant type
of \overline{M} .

An RK-manifold with constant holomorphic sectional curvature \mu and
constant type \alpha is called a generalized complex space form [11]. The class
formed by such manifolds contains the well-known complex space forms
but it contains for example also S^{6} with the usual almost complex structure.
The curvature tensor of such a manifold is given by [9]

\tilde{R}(X, Y,Z, W)=\nu\{g(X,Z)g(Y, W)-g(X, W)g(Y,Z)\}+

\frac{1}{4}(\mu-\alpha)\{g(X,JZ)g(Y,JW)-g(X,JW)g(Y,JZ)+2g(X,JY)g(Z,JW)\} (5)
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where.’) denotes the antiholomorphic sectional curvature and this is given
by

4\nu=\mu+3\alpha . (6)

Note that a generalized complex space form is a space of constant cuna-
ture if and only if \mu=\alpha.

Let M be an n-dimensional holomorphic submanifold immersed in an
almost Hermitian manifold \overline{M} . M is called a \sigma-submanifold [10] if the
second fundamental form \sigma is complex bilinear, i.e.

3.

\sigma(JX, Y)=\sigma(X, JY)=J\sigma(X, Y) (7)

and this is equivalent with

A_{JN}X=JANX , A_{N}JX+JA_{N}X=0 (8)

for all X, Y\subset \mathscr{H}(M). It is easy to verify that a \sigma submanifold is a mini-
mal submanifold.

Let \nabla’ be the covariant differentiation with respect to the connection
in (tangent bundle)\oplus (normal bundle). Hence

(\nabla_{X}’\sigma)(Y, Z)=D_{X}\sigma(Y, Z)-\sigma(\nabla_{X}Y, Z)-\sigma(Y, \nabla_{X}Z)

for all X, Y, Z\in \mathscr{H}(M). Suppose further that \{E_{a}\} is a local orthonormal
frame field of \overline{M} such that E_{i} , i,j=1,2, \cdots , n are tangent to M and E_{\lambda} , \lambda,
\mu=n+1 , \cdots , m are normal to M. If we set A_{\lambda}=A_{E_{\lambda}} and

h_{if}^{\lambda}=g(A_{\lambda}E_{i}, E_{f}) or \sigma(E_{i}, E_{f})=\sum_{\lambda}h_{if}^{\lambda}E_{\lambda} ,

then we have the following formula for a minimal submanifold M of \overline{M}[2] :

\frac{1}{2}\Delta||\sigma||^{2}=||\nabla’\sigma||^{2}+\sum tr(A_{\lambda}A_{\mu}-A_{\mu}A_{\lambda})^{2}-\sum(trA_{\lambda}A_{\mu})^{2}

- \sum(4\tilde{R}_{\mu if}^{\lambda}h_{fk}^{\lambda}h_{ik}^{\prime\ell}-\tilde{R}_{k\mu k}^{\lambda}h_{ij}^{\lambda}h_{if}^{\mu}+2\tilde{R}_{fkf}^{i}h_{il}^{\lambda}h_{kl}^{\lambda}+2\tilde{R}_{fkl}^{i}h_{il}^{\lambda}h_{fk}^{\lambda}) . (9)

Here \Delta denotes the Laplacian and ||\sigma|| is the length of the second funda-
mental form \sigma .

Based on this formula (9) it is a straightforward calculation from (5)
to obtain, if \overline{M}(\mu, \alpha) is locally symmetric (and this will be supposed in
section 4 and 5),

Lemma 1 Let M be an n-dimensiond \sigma submanifold of an m-dimen-
sional generalized complex space form \overline{M}(\mu, \alpha) . Then

\frac{1}{2}\Delta||\sigma||^{2}=||\nabla’\sigma||^{2}+\sum tr(A_{\lambda}A_{t^{\ell}}-A_{\mu}A_{\lambda})^{2}

- \sum(trA_{\lambda}A_{\mu})^{2}+\frac{1}{4}\{(n+4)(\mu-\alpha)+4n\alpha\}||\sigma||^{2} . (10)
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The last therm may be replaced by (\mu-\alpha+n\nu)||\sigma||^{2}.
4. We shall prove now a partial generalization of a well-known theorem
of Chern [1]. Therefore we wish to consider an Einstein space M, i. e.
there exists a function \rho on M such that

S(X, Y)= \frac{\rho}{n}g(X, Y)

for all X, Y\in \mathscr{H}(M) . It is well-known that \rho is a constant function if n\geq 3 .
THEOREM 2 Let M^{n} be an n-dimensional \sigma-hypersurface of a genera-

lized complex space form M^{m}(\mu, \alpha)(m=n+2) . If n>3 and M is Einstein,
then either M is totally geodesic in \overline{M} or \mu-\alpha+n\nu>0 .

PROOF Since M is minimal it follows from (1)

S(X, Y)= \sum_{i=1}^{n}\tilde{R}(X, E_{i}, Y, E_{i})-\sum_{i=1}^{n}g\{\sigma(X, E_{i}), \sigma(Y, E_{i})\}t

Further we get by (5) and (6)

\sum_{i=1}^{n}\tilde{R}(X, E_{t}, Y, E_{i})=\{(n-1)\nu+\frac{3}{4}(\mu-\alpha)\}g(X, Y) .

If we take
E_{n+2}=JE_{n+1} ,

then we obtain from (7) or (8)

\sum_{i=1}^{n}g\{\sigma(X, E_{i}), \sigma(Y, E_{i})\}=2g(A_{n+1}X, A_{n+1}Y) .

Since M is Einstein, we obtain from these formulas

g(A_{n+1}X, A_{n+1}Y)= \frac{1}{2}\{(n-1)\nu+\frac{3}{4}(\mu-\alpha)-\frac{\rho}{n}\}g(X, Y) .

On the other hand, it follows easily

\rho=n\{(n-1)\nu+\frac{3}{4}(\mu-\alpha)\}-||\sigma||^{2}

which gives that ||\sigma|| is constant and

g(A_{n+1}X, A_{n+1}Y)= \frac{1}{2n}||\sigma||^{2}g(X, Y)

or
A_{n+1}^{2}= \frac{1}{2n}||\sigma||^{2} I. (11)

Suppose n=2q and take an orthonormal frame such that

E_{i^{*}}=JE_{i} , i=1,2, \cdots , q , i^{*}=q+1 , \cdots , n .
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It follows from (11) and since M is minimal that, for a suitable choice of
\{E_{i}\} , we can assume

A_{n+1}= \{\begin{array}{lllll}\lambda 0 \lambda -\lambda 0 -\lambda\end{array}) (12)

where \lambda=\frac{1}{\sqrt\overline{2n}}||\sigma|| .
If ||\sigma||=0, then M is totally geodesic in \overline{M} . From now on we assume

therefore ||\sigma||\neq 0 .
It is not difficult to see that (12) implies

\nabla’\sigma=0 (13)

(see for example [7]). On the other hand, since ||\sigma|| is constant, it follows
from Lemma 1

|| \nabla’\sigma||^{2}=||\sigma||^{2}\{\frac{n+4}{2n}‘[|\sigma||^{2}-(\mu-\alpha+n\nu)\} .

This, together with (13) implies that \frac{n+4}{2n}||\sigma||^{2}=\mu-\alpha+n\nu holds only if
\mu-\alpha+n\nu>0 and this proves the theorem.

REMARK The theorem is also valid for n=2 if the scalar curvature
\rho is constant.
5. In [9] we proved the following

Lemma 3 Let M be a \sigma-submanifold of a generalized complex space
form \overline{M}(\mu, \alpha) . If the normal connection is trivial then

(i) \mu\leq\alpha and equality holds if and only if M is totally geodesic;
(ii) M is an Einstein manifold and the scalar curvature is constant.

The proof is based on the fact that if N is normal vector, then

g(A_{N}X, A_{N}Y)=- \frac{1}{4}(\mu-\alpha)g(X, Y) . (14)

From this lemma we obtain
THEOREM 4 Let M be an n-dimensional \sigma-hypersurface of a generalized

complex space form \overline{M}(\mu, \alpha) with \alpha\leq 0 . Then, the following statements
are equivalent

(i) the normal connection is trivid;
(ii) \mu=\alpha and M is totally geodesic in \overline{M} .



\sigma-hypersurfaces of generalized complex space forms 37

PROOF From (2) and (5) it is clear that (ii) implies (i).

Therefore suppose that the normal connection is flat. Hence by
Lemma 3 and Theorem 2 we have only to consider the case

\frac{n+4}{2n}||\sigma||^{2}=\mu-\alpha+n\nu>0 . (15)

It follows from (11) and (14)

|| \sigma||^{2}=-\frac{n}{2}(\mu-\alpha)

and with (15) this implies

(n+4)(\mu-\alpha)+2n\alpha=0 .
So \alpha is positive and this gives a contradiction. Hence M is totally geodesic
in \overline{M} .

REMARK If \alpha>0, then the theorem is true if \mu=\alpha but the case \mu\neq\alpha

is unsolved.
6. Let \overline{M}(\mu, \alpha) be a generalized complex space form and M a \sigma-submanifold
with real dimension >2 . It follows easily from the definition, from (5)
and (7) that M is an RK-manifold with constant type \alpha (see also [9]).

On the other hand, a K\"ahler manifold (\nabla J=0) has always vanishing
constant type. Hence, we obtain the following

THEOREM 5 Let M^{n}(n>2) be a \sigma-submanifold of a generalized
complex space form \overline{M}(\mu, \alpha) with \alpha>0 . Then, M cannot be a K\"ahler

manifold with respect to the induced almost complex structure.

A nearly K\"ahler manifold \overline{M}[4] is an almost Hermitian manifold such
that for all X\in \mathscr{H}(\overline{M})

\tilde{\nabla}_{X}(J)X=0 .
We proved in [9] that any holomorphic submanifold of a nearly K\"ahler

manifold is a \sigma-submanifold. Further, a nearly K\"ahler manifold with
constant holomorphic sectional curvature which is not a K\"ahler manifold
is locally isometric to S^{6}[5] . S^{6} is a generalized complex space form with
\mu=\alpha>0 and A. Gray proved in [3] that a 4-dimensional holomorphic
submanifold of S^{6} is K\"ahler. Hence we have

COROLLARY 6 S^{6} has no 4-dimensional holomorphic submanifolds.
This corollary is also proved in a different way by A. Gray [3]. Note
that we consider S^{6} with the usual nearly K\"ahler structures.
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