A Lindelöf type theorem on a Riemann surface

By Yukio NAGASAKA (Received June 15, 1976)

1. Introduction and definitions

Let f(z) be a bounded analytic function in |z| < 1. If f(z) has an asymptotic value α along some path in |z| < 1 terminating at $e^{i\theta_0}$, then f(z) has necessarily the angular limit α at $e^{i\theta_0}$ (Lindelöf's theorem). In this paper we study Lindelöf type theorem for an analytic mapping from a hyperbolic Riemann surface into another Riemann surface.

Let R be a hyperbolic Riemann surface. For a positive superharmonic function s on R and a closed set F in R, we denote by $s_F^R = s_F$ the lower envelope of the family of all positive superharmonic functions s' on R with $s'(z) \ge s(z)$ quasi-everywhere on F. Then s_F is superharmonic on R. Let $\gamma: z=z(t)$, $0 \le t < 1$, be an arc in R such that γ tends to the ideal boundary of R as $t \to 1$. This means that for every compact set K in R there exists $t_0 = t_0(K)$, $0 < t_0 < 1$, with $\{z(t) | t_0 \le t < 1\} \subset R - K$. Let $\{R_n\}_{n=1}^{\infty}$ be an exhaustion of R. For $0 < \delta < 1$, we set

$$\begin{split} & \varOmega_n(\varUpsilon;\ \delta) = \left\{z \in R \,\middle|\, 1_{\varUpsilon\cap(R-R_n)}(z) \!>\! \delta\right\}, \\ & \varOmega^*(\varUpsilon;\ \delta) = \left\{z \in R \,\middle|\, 1_{\varUpsilon}(z) \!>\! \delta\right\},\ \varOmega_n^*(\varUpsilon;\ \delta) = \varOmega^*(\varUpsilon;\ \delta) \cap (R \!-\! \bar{R}_n)\,. \end{split}$$

Then $\bigcap_{n=1}^{\infty} \Omega_n^*(\Upsilon; \delta) = \phi$. If $\lim_{n \to \infty} 1_{\tau \cap (R-R_n)}(z) \not\equiv 0$, $\bigcap_{n=1}^{\infty} \Omega_n(\Upsilon; \delta) \neq \phi$. Let $\phi: R \to X$ be an arbitrary mapping from R into a compact metric space X. We define the following cluster sets:

$$\phi(\varUpsilon;\ \delta) = \bigcap_{n=1}^{\infty} \overline{\phi(\Omega_n(\varUpsilon;\ \delta))},\ \phi_{\scriptscriptstyle d}(\varUpsilon) = \bigcup_{0 < \delta < 1} \phi(\varUpsilon;\ \delta),$$

$$\phi^*(\varUpsilon;\ \delta) = \bigcap_{n=1}^{\infty} \overline{\phi(\Omega_n^*(\varUpsilon;\ \delta))},\ \phi_{\scriptscriptstyle d}^*(\varUpsilon) = \bigcup_{0 < \delta < 1} \phi^*(\varUpsilon;\ \delta).$$

In § 2, we show a relation between $\phi_{A}(r)$ and $\phi_{A}^{*}(r)$. If R is an open unit disk $\{|z| < 1\}$ and $r_{\theta}: z = z_{\theta}(t) = te^{i\theta}$, $0 \le t < 1$, then $\phi^{*}(r_{\theta}; \delta)$ coincides with an angular cluster set at $e^{i\theta}$ and $\phi_{A}^{*}(r_{\theta})$ coincides with the outer angular cluster set at $e^{i\theta}$. Let $\phi(z)$ be an analytic mapping from R into another hyperbolic Riemann surface R', let R'^{*} be a metrizable compactification of R' and let $\lim_{t\to 1} \phi(z(t)) = b \in R'^{*}$. We set

$$E(b) = E(b; R'^*) = \left\{ a \in R'^* \middle| \lim_{n \to \infty} \overline{\lim}_{w \to a} 1_{F_n(b)}(w) > 0 \right\},\,$$

where

$$F_n(b) = \left\{ w \in R' \middle| d(w, b) \le \frac{1}{n} \right\}$$
 (d is a metric on R'^*).

In § 3, we have $\phi_{A}(r) \subset E(b)$ (Proposition 2). By this proposition we investigate Lindelöf type theorem and Koebe type theorem. And we refer to Green lines and Kuramochi boundary.

A relation between $\phi_{A}(7)$ and $\phi_{A}^{*}(7)$

Let R be a hyperbolic Riemann surface, $\gamma: z=z(t)$, $0 \le t < 1$ be an arc in R such that γ tends to the ideal boundary of R as $t\rightarrow 1$ and $\phi: R\rightarrow X$ be an arbitrary mapping from R into a compact metric space X.

Lemma 1. (i) If $\lim_{n\to\infty} 1_{r\cap(R-R_n)}(z) \not\equiv 0$ on R, then $\phi(R) \subset \phi_{\mathcal{A}}(r)$. (ii) If $\lim_{r\to(R-R_n)} 1_{r\cap(R-R_n)}(z) \equiv 0$ on R, then $\phi_{\mathcal{A}}(r) \subset \phi_{\mathcal{A}}^*(r)$.

Proof. (i) We set $u(z) = \lim_{n \to \infty} 1_{r \cap (R-R_n)}(z)$. Then u(z) is a positive harmonic function and $0 < u(z) \le 1$ on R. Suppose 0 < u(z) < 1 on R. (If u(z) $\equiv 1$ on R, then $R \subset \Omega_n(\tau; \delta)$ for any n and δ .) Since $1_{\tau \cap (R-R_n)}(z) > u(z)$ for every $z \in R$ and every n, $z \in \Omega_n(r; u(z))$ for every $z \in R$ and every n. Then $\phi(z) \in \phi(\Upsilon; u(z)) \subset \phi_{\perp}(\Upsilon)$ for every $z \in R$. Therefore $\phi(R) \subset \phi_{\perp}(\Upsilon)$.

(ii) Since $1_{r \cap (R-R_n)}(z) \le 1_r(z)$ for every $z \in R$, we have $\Omega_n(r; \delta) \subset \Omega^*(r; \delta)$ for every n and every δ , $0 < \delta < 1$. Now we fix δ , $0 < \delta < 1$ and m. By $\lim 1_{\tau \cap (R-R_n)}(z) \equiv 0$ on R, there exists n such that $1_{\tau \cap (R-R_n)}(z) \leq \delta$ for every $z\!\in\!\bar{R}_{m}\text{.}\quad\text{Hence }\Omega_{n}(\varUpsilon;\delta)\cap\bar{R}_{m}\!=\!\phi\text{.}\quad\text{Then }\Omega_{n}(\varUpsilon;\delta)\!=\!\Omega_{n}(\varUpsilon;\delta)\cap(R-\bar{R}_{m})\!\subset\!\Omega_{m}^{*}(\varUpsilon;\delta).$ Hence we have $\phi(\Upsilon; \delta) \subset \phi^*(\Upsilon; \delta)$ and $\phi_{\Delta}(\Upsilon) \subset \phi_{\Delta}^*(\Upsilon)$.

PROPOSITION 1. Let $g(z, z_0)$ be a Green function on R with pole at z_0 . $\underset{n\to\infty}{If} \ \underset{r\cap(R-R_n)}{\lim} 1_{r\cap(R-R_n)}(z) \equiv 0 \ \ on \ \ R \ \ and \lim_{\substack{z\in \mathcal{Q}^*(r;\;\delta)\\z\to idbdy\;of\;R}} g(z,z_0) = 0 \ \ for \ \ any \ \ \delta, \ \ 0<\delta<1, \ \ then$ $\phi_{\Delta}(\gamma) = \phi_{\Delta}^*(\gamma).$

Proof. We have only to prove $\phi_{\perp}^*(r) \subset \phi_{\perp}(r)$ by Lemma 1 (ii). Suppose $\alpha \in \phi^*(\Upsilon; \delta)$ for some δ , $0 < \delta < 1$. Then there exists a sequence $\{z_k\}_{k=1}^{\infty}$ such that $1_r(z_k) > \delta$, $z_k \to the ideal boundary of R as <math>k \to \infty$ and $\lim \phi(z_k) = \alpha$. For any m there is a constant C_m such that $1_{\tau \cap \bar{R}_m}(z) \leq C_m g(z, z_0)$ for every $z \in R$. By $\lim_{k \to \infty} g(z_k, z_0) = 0$, $\lim_{k \to \infty} 1_{\tau \cap \overline{R}_m}(z_k) = 0$. Since $1_{\tau}(z) \le 1_{\tau \cap (R-R_m)}(z) + 1_{\tau \cap \overline{R}_m}(z)$ on R, we have $\lim_{k \to \infty} 1_{\tau \cap (R-R_m)}(z_k) \ge \delta$. Hence for any δ' , $0 < \delta' < \delta$, there is some $n = n(m, \delta')$ such that $\{z_k\}_{k=n}^{\infty} \subset \Omega_m(\Upsilon; \delta')$. Then $\alpha \in \phi(\Upsilon; \delta') \subset \phi_{\Delta}(\Upsilon)$. Thus we have $\phi_{\perp}^*(\Upsilon) \subset \phi_{\perp}(\Upsilon)$.

3. A relation between $\phi_{a}(7)$ and E(b)

Let R be a hyperbolic Riemann surface and R^* be a metrizable compactification of R and $\Delta = R^* - R$. For every $b \in R^*$, we set

$$F_n(b) = \left\{ z \in R \middle| d(z, b) \leq \frac{1}{n} \right\} \qquad (n = 1, 2, \dots),$$

where d is a metric on R^* . We consider the following subsets of R^* :

$$E(b) = E(b; R^*) = \left\{ a \in R^* \middle| \lim_{n \to \infty} \overline{\lim}_{z \to a} 1_{F_n(b)}(z) > 0 \right\},$$

 $E_1(b) = E_1(b; R^*) = \left\{ a \in R^* \middle| \text{Any positive superharmonic function } s(z) \text{ on } R \text{ with } \lim_{z \to b} s(z) = +\infty \text{ has always the property } \lim_{z \to a} s(z) = +\infty \right\},$

$$E = E(R^*) = \{a \in \Delta | \text{ There is not a barrier function at } a\},$$

$$\Delta_s = \Delta_s(R^*) = \left\{ b \in \Delta \middle| \lim_{n \to \infty} 1_{F_n(b)}(z) > 0 \text{ for every } z \in R \right\}.$$

Lemma 2. (i) $b \in E(b)$ for every $b \in R^*$.

- (ii) If $b \in \mathbb{R}^* \Delta_s$, then $E(b) \subset E_1(b)$.
- (iii) If $b \in R$, then $E_1(b) = \{b\}$. If $b \in \Delta \Delta_s$, then $E_1(b) \subset \Delta$. If $b \in \Delta_s$, then $R \subset E(b)$.
 - (iv) If $b \in \Delta$, then $E(b) \cap \Delta \subset E \cup \{b\}$.

Proof. (i) By $\lim_{z\to b} 1_{F_n(b)}(z)=1$ for any n, we have $b\in E(b)$.

(ii) We note that for every $b \in R^* - \Delta_s$ there exists a positive superharmonic function $s_b(z)$ on R with $\lim_{z \to b} s_b(z) = +\infty$. Let $b \in R^* - \Delta_s$ and $a \notin E_1(b)$. Then there exists a positive superharmonic function s on R such that $\lim_{z \to b} s(z) = +\infty$ and $\lim_{z \to a} s(z) = \lambda < +\infty$. We set $\inf_{z \in F_n(b)} s(z) = \alpha_n$. Then $\lim_{n \to \infty} \alpha_n = +\infty$ and $1_{F_n(b)}(z) \le \frac{1}{\alpha_n} s(z)$ on R. Hence

$$\lim_{n\to\infty}\overline{\lim_{z\to a}}\ 1_{F_n(b)}(z) \leq \lim_{n\to\infty}\overline{\lim_{z\to a}}\frac{1}{\alpha_n}s(z) = \lambda\lim_{n\to\infty}\frac{1}{\alpha_n} = 0 \ .$$

Then $a \notin E(b)$. Hence we have $E(b) \subset E_1(b)$ for every $b \in \mathbb{R}^* - \mathcal{A}_s$.

(iii) Let $b \in R$ and let g(z, b) be the Green function of R with pole at b. Since $\sup_{z \in R - V(b)} g(z, b) < + \infty$ for any neighbourhood V(b) of b, we have $E_1(b) = \{b\}$ for every $b \in R$. Let $b \in \Delta - \Delta_s$ and $a \in R$. Then $\lim_{n \to \infty} \overline{\lim_{z \to a}} \ 1_{F_n(b)}(z) = \lim_{n \to \infty} 1_{F_n(b)}(a) = 0$. Hence we have $E(b) \cap R = \phi$ for every $b \in \Delta - \Delta_s$. If $b \in \Delta_s$,

then $\lim_{n\to\infty}\overline{\lim_{z\to a}}\,1_{F_n(b)}(z)=\lim_{n\to\infty}1_{F_n(b)}(a)>0$ for every $a\in R$. Hence we have $R\subset E(b)$ for every $b\in \mathcal{A}_s$.

(iv) Let $c \in \mathcal{A} - E \cup \{b\}$. Then there exists a positive superharmonic function $s_c(z)$ such that $\lim_{z \to c} s_c(z) = 0$ and $\inf_{z \in R - V(c)} s_c(z) > 0$ for any neighbourhood V(c) of c. Since $b \neq c$, there is some n_0 and some neighbourhood U(c) of c such that $\overline{F_{n_0}(b)} \cap \overline{U(c)} = \phi$. We set $\inf_{z \in F_{n_0}(b)} s_c(z) = \alpha_{n_0}$. Then $\alpha_{n_0} > 0$ and $1_{F_{n_0}(b)}(z) \leq \frac{1}{\alpha_{n_0}} s_c(z)$ on R. Hence $\overline{\lim}_{z \to c} 1_{F_{n_0}(b)}(z) \leq \frac{1}{\alpha_{n_0}} \overline{\lim}_{z \to c} s_c(z) = 0$. Thus $c \notin E(b)$. Therefore we have $E(b) \cap A \subset E \cup \{b\}$.

PROPOSITION 2. Let ϕ be an analytic mapping from R into another hyperbolic Riemann surface R' and R'^* be a metrizable compactification of R'. Let $\Upsilon: z=z(t), \ 0 \le t < 1$ be an arc such that z(t) tends to the ideal boundary of R' as $t \to 1$. If $\lim_{t \to \infty} \phi(z(t)) = b \in R'^*$, then $\phi_{A}(\Upsilon) \subset E(b; R'^*)$.

Proof. We fix δ $(0 < \delta < 1)$. We have only to show that for every $a \in R'^* - E(b)$ there exists m = m(a) such that $\overline{\phi(\Omega_m(r;\delta))} \not\ni a$. Let $a \in R'^* - E(b)$. Then there exists some n_0 and some neighbourhood V(a) of a such that $1_{F_{n_0}(b)}(w) < \frac{\delta}{2}$ on $V(a) \cap R'$. Since $\phi(z(t))$ tends to b as $t \to 1$, there exists some $r_m = r \cap (R - R_m)$ such that $\phi(r_m) \subset F_{n_0}(b)$. Then by $1_{\phi(r_m)}(w) \le 1_{F_{n_0}(b)}(w)$ on R', we have $1_{\phi(r_m)}(w) < \frac{\delta}{2}$ on $V(a) \cap R'$. Next we note $1_{r_m}(z) \le 1_{\phi(r_m)} \circ \phi(z)$ on R. Hence $1_{\phi(r_m)} \circ \phi(z) > \delta$ for every $z \in \Omega_m(r; \delta)$, i. e. $1_{\phi(r_m)}(w) > \delta$ on $\phi(\Omega_m(r; \delta))$. Therefore we have $(V(a) \cap R') \cap \phi(\Omega_m(r; \delta)) = \phi$ and $a \notin \overline{\phi(\Omega_m(r; \delta))}$. Hence we have $\bigcap_{n=1}^{\infty} \phi(\overline{\Omega_n(r; \delta)}) \subset E(b)$ for every $0 < \delta < 1$. Thus $\phi_d(r) \subset E(b)$.

The next example shows that the case $\phi_{\mathcal{A}}(r) = E(b)$ happens and E(b) is not always a single point.

Example. Let R be the upper half disk $\{|z|<1, \operatorname{Im} z>0\}$. Let $\omega(z)$ be the harmonic measure of the segment [-1,0] with respect to R at $z\in R$. We take $\{\omega(z)\}$ for Q. Then Q-compactification R_Q^* of R (cf. 96 in [1]) is metrizable and resolutive. For every $0<\theta<\pi$, we set $\Gamma_\theta:z=z_\theta(t)=\frac{1}{2}$ $(1-t)e^{i\theta},\ 0\leq t<1$. We know that Γ_θ defines an ideal boundary point b_θ in R_Q^* as $t\to 1$ and $b_{\theta_1} \neq b_{\theta_2}$, if $\theta_1 \neq \theta_2$. Let $\phi:R\to R$ be the identity mapping i. e. $\phi(z)=z$. Then we have $\lim_{t\to 1}\phi(z_\theta(t))=b_\theta$ and $\phi_A(\Gamma_\theta)=E(b_\theta;R_Q^*)=\{b_\theta\in A_Q=R_Q^*-R|0<\theta<\pi\}$.

4. Remarks on Kuramochi boundary

Lemma 3. Let R^* be a metrizable compactification of R and $\Delta = R^* - R$. Let K_0 be a closed disk and $R_0 = R - K_0$.

- (i) Let $b \in \Delta$. Then $\lim_{n \to \infty} 1_{F_n(b)}^{R_0}(z) \equiv 0$ on R_0 if and only if $\lim_{n \to \infty} 1_{F_n(b)}(z) \equiv 0$ on R.
- (ii) Let $b \in \Delta \Delta_s$ and $a \in \Delta$. Then $\lim_{n \to \infty} \lim_{z \to a} 1_{F_n(b)}^{R_0}(z) = 0$ if and only if $\lim_{n \to \infty} \overline{\lim_{z \to a}} 1_{F_n(b)}(z) = 0$.

Proof. "if part" of (i) and (ii) are obvious. (i) We may assume $K_0 \cap F_1(b) = \phi$. We set $\sup_{z \in K_0} 1_{F_n(b)}(z) = \alpha_n$. We note that $1_{F_n(b)}(z) \le 1_{F_n(b)}^{R_0}(z) + \alpha_n$ $1_{K_0}(z)$ on R_0 . Suppose $\lim_{n \to \infty} 1_{F_n(b)}^{R_0}(z) = 0$. Then $\lim_{n \to \infty} 1_{F_n(b)}(z) \le (\lim_{n \to \infty} \alpha_n) 1_{K_0}(z) \le 1_{K_0}(z)$. Since $\sup_{z \in F_n(b)} 1_{K_0}(z) < 1$ for any n, we have $\lim_{n \to \infty} 1_{F_n(b)}(z) \equiv 0$ on R. (We know that if $\lim_{n \to \infty} 1_{F_n(b)}(z) \not\equiv 0$ on R then $\sup_{z \in F_n(b)} (\lim_{k \to \infty} 1_{F_k(b)}(z)) = 1$ for any n.)

(ii) Suppose $b \in \mathcal{A} - \mathcal{A}_s$ and $\lim_{n \to \infty} \overline{\lim_{z \to a}} \, 1_{F_n(b)}^{R_0}(z) = 0$. Then $\lim_{n \to \infty} \overline{\lim_{z \to a}} \, 1_{F_n(b)}(z) \le (\lim_{n \to \infty} \alpha_n) \cdot 1 = 0$. Hence we have $\lim_{n \to \infty} \overline{\lim_{z \to a}} \, 1_{F_n(b)}(z) = 0$.

We refer to Abschnitte 16, 17 in [1] for the definitions and properties of the Kuramochi compactification R_N^* of R. Let $\Delta_{N,1}$, $\Delta_{N,0}$ and $\Delta_{N,S}$ be the set of all minimal points of $\Delta_N = R_N^* - R$, the set of all non minimal points of Δ_N and the set of all singular points of Δ_N respectively.

Proposition 3. If $b \in \mathcal{A}_{N,1} - \mathcal{A}_{N,S}$, then $E(b; R_N^*) \cap \mathcal{A}_{N,1} = \{b\}$.

Proof. Let $a \in \mathcal{L}_1$, $a \neq b$. We shall show $a \notin E(b)$. Let $n \geq 2$. Suppose $n\tilde{g}_a(z) \geq \tilde{g}_b(z)$ for every $z \in R_0 = R - K_0$. Then by minimum principle and $\int_{\tilde{\sigma}K_0}^* d\tilde{g}_a = \int_{\tilde{\sigma}K_0}^* d\tilde{g}_b = 2\pi$, we may suppose $n\tilde{g}_a(z) > \tilde{g}_b(z)$ for every $z \in R_0$. Since $b \in \mathcal{L}_{N,1} - \mathcal{L}_{N,S}$, by Satz 17, 16 in [1] we see that $n\tilde{g}_a(z) - \tilde{g}_b(z)$ is a full-super-harmonic function on R_0 . Hence, by $a \in \mathcal{L}_1$, there exists a positive number c such that $c\tilde{g}_b(z) = n\tilde{g}_a(z)$ on R_0 . Hence a = b. This is a contradiction. Then there exists a point $z_0 \in R_0$ such that $n\tilde{g}_a(z_0) < \tilde{g}_b(z_0)$. We set $s_n(z) = \frac{\tilde{g}_{z_0}(z)}{\tilde{g}_{z_0}(b)}$ for every $z \in R_0$. We note $\tilde{g}_w(z) = \tilde{g}_z(w)$ for every $(z,w) \in R_N^* \times R_N^*$. Hence $s_n(z)$ is a full-superharmonic function on R_0 and $\lim_{z \to b} s_n(z) = 1$ and $\lim_{z \to b} s_n(z) = \frac{\tilde{g}_{z_0}(a)}{\tilde{g}_{z_0}(b)} < \frac{1}{n}$. Thus we see that there exists a family of superharmonic functions $\{s_n\}$ such that $\lim_{z \to b} s_n(z) = 1$ but $\lim_{z \to a} s_n(z) < \frac{1}{n}$. Hence we

have $\lim_{n\to\infty}\overline{\lim_{z\to a}}\,1_{F_n(b)}^{R_0}(z)=0$. Therefore we have $\lim_{n\to\infty}\overline{\lim_{z\to a}}\,1_{F_n(b)}(z)=0$ by Lemma 3. Thus $a\notin E(b)$.

5. Theorems

THEOREM 1. (Koebe type theorem) Let ϕ be an analytic mapping from R into another hypebolic Riemann surface R'. Let $\mathcal{T}: z=z(t)$, $0 \le t < 1$ be an arc such that z(t) tends to the ideal boundary of R as $t \to 1$ and $\lim_{n \to \infty} 1_{r \cap (R-R_n)} (z) \not\equiv 0$ on R. If $\lim_{t \to 1} \phi(z(t)) = \alpha \in R'^* - \Delta_s$, then $\alpha \in R$ and $\phi(z) \equiv \alpha$ for every $z \in R$.

Proof. By Lemm 1 (i) and Proposition 2, $\phi(R) \subset \phi_{\Delta}(r) \subset E(\alpha; R'^*)$. If $\alpha \in \Delta - \Delta_s$, by Lemma 2 (iii), $E(\alpha) \subset \Delta$. Then $\phi(R) \subset \Delta$. This is a contradiction. Then $\alpha \in R$ and $E(\alpha) = \{\alpha\}$ by Lemma 2 (iii). Thus we have $\phi(R) = \{\alpha\}$.

THEOREM 2. (Lindelöf type theorem) Let f be an analytic function on R with $f(R) \notin O_g$ and let f(R) : z = z(t), $0 \le t < 1$ be an arc such that z(t) tends to the ideal boundary of R as $t \to 1$ and $\lim_{n \to \infty} 1_{r \cap (R-R_n)}(z) \equiv 0$ on R. If $\lim_{t \to 1} f(z(t)) = \alpha$, then $f_{A}(f) = \{\alpha\}$.

Proof. If $\alpha \in f(R)$, then $E(\alpha; \overline{f(R)}) = \{\alpha\}$ by Lemma 2 (iii). Let $b \in \partial f(R)$. If $b \neq \infty$ (resp. $b = \infty$), then there exists $\varepsilon > 0$ (resp. n > 0) such that $\Omega_{\alpha} = f(R) \cup \{|w-\alpha| < \varepsilon\}$ (resp. $\Omega_{\alpha} = f(R) \cup \{n < |w| < +\infty\}$) is a hyperbolic Riemann surface. Then $f(R) \subset \Omega_{\alpha}$, $\alpha \in \Omega_{\alpha}$, $\Omega_{\alpha} \notin O_{g}$. Let $s_{\alpha}(w) = g(w, \alpha; \Omega_{\alpha}) |f(R)$, where $g(w, \alpha; \Omega_{\alpha})$ is a Green function of Ω_{α} with pole at α . Then $\lim_{w \to \alpha} s_{\alpha}(w) = +\infty$ but $\lim_{w \to \beta} s_{\alpha}(w) < +\infty$ for any $\beta(\neq \alpha) \in \overline{f(R)}$. Hence $E(\alpha; \overline{f(R)}) = E_{1}(\alpha; \overline{f(R)}) = \{\alpha\}$ by Lemma 2 (ii). Thus we have $f_{\alpha}(r) = E(\alpha; \overline{f(R)}) = \{\alpha\}$ by Proposition 2.

We consider the Green lines issuing from a fixed point $z_0 \in R$. The set L_r of all regular Green lines l admits the Green measure m. Godfroid proved that any AD-function f on R possesses a radial limit almost everywhere on L_r , i. e. $\lim_{\substack{z \in l \\ g(z, z_0) \to 0}} f(z)$ exists for every $l \in L_r$ except a set of Green measure zero (cf. P. 203 in [3]).

Theorem 3. If $R \notin O_{AD}$, then $\lim_{n \to \infty} 1_{l \cap (R-R_n)}(z) \equiv 0$ on R for almost every $l \in L_r$.

Proof. Suppose that there exists a subset $B \subset L_r$ such that m(B) > 0 and $\lim_{r \to \infty} 1_{i \cap (R-R_n)}(z) \not\equiv 0$ on R for any $l \in B$. Let f be a non constant AD-

function. Since m(B)>0, there is some $l_0\in E$ such that $\lim_{\substack{z\in l_0\\g(z,z_0)\to 0}} f(z)$ exists by Godfroid's theorem. Set $\lim_{\substack{z\in l_0\\g(z,z_0)\to 0}} f(z)=\alpha$. We know $f(R)\notin O_g$ for every AD-function f on R. Since $\lim_{\substack{n\to\infty\\n\to\infty}} 1_{l_0\cap(R-R_n)}(z)\not\equiv 0$ on R, by Theorem 1, $f(z)\equiv \alpha$ on R. This is contradiction.

By Godfroid's theorem and Theorem 1 we obtain the next theorem. Theorem 4. Let f be an AD-function. Then $f_{\downarrow}(l)$ is a single point for every $l \in L_r$ except for a set of Green measure zero.

By Proposition 2 and Proposition 3 we have the next theorem.

THEOREM 5. Let ϕ be an analytic mapping from R into another hyperbolic Riemann surface R' and $\Upsilon: z=z(t), \ 0 \le t < 1$ be an arc such that z(t) tends to the ideal boundary of R as $t \to 1$ and R'^*_N be the Kuramochi compactification of R'. We suppose $\lim_{t\to 1} \phi(z(t)) = b \in R'^*_N$. If $b \in R'$, then $\phi_A(\Upsilon) = \{b\}$. If $b \in A_{N,1} - A_{N,S}$, then $\phi_A(\Upsilon) \cap (R'^*_N - A_{N,0}) = \{b\}$.

References

- [1] C. CONSTANTINESCU and A. CORNEA: Ideale Ränder Riemannscher Flächen, Springer-Verlag, 1963.
- [2] R. NEVANLINNA: Analytic Functions, Springer-Verlag, 1970.
- [3] L. SARIO and M. NAKAI: Classification Theory of Riemann Surfaces, Springer-Verlag, 1970.

Department of Mathematics, Hokkaido University.