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A Lindelof type theorem on a Riemann surface

By Yukio NAGASAKA
(Received June 15, 1976)

1. Introduction and definitions

Let f(2) be a bounded analytic function in |z|<1. If f(z) has an asym-
ptotic value « along some path in |z|<1 terminating at ¢, then f{(z) has
necessarily the angular limit @ at ¢ (Lindelsf’s theorem). In this paper
we study Lindelsf type theorem for an analytic mapping from a hyperbolic
Riemann surface into another Riemann surface.

Let R be a hyperbolic Riemann surface. For a positive superharmonic
function s on R and a closed set F in R, we denote by sE=s, the lower
envelope of the family of all positive superharmonic functions s’ on R with
s'(2)>s(z) quasi-everywhere on F. Then s; is superharmonic on R. Let 7:
2=2(¢), 0<¢<1, be an arc in R such that 7 tends to the ideal boundary
of R as t—1. This means that for every compact set K in R there exists
th=1(K), 0<4<1, with {2(¢)|%,<t<1}cR—K. Let {R,)>., be an exhaus-
tion of R. For 0<0<1, we set

2,75 8)= {2 R|Lntn-np(2) >3},
2%(r; 8)={2€R|1,(2)>0}, Q1 (r; 3)= 2% ; 5)N(R—R,).
Then N2:(; )= If Iim Locnn(2)%0, N2,(7; 3)%4. Let 65 R—X be

an arbitrary mapping from R into a compact metric space X. We define
the following cluster sets :

875 )= NB@.T33), ¢all)= U g(r; 3),

0<s<1

#4(75 9)= NS@I(T3 3), $1(1)= U g*(r3 5).

0<s<1

In §2, we show a relation between ¢,(7) and ¢2(r). If R is an open unit
disk {|2[<1} and 7,: z=2,(¢)=2¢", 0<t<1, then ¢*(7,; 6) coincides with an
angular cluster set at ¢ and ¢;(7,) coincides with the outer angular cluster
set at €¢”. Let ¢(2) be an analytic mapping from R into another hyperbolic

Riemann surface R/, let R’* be a metrizable compactification of R’ and let
lim ¢(2(2)=beR™*. We set
-1
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Ep)=E(®b; R*) = {aER’*llim lim 1Fn(b)(w)>0} ,

N0 WG

where

F,,(b):{weR"d(w, b)< —71;—} (d is a metric on R'™*).

In § 3, we have ¢,(r)C E(b) (Proposition 2). By this proposition we investi-
gate Lindelof type theorem and Koebe type theorem. And we refer to
Green lines and Kuramochi boundary.

2. A relation between ¢,(7¥) and ¢@;(7)

Let R be a hyperbolic Riemann surface, 7:2=2(£), 0<¢<1 be an arc
in R such that 7 tends to the ideal boundary of R as #—1 and ¢:R—>X

be an arbitrary mapping from R into a compact metric space X.
LemMa 1. (i) If im Ly z,(2)#0 on R, then ¢(R)C@,(7).

7—00

(ii) If lim 1,4 (r-£,(2)=0 on R, then (NP5 (7).

Proof. (i) We set u(2)=lim 1,,z_r,(2). Then u(2) is a positive har-

n—00

monic function and 0<%(2)<1 on R. Suppose 0<u(2)<1 on R. (If u(2)
=1 on R, then RC®,(r; 5) for any n and 48.) Since 1,~r-z,(2)>u(2) for
every 2€R and every n, 2€2,(I'; u(z)) for every z€R and every n. Then
H(2)€G(T ; u(2))T@,(7) for every z€R. Therefore ¢(R)C¢,(7).

(ii) Since l;yr_r,(2)<1,(z) for every z€R, we have 2,(7; 0)CT X ; 0)
for every n and every 6, 0<d<1. Now we fix §, 0<d<1 and m. By
7111}”2 Line-m,y(2)=0 on R, there exists n such that l,yz-r,(2)<d for every

zeR,. Hence 2,(7;0)NR,=¢. Then 2,(r;8)=2,7; HN(R—R,)CTL(T;d)
Hence we have ¢(7; 8)C¢*(7; 6) and @,(7)C ¢ (7).

PrOPOSITION 1. Let g(z, 2,) be a Green function on R with pole at z,.
If lim 1,7(z-,,(2)=0 on R and lim g¢(z, 2)=0 for any 6, 0<d<1, then

Sty of R
oy (T)=¢j (T)
Proof. We have only to prove ¢;(1\Cg,(7) by (ii). Suppose
a€g*(7 ; 8) for some 6, 0<6<1. Then there exists a sequence {:}¥-1 such
that 1,(z,)>0, 2z~ the ideal boundary of R as k—>oco and lim d(z) = a.

k—ro0

For any m there is a constant C,, such that 1,4z, (2)<C, 9(2, 2) for every
2€R. By lim g(24, 20)=0, lim 1,45, (2:)=0. Since 1,(2)< Ly (2)+ LR (2)
k—ro0

k—oo

on R, we have lim 1,1z, (2:)=>0. Hence for any ¢, 0<5'<9, there is
k—rco

some n=n(m, 8') such that {z.}7.,C 2,7 ; d). Then acd(r; §")C,(r). Thus
we have ¢} (1T d4(7). '
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3. A relation between ¢,(¥) and E(b)

Let R be a hyperbolic Riemann surface and R* be a metrizable com-
pactification of R and 4=R*—R. For every beR*, we set

F,(b)= {zeR

d(z, b)g%} (n=1,2, ),
where d is a metric on R*. We consider the following subsets of R*:

E(b)= E(b; R¥)={acR*|lim im L,(2 )>0},

E(b)=E\(b; R*) = {aER*IAny positive superharmonic function s(2) on
R with lim s(2) = + o0 has always the property lim s(z )= +oo} ,

2—d z—a

E= E(R*) = {aEAIThere is not a barrier function at a}

4, = 4,(R*)= {bedlhm 1z,(2)>0 for every zER}

LEMMA 2. (i) beE(D) for every beR*.

(ii) If beR*—4,, then E(b)CE,(b).

(iii) If bER, then E\(b)={b}. If bed—A4,, then E,(b)cd. If bed,,
then RC E(b).

(iv) If bed, then E(b)NACEU {b}.

Proof. (i) By lim 1y, (2)=1 for any n, we have beE(d).
z—b

(ii) We note that for every b€ R¥*—4, there exists a positive superhar-
monic function s,(z) on R with lim s,(2)=+c0. Let be R¥*—4, and ag E\(d).
2—b

Then there exists a positive superharmonic function s on R such that
lim 5(2)=+o0 and lim s(2)=4<+ 0. We set inf s(z)=a, Then lima,

z—d z—a 26K, (d) 700

1
= -+ 00 and lpn(b)(z)é po

n

s(z) on R. Hence

lim lim 1,, (b)(z)<hmhmis(z) Alim 1 =0.

n—0 2z—q n—0 z—a n 72—00 n

Then a¢ E(b). Hence we have E(b)CE,(b) for every beR*—4,.
(iii) Let b€R and let g(z, b) be the Green function of R with pole at
b. Since sup. g(z b)< + oo for any neighbourhood V(b) of b, we have

ZeR—

= {b} for every beR. Let bed—4, and a€R. Then lim lim 15 (2)

n—0 2—(

—hm 15,»(a)=0. Hence we have E(b)NR=¢ for every bed—4,. If bed,,
n—seo
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then lim lim 15 )(2)=lim 1 (,(@a)>0 for every aeR. Hence we have RC

n—o 2—a n

E(b) for every bed,.
(iv) Let ced—EU{b}. Then there exists a positive superharmonic

function s.(2) such that lim s,(2)=0 and inf( 5.(2)>0 for any neighbour-
z—e z€R—-V(c)

hood V(c) of c. Since b+#c, there is some 7n, and some neighbourhood

Ulc) of ¢ such that F, (b)NU(c)=¢. We set inf s/(z)=a,. Then a, >0

2€Fy (b)

and 1z, 0)(2)< aisc(z) on R. Hence lim 15, & (2)< 1 lims,(2)=0. Thus

cé& E(b) Therefore we have Eb)n4dc EU{b}. D
PROPOSITION 2. Let ¢ be an analytic mapping from R into another
hyperbolic Riemann surface R' and R'* be a metrizable compactification
of R'. Let 7:2=2(t) 0<t<1 be an arc such that z(t) tends to the ideal
boundary of R' as t—1. If lim ¢(x(t))=b€eR'*, then ¢,(r)CE(b; R™).
21

Proof. We fix § (0<d<1). We have only to show that for every
a€R™* — E(b) there exists m=m(a) such that ¢(2,(7; 6)) Pa. Let acR'*—
E(b). Then there exists some 7, and some neighbourhood V(a) of a such

that 1Fno(b)(w)<% on V(@)NR'. Since ¢(z(¢)) tends to b as t—>1, there
exists some 7,=7N(R—R,) such that ¢(7,)CF, (). Then by 1,,,(w)

<1z, »(w) on R', we have 1,, ,(w)< %—on V(a)NR'. Next we note 1, (2)
<l,4,,°8(z) on R. Hence 1,,,,°¢(2)>5 for every 2€Q2,(7; ), i.e. 14, (w)
>0 on ¢(2,(7;0). Therefore we have (V(a)NRNG(R2.(7; 0)=¢ and aé
6(Q,.(7;0)). Hence we have a &(2,(7; 0)C E(b) for every 0<d<1. Thus
n=1

$,(1C E(b).

The next example shows that the case ¢,(r)=E(b) happens and E(b)
is not always a single point.

Example. Let R be the upper half disk {|z|<1,Im2>0}. Let w(z) be

the harmonic measure of the segment [—1,0] with respect to R at z€R.
We take {w(z)} for Q. Then Q-compactification R} of R (cf. 96 in [1])

1
is metrizable and resolutive. For every 0<8<m, we set T,:z=z,,(t)=—2—

(1—2)e?, 0<z<1. We know that 7, defines an ideal boundary point 4, in
R} as t—1 and b, xb,,, if 6,%0,. Let ¢: R—R be the identity mapping
i.e. #(2)=2. Then we have lirln & (24(2)) = b, and ¢,(75)= E(bs; RG)= {b:€4¢

=R;—R|0<0<x).
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4. Remarks on Kuramochi boundary

LEMMA 3. Let R* be a metrizable compactification of R and 4=R*
—R. Let K, be a closed disk and R,=R—K,.
(i) Let bed. Then lim 1,,(2)=0 on R, zf and only zf hm 1F ) (2)

=0 on R
(ii) Let bed—d, and acd. Then limlim 1%, (z )=O if and only if

n—oo g

lim hm 15,4 (2)=0.

n—ooo 22—

Proof. “if part” of (i) and (ii) are obvious. (i) We may assume K,N
Fi(b)=¢. We set sup 1z (2)=a, We note that 1 70 (2) <130 (2) +a,
26K,

1x,(2) on R,. Suppose lim 17m(2)=0. Then lim 15 ,)(2)<(lima,) 1x(2)
<1g(2). Since sup 1,,;( )<1 for any n, we have lim 1r,5(2)=0 on R.

2€Fy (b

(We know that if hm 1#,2(2)%0 on R then sup (llm 1 F,c(,,)(z)) 1 for any n.)

2€F,(b) k

(ii) Suppose bEA 4, and lim lim 1% ,)(2)=0. Then lim lim 1, . (2)

n—o0 2@ n—eco zoqg

<(lima,)-1=0. Hence we have lim lim 1, . (2)=0.

7n—00 n—00 2z2—qg

We refer to Abschnitte 16, 17 in [1] for the definitions and properties
of the Kuramochi compactification R% of R. Let dy,, 4y, and 4y be the
set of all minimal points of 4y=R%—R, the set of all non minimal points
of 4y and the set of all singular points of 4 respectively.

ProrosITION 3. If b€dy,—dy,s, then E(b; RN dy,={b).

Proof. Let a€d,, a+b. ~'We shall show ag E(b). Let n>2. Suppose
n94(2)>9,(2) for every zeR,= R—K,. Then by minimum principle and

S *dg, =S *dj,=2n, we may suppose nd,(z)>§,(z) for every 2€R,. Since
iK, K,

bedy,—dys, by Satz 17, 16 in we see that 7n§,(2)—§,(2) is a full-super-
harmonic function on R,. Hence, by a€4,, there exists a positive number
¢ such that c§,(2)=nf,(2) on R,. Hence a=b. This is a contradiction.
Then there exists a point 2€R, such that n§,(z,)<f,(z). We set 5.(2)
_ F.(2)
4.,(8)

Hence s,(z) is a full-superharmonic function on R, and lims,(2)=1 and

lim s,(2) = J=(®)

e TG ()

harmonic functions {s,} such that lim s,(2)=1 but lim s,(2)< ;21— Hence we

z—d 2—a

for every z€R,. We note §,(2)=§.(w) for every (z, w)eR%x R%.

<—n—. Thus we see that there exists a family of super-
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have lim lim 1% 4)(2)=0. Therefore we have lim lim 15 ,(2)=0 by

n—0 2—aE n—0 2—=a

3. Thus a¢ E(b).

5. Theorems

TuEOREM 1. (Koebe type theorem) Let ¢ be an analytic mapping from
R into another hypebolic Riemann surface R'. Let T:z=2(t), 0<t<1 be an
arc such that =(t) tends to the ideal boundary of R as t—1 and lim 1;(z-r,)

7n—00

(2)#0 on R. If lim $(2(2))=acR*—4,, then a€R and $(z)=a for every
t—1

2€R.

Proof. By Lemm 1 (i) and [Proposition 2, ¢(R)C@,(r)CEla; R™).
If acd—4,, by (iii), E(e)cd4. Then ¢(R)c4. This is a con-
tradiction. Then a€R and E(a)={a} by (iii). Thus we have
$(R)= ). |

THEOREM 2. (Lindeldf type theorem) Let f be an analytic function on
R with f(R)¢ O, and let T : z=2(¢), 0<t<1 be an arc such that z(2) tends to
the ideal boundary of R as t—1 and lim 1,~z-z,(2)=0 on R. If lg{l fl=(2)

—a, then fi(1)={a). o

Proof. If a€f(R), then E(a; f(R)={a} by (iii). Let b€df(R).
If b#oo (resp. b=o0), then there exists ¢>0 (resp. n>>0) such that 2,=
FR)U{|lw—a|<e} (resp. 2,=f(R)U {n<|w|< + o0}) is a hyperbolic Riemann
surface. Then f(R)CQ., a€®., 2.¢ O,. Let s.(w)=g(w, a; 2.)| f(R), where
g(w,a; 2,) is a Green function of 2, with pole at a. Then lim s,(w)=

w—a

+ oo but @Sa(w)< +oo for any B(#a)ef(R). Hence Ela; f(R)=Ei(a;

FR)={a} by (ii). Thus we have f,(r)=E(a; f(R))={a} by Pro-
position 2.

We consider the Green lines issuing from a fixed point z€R. The
set L, of all regular Green lines I admits the Green measure m. Godfroid
proved that any AD-function f on R posseses a radial limit almost every-
where on L,, i.e. lim f(2) exists for every /€L, except a set of Green

z€l
9(z, z,)—0

measure zero (cf. P. 203 in [3])
THEOREM 3. If R¢O.,p, then lim 1,,z-r,(2)=0 on R for almost every

leL,. -

Proof. Suppose that there exists a subset BCL, such that m(B)>0
and lim 1,1z_z,(2)%0 on R for any /€B. Let f be a non constant AD-

n—ro
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function. Since m(B)>0, there is some /,€E such that lim f(2) exists by

2€l,
g (2, 2¢)—0

Godfroid’s theorem. Set lim f(z)=a. We know f(R)¢ O, for every AD-

2€7,
9 (z, 2,)—0

function f on R. Since lim 1, nz-z,(2)#%0 on R, by [Theorem 1, f(z)=a

on R. This is contradiction.
By Godfroid’s theorem and we obtain the next theorem.
THEOREM 4. Let f be an AD-function. Then fy(l) is a single point
Sfor every leL, except for a set of Green measure zero.
By PProposition 2| and [Proposition 3 we have the next theorem.

THEOREM 5. Let ¢ be an analytic mapping from R into another hy-
perbolic Riemann surface R' and 7:z==z(t), 0<t<1 be an arc such that
2(t) tends to the ideal boundary of R as t—1 and R’ be the Kuramochi
compactification of R'. We suppose ltn{l d(2(2)=beR}y. If beR', then ¢,7)

={b}. If bedy,—dys, then ¢,(1)N(Ry—dy.o)={b).
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