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On cut loci of compact symmetric spaces

By Takashi SAkAI
(Received June 4, 1976)

Introduction. Let (G, K) be a compact riemannian symmetric pair.
In the present note we shall be concerned with the cut locus of a point
in M=G/K. If M is simply connected, then R. J. Crittenden has shown
that the cut locus of a point coincides with the first conjugate locus (see
also J. Cheeger [2], J. Cheeger and D. Ebin [3] for another proof). On
the other hand Y-C. Wong has studied geodesics, cut loci, and conjugate
loci of Grassmann manifolds by a geometric method not appealing to Lie
group theory. Recently the author ([10]) has studied the cut locus of a
point in a manifold of all Lagrangean subspaces of a real symplectic vector
space via Crittenden’s view point. In the present note, the method used
in [10] will be generalized to compact riemannian symmetric pair. Our
first main result is stated as follows (Theorem 2.5): the cut locus of o in
M=G/K is determined by the cut locus of o in a flat torus a/I' (G, K),
where a is a cartan subalgebra of (G, K) and I' (G, K) is the lattice of a
defined by I' (G, K): ={A€a; exp A€K}. Next purpose of the present
note is to study the cut loci and conjugate loci of a point of some standard
non-simply connected riemannian symmetric spaces of compact type by
using this method. We shall study the cut loci of unitary group U(n),
special orthogonal group SO (n), real Grassmann manifold SO (n+m)/{(O(n)
x O(m))N 8O (n+m)), Un)O(n), and U(2n)/Sp (n).

§ 1. Preliminaries

1°. First we shall review the notion of cut locus and conjugate locus
of a point in a compact riemannian manifold (M, {, »). Let Exp, denote
the exponential mapping from the tangent space 7, M at x to M onto M.
If X is a unit tangent vector at x€M, then 7;: t—Exp, X is a geodesic
parametrized by arc-length emanating from x with the initial direction X.
Then ¢, X (resp. Exp, £, X) is called a tangent conjugate point (resp. conjugate
point) of x along a geodesic 7y, if there exists a non-zero Jacobi-field J(¢)
along 7y such that J(0)=J(%)=0. Next %, X (resp. Exp, # X) will be called
a tangent cut point (resp. cut point) of x along 7 if the geodesic segment
Txip,z,3 s 'a minimal geodesic segment, but 7z, can not be a minimal
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geodesic for any s>Z%. Then the following is well-known (see, e. g., [1]):
Assume that Exp #, X is a cut point of x along 7y which is not a conjugate
point of x along 7y then there exists a unit vector YeT,M, Y*%X such
that Exp Z, X=Exp % Y holds. The set of (tangent) conjugate points (resp.
(tangent) cut points) of x along all geodesics emanating from z is called
a (tangent) conjugate locus (resp. (tangent) cut locus) of z. Finally the
interior set Int (x) of x is defined as M\cut locus of x. Let #(X) be a
positive number such that Z,(X) X is the tangent cut point of z along 7x
Then Exp, maps U {Exp tX; 0Zt<%(X)} diffeomorphically onto

XET, M, (X, X)=1

Int (). Thus Int () is an open cell for any x€M. Cut locus is impor-
tant because it contains all information about the topology of M. It is an
interesting problem to study the relation between cut locus and conjugate
locus. (e. g., see [1], [4], [6], [14]).

Now we shall be concerned with the cut locus of a point in a com-
pact symmetric space which is not necessarily simply connected.

2°. Let (G, K) be a compact riemannian symmetric pair which con-
sists of

(1) compact connected Lie group G and compact subgroup K of G.

(ii) involutive automorphism # of G such that Gic Kc G, where we

put G,: ={xeG; 0 (x)=x} and G} denotes the identity component
of G,

(i) G-invariant riemannian structure { , » on M=G/K.
If g (resp f) denotes the Lie algebra of G (resp. K), then (g, f, d) is an
orthogonal involutive Lie algebra corresponding to (G, K). Put m: ={Xe
g; d0(X)=—X}. Then we have a vector space decomposition g==%+m.
We may identify the tangent spac 7, M with m via the canonical projec-
tion 7: G—GJ/K (o=x(e)). Note that every G-invariant riemannian struc-
ture { , ) on M may be induced from an inner product Q on m which is
invariant under AdK. In the following we shall choose an AdG-invariant
and @-invariant inner product Q on g which is an extension of Q in m
and fix it. Now the geodesic 7y: t—>Exp, £X which emanates from o with
the initial direction Xem is given by Exp, tX=r exp tX, where exp
denotes the exponential mapping of Lie group G. Next, the curvature
tensor R(X,Y)Z=Vx vy Z—[Vy, V¥] Z at T, M is given by R(X,Y)Z=
[[X, Y], Z], X, Y, Zem([7]. Now let t (resp. a) be a maximal abelian
subalgebra of G (resp. Cartan subalgebra of (G, K). We assume acCt Let
2 (G) (resp. 2 (G, K)) be the root space of G (resp. (G, K)), i e.,

Y(G): ={a6tla¢0, Q’ﬁb{O}} (resp.
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Y(G,K): = {Tea}TiO, g;rﬁ{O}}), where
. : = {Xeqg (complexification of g)|[H, X]=2zV—1
{a, HYy X for every Het} <resp.

g1 = (Xeg'|[H, X] = 2z/—1r, Hy X for every Hea}).

We have the root space decomposition g°=§,+ 2, §.(§=t) and g'=
)

azZ(G

a+ 2 g, If we put 3, (G)=2(G)Nb, where b=tN¥ then we get t=

7€32(G, K)
b@a and g:=2; §,, where a denotes the orthogonal projection of a€t to
a=7

a. Especially we get 2(G, K)={a:acX(G)—2,(G)}. Next let 3*(G)(resp.
3*(G, K)) be the set of positive roots with respect to a ¢-order, then
we have 2% (G, K)={a:ac2*(G)—2,(G)}. Put f,: =tNn(g;+g°,), m,:=mn
(gc+g°,) for 7€X*(G, K) and let f,={Xef:[X, a]=0} be the centralizer of

a. Then we have f=t+> f , m=a+2 m,. Now the next lemma
rezt (@, x) rest (@, x)

is useful in the following.

LemMmA 1. 1. [11]. For every acX* (G)—2,(G), there exist S,ef, T,em
such that

(i) for every 1€X*(G, K) {S.; a=7} froms a basis of t, and {T,;
a=r1} forms a basis of m,.

(ii) [H, S.)=2xla, H)T,, [H, T,]=—2n{a, H)S, for Hea.

(iii) Ad(exp H) S,=cos 2zala, H)S,+sin 2zla, H)T, for Hea.
Ad(exp H) T,=—sin 2zla, H)S,+cos 2zla, H)T, for Hea.

(iv) [Se Td=n H,(:=ar/2(7, 7)), where T =aca, and (T, T,)=
(4@, 7))

3°. Now the following lemma gives a characterization of tangent
conjugate points of o along a geodesic of M in terms of root system and
well-known. For other proofs see Helgason [7], Crittenden [4]

LemMMma 1.2. Let (G, K) be a compact riemannian symmetric pair.
Then for Hea, {H, Hy=1, t,H is a conjugate point of o along a geodesic
Ta:t—>Exp, tH if and only if there exists an acX*(G)—2\(G) such that

tla, H>=-’;1, meZ—{0} does hold.

Proof. (=»). By definition there exists a non-zero Jacobi-field J(¢)
with J(0)=0, J(%)=0. Since M=G/H is of compact type the eigenvalues
=0, &, -+, 4, of the symmetric linear transformation Xem—R(H, X) H=
—(ad HFfX is :non-negative. Let E,=H, E,, ---, E, be the corresponding



On cut loci of compact symmetric spaces 139

eigenvectors and E;(¢) (i=1, ---, n) be the parallel translation of E; along
the geodesic 7, If we put J(¢)=23f,;(¢) E;(¢), then the Jacobi equation
Vv J(t)+ R(i4(2), J(2) 7x(£)=0 reduces to f7(£)+2 f,(£)=0 (i=1, -, n) and

consequently we have

a; —
Si(t) = (V&
a;t if li=0, at=f€(0).

Thus if 4 H is a tangent conjugate point, then there exists an eigenvalue
2>0 of X——(adH}X such that ¥it,=mzx for meZ—{0}. Let Xem be
an eigenvector coresponding to A If we put X=A+3a, T, A€aq, then
(adHf X = — Xa,(2xla, H)}' T,
= —A+2a.T,).
Thus we get A=0 and for some a€3*(G)—23,(G) we have (2r{a, H))=
2
2=(Ltn- ﬂ) and consequently {a, H>t0=%, me 7 —{0}.
) :
(&). By the assumption and lemma 1 (ii), we get

(@dHYPT, = —(2nla, YV T, .

2
(2.

Let E(z) be the parallel vector field along 7, such that E(0)=7,. If we
2
put J(f)=sin % ¢ E(f), then 7 J(5)+ R(a(t) J() f}_,(t)=~—<n;”) sin

0 0

1';_71 t E(t)+ (.’ZZL)Z sin n;n t E(¢)=0 and J(#) is a non-zero Jacobi field
0 0 0

with J(0)=J(#)=0. Thus # H is the tangent conjugate point of o.

REMARK 1.3. Since AdK a=m and AdK acts on m as an isometry,
lemma 2 characterizes the conjugate points of o in a compact reimannian
symmetric pair. For Hem, 7y has no conjugate point if and only if H
belongs to the center of g.

CoroLLARY 1.4. Let X=Ad kHem(Heq, keK), {H, Hy=1. Then
the first conjugate point t,(X) X of o along a geodesic Ty is determined by

) 1
6(X)= M e HyT

§ 2. Tangent cut locus.

1°. Now we shall turn to tangent cut points.



140 T. Sakai

ProrosiTION 2.1. Let (G, K) be a compact riemannian symmetric pair
and a be a Cartan subalgebra of (G, K) For a unit vector Xe€a, assume
that t,X is a cut point of o along 7y Then either t,X is the first tangent
conjugate point of o along Tx or there exists a unit vector Yea, Y+#X such
that Exp, t,X=Exp, t,Y does hold.

Proof. Suppose that %, X is not a conjugate point of o along 7 then
there exists a unit vector Zem, Z+#X such that Exp £ X=Exp {,Z. We
shall show [X,Z]=0. In fact if [X, Z]#0, then clearly Z¢€ a. Since Exp
t,X=m exp £, X=r exp % Z holds, we have

exp 5 X = exp tZ k for some keK.
Then exp (—#,X) exp sZ exp (¢, X)=Fk™! exp sZ %k holds and consequently
we get

Ad(exp(—4X))Z=Adk Z.

On the other hand by lemma 1.1 Z may be written in the form
Z=2+ > a. T, with Z€a.

raxt@r  a=r
Note that at least one a, can not be zero. Thus we get
Ad (eXp (_tOX)) (ZO+ Z Z A, Ta)

rezt@,x) a=r

=2Z+ 2 Y a,{cos 2r tla, X)T,+sin 2r ta, X)S,} .

rezt@,x) r=a
On the other hand, since
Ad(Y) (Zp+ 23 > a, T,)em, we have sin 2z £,{a, X)=0

rezt@,x)  a=r
for some a€X"(G)—2,(G). On the other hand, since [X, Z]=—2 2z a,{a,
X)> S.#0 holds, we know that # X is a conjugate point of o along 7x by
lemma 1.2 which is a contradiction. Thus we get [X, Z]=0. Now let «
be a Cartan subalgebra which contains X and Z. Then there exist k€K,
Yea (unit vector, Y#X) such that X=AdkX, Z=AdkY. So we have

7, Exp £, X = Exp ¢, AdkX=Exp ¢, X=Exp £,Z
= Exp t, AdkY=7, Exp ¢ Y,

where 7, denotes the left translation by 2€K. Thus we have Exp #{ X=
Exp ¢ Y for some unit Yeq, Y+#X. Q. E.D.

2°. By this proposition, to determine the tangent cut point % (X)X
of o along 7y, X€a, we must search for the minimum positive value Z,(X)
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such that Exp #,(X) X=Exp £(X) Y holds for some unit Yea, Y#X. For
that purpose we put I'(G, K): ={A€a; exp A€K}. Then we get
. P M (A
EMMA 2.2 B(X)= Min 5% A
Proof. Exp £, X=Exp Y holds for unit vectors X, Y(X+#Y) in a if
and only if exp £(X—Y)eK i.e. t,(X—Y)el'(G, K). If we put A=¢(X—

Y), then we get Y=X—%—A and from (X, X) =Y, Y)=1 it is easy to
0

(4, 4)
see t,= ?{X,—A>

Remark 2.3. I'(G,K) is a lattice in a. Note that I'(G, K)C{A€a;
exp 2A=¢} and I'(G, K)={A€a; exp 2A=¢} if K=G, If we consider
the torus a/I'(G, K) with a flat riemannian structure, then {#(X) X, Xe€a}
is nothing but the tangent cut locus of o in a/'(G, K). In fact for Ael’

(G, K), é(é’(ilﬁ% X is the vector in a whose terminal point is determined

as the intersection of the line generated by X and the hyperplane passing
through the point A/2 perpendicularly to the direction A.

REMARK 2.4. If the lattice I'(G, K) is generated by the vectors {4,
o, A} with A; LA, (i#j), then (X)=1/(2Max|z,|), where X=2 z;A; is
a unit vector in a. In fact, if we put a?=<{(A, A,), then X (z,f(a;)=1.
Now for A=Y,m; A€l (G, K) we get
AJAY miot+ - +mial =
2KX, AY] T 2lmixdi+ - +mox k] =
miai+ - +mia
2Max|x;|(|m,|ad+ -+ + |m

1) =>1/(2Max|xz;]).

Summing up we have the following theorem.

THEOREM 2.5. Let (G, K) be a compact riemannian symmetric pair.
Then the tangent cut locus of o is given by AdK (U {&(X) X; Xeq, |X|=
1)), i.e, the tagent cut locus of o is determined by the tangent cut locus

of o in the flat torus a/I' (G, K).

Proof. Let %(X)X be the first tangent conjugate point of Xea.
Then by lemma 1.2 there exists an a€3*(G)—23, (G) such that 7, is an
eigenvector of the symmetric transformation Y—R(X,Y)X of m with
eigenvalue 1=(z/t,(X)? Now 142 R(X, T,) is an element of the holonomy
algebra of M=G/K and acts on m as a skewsymmetric linear transforma-
tion. Thus there exists a one-parameter subgroup A, in K whose adjoint
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representation s—>Ad h, on m is generated by 11 R(X, T.) see [16]
Then (¢, s)—h,(c(¢)) is a variation of the geodesic ¢(f): =Exp ¢X. Its varia-
tion vector field Y(¢): #m hy(c(8)ouo is a Jacobi field along ¢ with Y(0)
=0, 7 Y(0)=9/ds Ad h, ¢(0)l,-o=1/¥7 R(X, T.) X=+47 T.. By the proof of
lemma 1.2, we get Y(¢)=sin ¥4 ¢ E(£, where E(¢) is the parallel transla-
tion of 7, along ¢. Since Y(£(X))=0 and A, is a one parameter subgroup
in K, h,c(t(X))=Exp £ Ad h,X reduces to a point c(#(X)) for every s.

On the other hand we have [S,, T.]=rH,€a by lemma 1.1. (iv. Now
an easy calculation gives the following :

R(X, T.) X = 42*¢e, X)* T,
R(X, T,) T, = —2x*¢a, X H,
R(X, T.) H, = 22°¢a, X> T.,.

So R(H, X) leaves the subspace Y) generated by {X, T,, H,} invariant and
s—>Ad A, induces a one-parameter subgroup of SO(3). Thus s—>Ad A, X
is a (small) circle in the unit sphere in § which passes through X with
the tangent Y1 7,. Since 7, is orthogonal to a this circle intersects a
plane in a which is generated by X and H, Note that this circle is a
great circle defined by X and T, if and only if X and H, are linearly
dependent. Thus we know that there exists a unit vector Y#X in a
such that Exp #£,(X) X=Exp #(X) Y=c(% (X)), ie, &(X)<t(X) does hold.
Finally Ad %, k€K, scts on m as an isometry and Ad K a=m. This
completes the proof of theorem. Q.E.D.

REMARK 2.6. In Rauch has asserted that the sphere of radius
%(X) in the subspace spanned by X and the eigenspace n of Y-R(X,Y)
X of m corresponding to the eigenvalue 2 is mapped into the one point
c(t,(X)). But this seems to be incorrect. In fact if dim a=1 then this
holds if and only if X and H, are linearly dependent.

3°. Now let C be the center of g and g': =[g, g] be the semi-simple
part of g. Then we have the Lie algebra direct sum g=C@®g’ and a=
C.+a’, where we put a’=ang, C,: =Cnm. Note that C,, and a’ are
orthogonal with respect to an Ad K-invariant inner product Q. Let {A,,
-, A,} be generator of I'(G, K) and put ¢,,=(A,, A,>. Next let {Calazt s
be generator of I'(C,, X)={A€C,, ; exp AcK} which is a lattice of Cn-

r

Then we have ¢,=3} m? A; with micZ (a=1, ---, s). If we denote by (c*)

Jj=1
the inverse matrix of (c.y) where we set c,s={c,, c;y=Y'mim%g,, then for
X=2x; Ai€q, its C,-component X, is given by X,= 3 ¢ mj x' g, Ca

a,8,%,7
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Next since g’ is compact semi-simple, the restriction of Killing form B to
g’ Nm is negative-definite and in the following we shall consider the case
Qle=—24Bl. holds for some positive constant 2 (e. g., if M is irreducble).
In this case, for a unit vector X=2%Yx; A;€a we get

5(X)=  Min [ > cPmimimtm g
(mp"')m-r)ez —{0} La ﬁ Ty ds sl

+ zzaez(e)z—zo(e) (Z e i a ) ]/[ (a Bri Caﬁ e g M G 0 )
% mon(@) (5 = <a>)]

where n;(a): ={a, 24;) (=1, -+, r) are integers because of lemma 1. 1. (iii).
In fact, let X’ (resp. A’) be the a’-component of X (resp. A). Then we have

QX' A" = (2af ¥ La, XD e, A)

asI(@)—2,(@)

+ 72 A2 (
«EZ(@)=2,(@)

= 2% (zl z, ni(a)> (; - n,.<a)),
QA A) =2m} X La A

ae (@)~ 2 (&)

223 (F mente).

a \i=1

where A= Z m;, A
i=1

4°. Now we shall consider the simply connected case. In this case
R. Crittenden has given a following result. We shall give our proof for
completenes.

THEOREM 2.7. ([2], [3] [4]. Let G be a compact simply connected
Lie group and (G, K) be a compact riemannian symmetric pair with con-
nected K. Then the (tangent) cut locus of o in M=G|K coincides with the
first (tangent) conjugate locus of o.

Proof. From the assumption of theorem we know that M is simply
connected and I'(G, K)NF(G, K)={0}, where F(G, K) is any component
of a-{diagram of (G, K)} whose closure F(G, K) contains the origin ([11]).
Now for a unit vector X€a, we assume that the tangent cut point £ (X) X
is not a tangent conjugate point along 7y Then from Th. 2.5. we know

. A A
that there exists a non-zero A€l (G, K), such that %,(X)= —2—I<<7(—2%T<

1
2 Max |[{a XD|°

«CX(@)-5,(Q)

e, |G 8(X) X< for all ac¥(G)~%(G). Next
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put Y=X——Z—(1X—> A, then Y is a unit vector in a and we get Exp %(X)
0

X=Exp %(X)Y. Then 7y:t—Exp tY; 0<¢t<%(X) is a minimal geodesic
segment and we have also [{a, % (X) Y>|§% for all aeX(G)—3,(G). So

we have [{a, 2A)|=[{a, 24 (X) XD —<a, 2%/(X) Y)|<2 for every ac3(G)—
2,(G). Since we assume K is connected, we have K=G, and consequently
I'(G,K)={H/2; Hea, exp H=e} and <{a, 2A) is an integer for every a€
J(G) (Lemma 1.1). So we get |[{a, 2A)|=0 or 1 for every a€X(G) from

which we know that Ael’ (G, K)—{0} is contained in some F(G, K), a con-
tradiction. Q.E.D.

§ 3. Compact Lie groups

1°. Let H be a compact Lie group with a bi-invariant riemannian
structure { , ). Let § be the Lie algebra of H and a* be a maximal
abelian subalgebra of Y. If we put G=Hx H, K={(x, )| xeH), 0(z, y)=
(¥, x), then (G, K) is a compact riemannian symmetric pair. Note that f=
{(X, X); z€b)} is the Lie algebra of K, m: ={Xegq; df(X)=—2X) is equal
to {(X, —X); Xeb} and a: ={(Y, —Y); Yea*} is a Cartan subalgebra of
(G, K). We may identify G/K (resp. m) with H (resp. §)) via the corre-
spondence (z, y)—~>xy " (resp. (X, —X)—>2X). a may be identified with a*
by this correspondence. In this case geodesic emanating from e with the
initial direction X€Y) is given by the one-parameter subgroup #—expzX and
the curvature tensor in Y):=T,H is given by R(X,Y)Z=1/4[X, Y], Z]
([8]. Now the argument of §1 and §2 gives the following :

LEMMA 3.1. For any unit vector Xea*, t,X is a conjugate point of

o along a geodesic Tx:t—exp tX if and only if there exists a root acX (H)
such that tla, XyeZ—{0}.

COROLLARY 3.2. Let t,(X) X be the first conjugate point of e along

a geodesic Ty, where Xea* is a unit vector. Then we have

. 1
5(X)= Min ———=__—.
) = A e ]
On the other hand put I'(G): = {A€a*|exp A=e¢} which is a lattice in a*.
Then if Ael’(G) we have {a, AY€Z for any ac3(H) (lemma 1.1 (i1i)).
Now we define for a unit vector Xea*, £/(X): =Min {£>0; exp £, X
=exp % Y holds for some unit Yea* Y#X}. Then we get
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3 (A, A . B
LEmmMma 3. 3. tO(X>—Ael>(/£}l)n{0} (X, AS| Xea*, (X, X)=1.

Now as in theorem 2.5 #,(X) determine the cut point £ (X) X of o along
a geodesic 7y In the following we shall show that this method is valid
to determine the cut loci of U(xn) and SO (n).

2° Un)(n=2). Let u(n): = {XeM,(C)|’X + X=0} be the Lie algebra
of G=U(n). We put

Bi,: = Eij'—EJ'i: u =4—1 ( w+En) and A; = 1/~/2_Cu,

where E;; denotes the 7 xn-matrix whose r~th row and s-th column is
given by 4;,0;,. Then

{B,a=<i<jsn), C,1<i<j<n), A,(1si<n)
forms an orthonormal basis for u(n) with respect to Q which is a bi-

invariant riemannian structure on U(n) defined by Q(X, Y)= —-—1— tr XY,

X, Yeu(n). Now a*={A4, - A} forms a maximal abelian subalgebra in
u(n). Then we get

R(Z o4y Bu) 5 2 4, = 550 B,
i=1 =1

n n J__ kN2
R<§ Az, Cjk> l; A (x 2x ) Cj/c ’
R(ﬁ A, A ) z"; ‘A, =

Thus for X=Y2'A;ea* (Yxi=1), {By;, C,i} defines the eigenspace of the
symmetric transformation Z—R(X, Z) X corresponding to the eigenvalue

(x?— ) ; * . .
% and so for X=J32"A,(Yxi=1)ea* the first conjugate point ¢,
: . V2
(X) X of e along a geodesic 7y is given by #,(X)= Max|z,—z,] - Next we
i<k

shall consider the tangent cut locus of e in U(n). In this case ' (G)=
{Z«/Z m;wA;; mZ} and for X=Yz' A;ea*(Zxi=1), we get

- . A A . 23mir?
P(X)= Min <4 M 22m;
ol X) = Min K A = WM o ]
. T 1
N/g Maxlxi| ’

Since obviously 2 Max |z;|= Max |z,—x,| holds, we know that the tan-
1gisn sji<kzn
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gent cut locus of e

T
P = AdG {1,}::1 V2 Max|xi| A fo——-l}.

REMARK 3.4. The cut point £,X of e alog 7y, X=Yx'A, Yzxi=1, is
the first conjugate point if and only if there exist some j<k such that
|z;| =|x;|=Max |z;| and x;+2,=0 hold. Note that =, (U(n))=Z.

Now let F' be a complex vector space of complex dimension 7, and || ||
be the hermitian norm in F. Put E=F®F and ¢ be the non-degenerate
hermitian form on E defined by

o[z )] = ll2lP— .

Put U(E; ¢): = {PCE; subspace of complex dimension n such that ¢ ,=0}.
Then U(E; ¢) has a natural topology as a subspace of complex Grassmann
manifold. If we define a map @: U(n)—U (E, ¢) by @ (U)={(x, Ux)|xeF},
then @ is a homeomorphism and consequently U(E, ¢) has a structure of
a compact riemannian manifold whose structure is derived from that of
U(n). Put 4 (resp. 4*)=0@(I) (resp. @(—I)) where I:F—F denotes the
identity mppaing. Then we have :

THEOREM 3.5. For PeU(E, ¢) define I'» by I'»: ={QeU(E, ¢); PNQ
i{O}}. Then I',. is the cut locus of 4.

Proof. We put I't: = {QeU; dim PNQ=k} (k=0,1,2, ---,n). Firstly
we shall show that @(exp AdG U {X; 0=¢<%(X)})C s, and @ (exp

Xea* (X, X)=1
AdGU {zo(X) X|X=2x’AiECI*, Z'xf:l, MaX |xi|=!xill=“'= IkaI})CF"fL(k=
1,2, --,n). In fact, if a unit X=23x; A, satishies Max |z;|=|z; | = =|x,,],
we may assume Max |x;|=|x| =" =|x:| > |xps1| = =|x,|. Then we get
(((ul \ (—ul \\
Uy — Uy
@ (exp £,(X) X) =/ Tpr: — and
Urit exp zA—1- Uri1
. ol
: L L
% ), (e pgrad=lw )

obviously this subspace has a k-dimensional intersection with 4. Since
AdG leaves invariant 4, 4*, we have @ (exp (AdG £,(X) X))CI'5.. Similarly

we get @ (exp AdG <‘LYJ {tX; 0=t<t,(X)} I Finally we get U(E,
Xea*,{X,X)=1
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)= Gl’j‘lDInt (e)UCut locus of e=U|(E, ¢) and our assertion follows.
e Q.E.D.

REMARK 3.6. I', plays an important role in a work of Edwards ([5]).
Note that I';=0(expAdGU {f,(X) X; X=3xz, A;, Txi=1, Max |z;|=|x; | =

-+=|x;,|}) defines a submanifold of codimension %* in U(E, ¢).

3°, SO (n), (n=3)

Let go(n)={XeI,(R)|*’X+ X=0} be the Lie algebra of G=80(n). If
we put e;;=E;;—E;;, where E;; denotes the 7 x n-matrix whose r-th row
and s-th column is given by 4,0, then {e;;}ic; forms an orthonormal
basis for 80 (n) with respect to a bi-invariant riemannian structure defined
by (X, Y):=—1/2 tr XY. By the Lie multiplication table [e;;, €;;]=—0:
e +0, e;,+0;.e,—0; e, we know that a*: ={epy, ey, -+, €m-12n) defines a
maximal abelian subalgebra of 3o0(n), where either n=2m or n=2m+1

<m=[%]> Moreover we get for X =§'1 I ey-1,915
R(x Compotinn )y [WoZ) Geanaten o2ochzm),
R (X’ - 26_«/?_1 - ) X = (xa_sz)z . Zb—x/eZEH = (=a<bzm),
R(x, Seteptans)x o (EEL Sanptens 1 <achsm),
R(x, fumeptan ) x o ST S P01 5a<ham),
R(X, €-12¢) X=0(1=a=m),

and if n=2m+1,

R (X, e2a,2m+1) X = 4 €24,2m+1 (1 éaém) s

(z)?
R (X, eZa—1,2m+1) X = T4 €26—1,2im+1 (1 <a§m) .

Thus the tangent conjugate points of e along 7x:t—exp tX, X=2 2" 41,2,

2 . T
Y (x*P=1 are 1_27‘7;7'_ X (with muliplticity 2) and |T7;7|t— X (with multiplicity

'+
2 and if n=2m+1), and the first tangent conjugate point of e along 7 is

given by Maxli:i‘r‘ e X. On the other hand, since I' (8O (n)): = {Xea*:

a<bd

exp X=e}={§2n‘mk e2k—1,2k; (mk)ezk}’ we get fOl' X._____Z'xa eZa—l,Zm Z‘(xa)2=1,
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- _ T 2r
% (X) = Max|z"| (é Max|x*+ 2| )
a<lb
and consequently tangent cut locus of e

nx"
= U AdG (zm ez,,_l,m) ,

REMARK 3.7. The cut point Z,(X)X of e along 7y is the first con-
jugate point if and only if there exists some a<b such that |z*|=|2"|=
Max |z*|. Note that 7,(SO(n))=Z,.

Next, let F be a real n-dimensional oriented euclidean vector space
with a euclidean norm | |, and consider E=F@®F with the induced ori-
entation. Let ¢ be a non-degenerate quadratic form on E defined by ¢ ([x,
N]=|lzl*—]|l¥ll>. We denote by pr, (resp pr;) the projection mapping E—F
on the first factor (resp. the second factor) Now for an zn-dimensional
oriented subspace PCE on which ¢ vanishes identically, it is easy to see
that pr,, pr, P: E—F are linear isomorhpisms. We shall say that P is pos-
itively oriented if pr, pr, are orientation preserving isomorphisms. We
define O(E:¢): = {PCE; positively oriented n-dimensional subspace on
which ¢ vanishes identcially}. Then O(E:¢) has a natural topology as a
subspace of real oriented Grassmann manifold. Moreover 8O (n) is homeo-
morphic to O(E:¢) via the map @: 8O (n)—O (E, ¢) defined by @ (0O)={(x,
Ox)|zeF}. Especially 4=@(I) is the diagonal set. Put 4*={(x, —x)|x€F},
then 4*€O(E, ¢) if n=2m but 4*¢O(E, ¢) if n=2m+1. Now as in the
case of U(n), we define I',.: ={QEO(E, &) QﬂAth{O}}. Note that dim

(QN4t) is always even for any QeO(E, ¢). Now we have

THEOREM 3.8. Let O(E, ¢) carry the riemannian structure induced
via @ from the riemannian structure of 8O (n) stated above. Then the cut
locus of 4 is given by I';.

Proof. Firstly we shall shall show that for X =Z"f X% €4_12aq, (2 (x*P=1)
=1

with Max |2*|=|2%| ="+ =|2%|, dim® (exp %, (X) X)N4*=2% holds. In fact
we may assume |x!|=---=|2*|>|2**|=---=]|2™|. Then we see that
7 —uy 1))
u:ZIc — Uz

O (exp £ (X) (X))

I

T . T
cos m Lpt1° U1 —SIN T-EIT Lpt+1°Usk+2 )

. T T
sin W Ly+1* Uzg417+ COS Txll_ Tpt1° U2

\\ un)’ \ )))’
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has a 2k-dimensional intersection with 4.
Similarly we get @(exp tX)N4+*=0 if 0=Z¢<%(X). Since 4 and 4*
are invariant under the action of Ad SO (n), we get

dim @ <exp (Ad ¢ £,(X) X))ﬂdl>0 for every geSO (n)
‘and dim @(exp Ad ¢ tX)N4'=0 for every geSO (n) and 0=¢<E(X). So

we know
O(E, ¢) = Cut locus of AU Int(4)
C U ©@(Ad SO(n) exp (X)) X)U

Xea*, | X|=1

(U U  9(Ad SO () exp £X))

Xear 0s2<fy(X)
|Xxl=1
cl'pUl'n = O(E ¢),

where I} denotes the subset of O(E, ¢) defined by I’ 34L={P€O(E, O|PN4+
={0}}. Q.E.D.

REMARK 3.8, If we put I'%:={PcO(E, ¢); dim PN4+=2k}=
@ (Ad SO (n) exp £,(X) X), then I'! is a subma-

X=32%,q_,, 0 Max 2" = [2%1| = = |2"k|

nifold of O(E, ¢) of codimension %(2k—1).

§4. Examples

In this section, we shall determine the cut locus of a point in some
standard non-simply connected symmetric spaces by the method of § 2.

1°. Real Grassmann manifold M=80 (n+m)/{(O(n)x O (m))N SO
(1+m)}(dim M=mn=2, m=n). In this case =, (M)=Z, Now put g=
80 (n+m) J(A B) ‘A+A=0) f—0.(n) x 0 (m) ](A O) ‘A+A=0)
n+m)= =0 (n) X 0 (m)=
\\B D)|'D+D=0/" "~ \o D/|‘D+D=0" ™
0 B
{(“B 0)}Where g (resp. f) is the Lie algebra of SO (n+m) (resp. SO (n+m)
N(O(#r)x O(m))) and f (resp. m) is the +1 (resp. —1) -eigenspace of the

A B
involutive automorphism df in 30 (n+m) which is induced from 0( \

c D~
(__él —Ili) on 8O (n+m). Then (8O (n+m) SO (n+m)N(0(n)xO(m)),H)

is a compact riemannian symmetric pair with the invariant metric { , )

defined by Q(X, Y): =—5 tr XY, X,Yem. Now
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17 a f .
' 1 0 0 e
il =1 |0 o 9 il 0|1
€y = 1 9f;ﬁ:=a 0 1 s Qia: = (‘——)
0 | o g\0 | —1 a\—1] 0

(1Zi<j<n) (+1Za<Bsn+m) (1=SisSn,n+lZasn+m)

forms an orthonormal basis with respect to (, ), and {g.} forms an
orthonormal basis for m. Now from Lie multiplication table

[9iar 98] = —0Ouplis;—0isfas>
[9i0r €52] = —0i Ggat+0is Ga>
[9iar Sia) = Oar Gis— Oas Gir »
we know that {g1,+1, ***, gn2.) forms a Cartan subalgebra a of (g, {,df) and

3
for X =Y, x,9; ns: we have
i=1

i
(x; + xﬂz—n) i Zx.f Xp—n Qp—n ntj>s lf [9 é 2n

R(X, g, X =
(X, 20 {xﬁg,-p, if m>n and B>2n.

So the eigenvalues of the symmetric linear transformation V—R(X, V) X
on m are given by O (with eigenvectors g;,,.;(j=1, ---, n)), (x;—x) (with

eigenvector 12 {g;nii+ Grnest (G<E), (z;+2,) (with eigenvector 1/42

{1 nsx—0rnss} (F<R) and &5 (with eigenvectors g (n+m=p>2n), where x}

occurs only when m>n. Thus the tangent conjugate locus of o is given
n  ra'm

byu{adh (ZWI_ g,.,m); heK ={0(n)x O (m)} N 8O (n+m), X(xf=1,
p<g, reZ—{0} (multiplicity 1)} (n>1), and U {adh (2 S +)

i=1

; heK,

Yxi=1, p=1, ---, n, reZ—{0} (multiplicity m—n)} if m>n. Especially the

first tangent conjugate point £,(X) X of o along a geodesic 7y, X=22;9; n+:
(FxZ=1) is given by

(X) = Min T3 if n<1 (and =r if n=1).

pr<q ! p—""q

On the orther hand we have I'(G, K)={Aea|exp A€(0(n)x O(m))N SO

n

(n+m)}={2 m; g, ,,H} and thus we get

i=1

i (AN . =
. - < :
B(X):= Min 5% Ay = 2Maxlz,| \= Max|z, + x|
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So we know that the tangent cut locus of o is given by

{adh (% —Z—Wfﬁgw); hek, 2x3=1}. Now SO (n+m)/(0(n)x O
(m))N SO (n+m) may be identified with the manifold G, .(R) of all #n-

dimensional subspaces P of R™*™. Put

((uﬂ (( 0 )
u, 0 L
o(=R"): = s w€RY, ot (=R™): =4 ; ;€ R} and
O un+1 .
K(.)/ ) Lu;z+m/ J

= {Z€G, n; dim ZNot=[}. Note that W, is a submanifold of cod-
imension /2 Then we get a result which is obtained previously by Y-C.
Wong by a different more geometric argument.

TueoreM 4.1. (Y-C. Wong [12]). Cut locus of o in G, (R) is given
by V1= W1U -+ U Wn-

Proof. First, note that every geodesic in G, ,(R) emanating from o
may be expressed in the form z—exp ¢ Adh(Zx; ;i) 0, where heK|

Yxi=1. Now for X=i Zi G nei (& () =1) with Max |x;| = |z, | =+ =|z;,],
i=1 (3
we shall show that exp %,(X)-0€ W,. In fact we may assume Max |z;|=
|| =+ =|x| >|2p1| = - = |2,|. Then we have
i o = 1t0. .- Lr1T X
exp & (X)o = { <0, , 0, cos o] Upyy, ***, COS 2] U, ,
k
. X .
— Uyt U, —SIN 27;:117]: Ugsr, *°°, —SIN Z‘Txn-] Uy, 0 0);

m—n

(ub Y un) eRn},

from which our assertion is obvious. Similarly we know that
exp tX-0e W, for 0=t<%,(X).
Since Ad ( O(n ))N SO (n+m)> leaves 0 and o' invariant, we get

G,.»n(R) = Int(0)UCut locus of oC WBU;CQW":G”””(R)'
i Q.E.D.

REMARK 4.2. If m>n=1, then G,,(R) is the m-dimensional real
projective space. In this case the tangent conjugate locus of o is U Ad
k(mr) g,, and the conjugate locus of o is {o}.

REMARK 4.3. Put V,:=W,U---UW,, W,:= {ZeG,, . (R); dim (ZNo)
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=k}, and V,=W,U---UW,. Then for conjugate locus of o, Wong has
announced a result which asserts that conjugate locus of o is given by
VUV, if n<m and V,UV, if n=m. But his result seems not to be cor-
xI;w

g: ,,H-).o has zero intersection
Zpt T,

rect. In fact in general, (exp by |

with o or o'. Since G, ,(R) is the n-dimensional real projective space for
n=1, we shall consider the first conjugate locus hEJK (exp Ad hty(X) X)-0
Xea,(X,X)=1
of o for n=2. Then the first tangent conjugate point £ (X) X of o is the
cut point if and only if Max |z,| is taken at least for two x,s. We shall
define for X=X, (Z2i=1), $X=Fk when Max |z,|=|z;|=-=|z,].
Then as the above theorem shows we have for [=2, U {exp Ad h4,(X) X-0;
heK, Xea, (X, X)=1, $X=0}=W,. On the otherhand for X with #X=1

(Max |x,|=|z;]) we have

E
|zt 2|

1=

>1/2, 0=y <12 (j#i),

where =1 if and only if |z,/=1 and other x)s are equal to

Max|x, £ x,|
zero. So if #X=1, U{(exp Ad 2, (X) X)-0}c W,. On the other hand for
$X=1, (exp Adhz,(X) X)-0€V, if and only if ;=0 for at least one J and
(exp (Ad hty(X) X))-0=0 if and only if x;=1 holds for some j. But the
whole conjugate locus seems to be falrly complicated and we shall only
mention the following :

U{(exp Adh(Z ﬁ ”gi,n+i)> 0; hek, 2$§=1}=V1 for reZ—{0}.
I)
U{(exp Adh(Z W ngi,nﬂ-)) 0; heK, Yxi=1, :c"(—l-)x"=0} is equal to

V, if r is odd and is equal to V, is 7 is even.

REMARK 4.4. In case of complex or quaternionic Grassmann mani-
folds G, . (C), G, .(H) the cut locus and the first conjugate locus coincides
because they are simply connected. In these cases Wong has also
investigated the conjugate loci, which seems to be incorrect. So we shall
give the tangent conjugate loci of G, ,(C) and G, ., (H).

2°.  Complex Grassmann menifold @, ,,(C)= Un + m)/U(n) x U(m)
(n<m). Put G=U(n+m), K=U(mn)x U(m) and let g (resp. ¥) be the Lie
algebra of G (resp. K). If we define the involutive automorphism 6 of G

A BN | A—-B 0 B
by 6 (C D) = (—-C D)’ then (resp. m={ (—tE O)}) is the +1 (resp.
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I «

) 0' 1

—1) -eigenspace of df. Now if we put D,,: = ‘ (1<iZn, n+1
—-1]0

a
i@
( 0 V-1
as<n+m), E,:= —
a\/—1 1 0
E..} forms an orthonormal basis of m (=7,G,..(C)) with respect to the

z

IA

) (1Zign, n+1=Za=n+m), then {D,,

invariant riemnnian structure defined by Q(X, Y): =——;— tr XY, X, Yeq.
Note that {D,,,:}:-1.., forms a Cartan subalgebra g of (a,f df). Then
for X: =Zn: Dy, (T xi=1) we get

i=1

1

1 .
R (X, o (Dja+ Da—n n+j)) X = (x]_xa—n)z 'J (Dja+Da—n n+.7')

V2 2 (n+l=n+j<a=2n),
R(X, 7 (Dye=Dusris)) X = (@7 + 25 = (Dye—Doen s
V2 V2
(rn+1Zn+j<a=z2n),
1 1
R (X, W (Eja_Ea—n n+j)) X = (xj_xa—n)Z 4/? (EJ'"_E“""‘ 7"+-7)
(n+1Zn+j<a<2n),
1 1

<X7 “To (Eja+ Eot—n n+.7')> X = (xj_l_ xa—n)z ~/'2_ (Eja+ Ea—n n+j)
(n+1=n+j<ax2n),

R(XJ

R (Xa Ej n+j) X = (zxj)z Ej n+.7'(j=1’ Ty n) ’
(X, D;,) X = (2?% D;,(@>2n possible only when m>n),

R(X, E;,) X = (2P E;,(a>2n possible only when m>n).

Thus the tangent conjugate locus is given by

{adh (f?l?EG%TD’*"”) , heK, Xxi=1, p<gq, reZ—{0}
(multiplicity 2) (n>1)} ,

rﬂ'xi
i 2|x?|

Di,n+i> 5 hEK, Z'x%:l, P=1, e, N, T‘EZ—{O}

M

{adh ¢

and if m>n

(multiplicity 1)} .
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{adh(ﬁ: z,] x; D, ,,H) ; heK, Y25=1, p=1, ---, n, reZ—{0}
(multiplicity 2 (m— n))} .

On the other hand in this case I' (G, K): = {Aealexp AeK}={Zm,; D, |

. 20X = Min A _
(mz)GZ} and to(X) ¢ = Min 2l<X, A>| —Mln 2| pl for X—Exi Di ntie

Aer(@, K)— {0}
Thus the (tangent) cut locus coincides with the first (tangent) conjugate

locus. Now G, ..(C) is the space of all complex z-dimensional subspaces
Of Cm+m-
Put o: = {!(xy, -, Z,, 0, -++, 0)€C™™} and o' : {( 0 Zpits ***s Lnim)€

C"*™} and define V,: = {ZeG™»™(C); dimZNo*=1}, Vl: = {ZeG,,,(C)|dim
ZNo=!l}). Now the same argument as before tells us that the first con-

jugate locus is equal to V.. Now it is easy to see U{exp (Adh il—z—l%rl—
; i= »
x; D; ,,H-) -0; heK, Yxi=1, lgpgn} is equal to V; if 7 is odd and is equal

to V, if ris even. Similarly U{exp (Adh Z | x; D, n+i> o; heK, 3}

pl
=1, 1§p<n} is equal to V, for reZ. Thus if n=1 (i.e. complex pro-

jective case) the conjugate locus is given by by VUV, Now Wong ([13])
has announced that the conjugate locus of o is given by VUV, for G, ..

(C). But exp (Adh Y | il |
»—q
o or o' and for n>1 the conjugate locus seems to be fairly complicated.

We shall remark only U{exp (Adh 3 z,D, ,,H> 0: heK, S2=1,

i=1 xp+xq

D, nH) -0 has generally zero intersection with

xp=xq} is equal to V; if  is odd and is equal to V, if 7 is even, and

U{exp (Adh Z o

if » is odd and is equal to V, if 7 is even.

x; D, n+’l§> 0; heK, Yxi=1, xp+xq=0} is equal to V,

3°. Quaternion Grassmann manifolds G, .(H)=8p(n+m)/Sp(n)x Sp
(m) (mn=m). Put G=8Spn+m), K=8Sp(n )xSp( ) and let g, ¥ be the Lie

algebra of G, K. We may consider 8p(n {( 'B)EU(Zn) B symmet-

2n 2m

2n{{A B

ric} and then g may be identified with { " {( — ); Aegp (n), Dedp(m),
2m{\7*B D
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n m
nfa|p | : . .
B= - eM,.+.(C) J', If we define an involutive automorphism # on
n\’B | &
2n 2m
A B A —B 0 B
Sp(n+m) by 0<C D) = (—-C D)’ then f (resp. m={("B 0) B=

\

(_% '[j) Eﬁmmm(C)}) is the +1 (resp. —1)-eigenspace of df. Now m has
a

the following orthonormal basis {H,;, K;;, Lisy M} (1SS0, 15jSm, n+1

1
<a=n-+m) with respect to the inner product Q(X, Y)=—— trXY, where

we put

Jj m+j
0 ’Bij 1 [ 1 ) 0
Hij: = ('___—_ With Bi] ( )
—iBijl 0 n+j 0 l 1
J_ o m*j
0 |G i (4= l 0
Kij = — Wlth Czj = ’
“Ciyl O n+j\ 0 , —J—=1
a—n a ‘
0 |D,, 1[0 ‘ 1
L, =( - with D,, and
Dl O n+i2\—110
a—n a
0 |Ei i [0 |[V-1
Mza =( With E‘L’a = ( — .
~E.l 0 n+i\W—1 |

Now {H,; 1<i<n} forms a Cartan subalgebra of (g, f, df). Then we get
for X=3, z, Hy, Z(a'¥=1,
i=1

1 -
R(X, 5 (Huy+ Ho)) X = (e g (Hy+ H) 1Si<jsn,

R(X, 75 (Hy—H,)) X = (@+2)f

R(X,I{il) X=0, i=17'"an7
R (X, I-I“) X =xH;; for j>n (possible only when m>n),

R( O (Ki,+Kﬂ)) X = (z,4 2,0

(I_Itj_Hji) 1i<yj<n,

J

J 5 (Ki;+Ky) 1=i<j=<mn,
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1 -
R(X, o (Ky—K,)) X = (=2 1= (Ky=K,), 1=i<jsn,
R(X, K;) X=Q2x)K,;, i=1,-,n,
R(X K,;) X = () K,; for j>n (possible only when m>n),
1 .
R(X, 5 (Lot Lennd) X = (@t 2Py (Lt Lcn ) n+i<asS2n,

1 (e Y
1/— (Lza La —-n n—H)) X - (xt xa—n) A/
Li 'n-H) X (Zx) Li n+i s 1’:1’ e n,

L) X = a} L, for a>2n (possible onlywhen m>n),

(Xy 4—1_2‘- (Mia +M‘a-—n n+i)> X = (xi + xa—n)

(Lia_La—'n 'n+i) 7l+l<a§_2n s

(Ma+Ma—n n+i) X
n+j<az2n,

R(X, g (M= Mes 1) X = (@=210) = (M= Mo ) X

R(X’ Mi n+J) X = (in)z Mi'n+ia i=1: e, n,

R (X, M) X = 2} M,, if a>2n (possible only when m>n).

1
V2
n+j<as2n,

Thus the tangent conjugate locus of M=G,, (H) is given by U {Ade

»<q
ITTIFT H,, ; hek, Z] xi=1, re Z—{0} (with mutiplicity 4)} (possible only

rex;

when n>1), U {Adhi 2z, H,;; heK, Yxi=1, reZ—{0} (with multiplic-
p
rea;

ity 3)¢, and U Adhi‘ H;;; heK, Yzi=1, reZ—{0} (with multiplicity
|

4(m—n)} (possible only when m>7). On the other hand, in this case I" (G,
K)={Aecalexp AeK}={Im,nH, ; m€Z}. So we have 4(X); = Min

Ael(Q, K)— {0}
g %—Max P for a unit X=Xz, H,ca, from which we know
that the first conjugate locus coincides with the cut locus of 0. Now G,
(H) may be identified with manifold of all quaternionic 7z dimensional sub-
spaces of H™*”. Put o: = {'(x;, -+, x,, 0, ---, 0)e H™"™ ; ;6 H} and o' : =
{0, -+, 0, Zps1, ***s Tntm)EH™™; e H} and V,: = {ZeG,,.,(H) ; dim (ZNot)
>0} and V,: = {Z€G,,,.,(H); dim (ZNo)={). Then the argument as before
shows that the cut locus of o is given by V.. Now it is easy to see

U{(exp Adhi 27’l7rx| I{“>-0; hek, Z’xf=1} is equal to V) (resp. Vl) if »
p
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rmx'}LJ-o;thQ.Exﬁzl}
g |

is equal to V, for every r€Z—{0}. Thus if n=1 (i. e. quaternion projec-
tive space), then the whole conjugate locus of o is given by V;UV, On
the other hand Wong has announced that the conjugate locus of o is
equal to V,UV, for every n, which seems to be incorrect. In fact, gener-

ally (exp AdhS —F

™ .
|zp 2| 7

for n>1 the conjugate locus seems to be fairly complicated. We shall men-

tion only the following: U {exp (Adhzn] A in-I“)-o; heK, Yxi=1,

/ n
is odd (resp. if » is even), and U {(exp Adh};
i=1

hfii>-o has zero intersection with o', o, and

xp=xq} is equal to V, (resp. V,) if r is odd (resp. even), and U {exp (Adh
rm

n
?;1 x,—x,
7 is odd (resp. even).

4°. Un)O(n). see [10]

in{u) c0; heK, Y22=1, xp+xq=0} is equal to V, (resp. V,) if

A | B
5°. U(2n)[Sp(n). Put G=U(2n), K=8p(n)and let g={(———’——); A,

~B | D
l A ‘B
Deu(n)l be the Lie algebra of G, f= (—:l—:— ; B symmetric, A€u(n)
—B A
be the Lie algebra of K. If we define the involutive automorphism 6 of
A B D —-C
U(2n) by 6 ( c D) = (—B—“ A) , then f is the +1l-eigenspace of df and
i n+i
i (V=2| 0
the —1-eigenspace m of df has an orthonormal basis {2, : = —_—
n+i\ 0 {‘/_2
i k n+tintk
] 1
Eol—1 l 0
(1=ign), Dy = (1Zi<kEn), Bi: =
n+1 0 —1
n+k 1
i k n+in+k i k nt+in+tk
Z V=1 7 1
B | y=1 t 0 p| 0 ’ -1
—— | (1Zi<kZn), Fu: =
avil o = nti 1( 0
n+k V— n+k\—1
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n+in+k
i 1
| k R e o Y S
(1Zi<ksn), Oy : = — (1<i<k<Zn)} with
ntid  —A—1 ‘ 0 l
n+k\V—1
respect to an invariant riemannian structure defined by Q(X, Y)= —% tr

XY, X, Yeg. Now a:={U;; 1<i<n} is a Cartan subalgebra of (g, f,
df) and the curvature tensors at o are given as follows. For a unit

XeXx, Ueaq,

R(X, D) X =2(x;—x.) Dy
R(X,8u) X =2(x;—x) B,
R(X,Fm) X =2(x;—x:) st
R(X, Q) X=2(x,—x,f O

Thus the tangent conjugate locus of o is given by U {Adh}_n‘_, S B
SN2 |x,—x

A ; heK, Yxi=1, p<gq, mEZ—'—{O}} and especially the first tangent conju-
gate point of o along a geodesic 7x: t—Exp tX, X =}"‘Z x, Aea (Yxi=1) is
i=1

given by Min r On the other hand, since I' (G, K): = {A€a

p<q ‘/7pr—qu )

. . nonmu;T _ T .
lexp A€eK} is given by {El ) =273 1\/£)1n EN

)- Thus the tangent cut locus is given by U {Adhi‘
i=1

(4 1

A ; miEZ}, we get £,(X);

<Min =
<_ 1a<1(111 \/2 pr—'qu

—n'xi . 2_1 2n n i
202 Maxlz,| 0 MK F 1}' Now let H™={(a,b)la, be H"} be 2n-

dimensional quaternionic right vector space. We shall define a hermitian
skew symmetric forms a in H*" by

a((a,b), (¢, d)) = {a, dy—<b, ),

where {, ) denotes the symplectic product of H”. Let M={P={(a,b)}C
H?>: n-diemensional subspace on which a|,=0}. Note that P,={(a, 0)},
+={(0, b)}e M. Now we have

LeMMA 4.5. M is diffeomorphic to U(2n)/Sp (n).

0 I ~
Proof. Put J =( 7 O)ESp (2n). Then Ae€Sp (2n) leaves a invariant
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if and only if A commutes with J. Now let H={Aec8p(2n); AJ=JA}=
~ B

{A=( B A) €Sp(2n)}, then H acts transitively on M. In fact if P,

QeM, then P, JP (resp. Q, JQ) are orthogonal and so there exists an
A€S8p (2n) which commutes with J and maps P onto Q. Now it is easy

[(A 0
to see that the isotropy subgroup of H at P, is given by L: =l
AeSp (n)}, which may be identified with 8p(n). Next we shall show that

~ B
H is isomorphic to U(27n). In fact, for A=( B A) €SP (2n) set A=a,+

ja,, B=b,+jb, where a,, b;(i=1, 2) are nX n-complex matrices, and define

a,+1ib; a,+ik,
p(A): = ( ! bl 2+ b) then we can show that ¢ is an isomorphism
— 10 4T
a, a
between H and U(2n) and maps L onto [ o eU(2n); ‘a1a1+'a,a,=1,
l'—az ay

tay a,="a, al}. Thus we have a diffeomorphism @ : M=H[L=G/K. Q@E.D

Now we get

THEOREM 4.6. Let M carry the riemannian structure which is
induced from that of U (2n)/Sp(n). Then the cut locus of P, is given by

Iz = {QeM|QN P *{0}).

Proof. We may identify M and H/Sp(n). Let @: H|Sp(n)—U(2n)/
Sp (n) be the diffecomorphism given in the Lemma. Firstly we shall show

that U { (exp (Adh<zz1 o3 2 Max| 2] ))) P,; hekK, Yxi=1, Max |z;|=
i$¢,|=-~=l$z,c|} is contained in {QeM|dim (QNPi)=~}, and U {so'l(exp

<Adh (5 = 91))) P,; heK, Sxi=1, 0=t<F, (X)} is contained in {Q€M|dim
i=0

(QNP#)=0}. In fact, let Max |z;|=|z; |==|z;|. We may assume Max
1-7:1' = lel == lecl > lxk+1l == |x,,| Then
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(¢—1<exp 2 5 Mo %» )=

(n V2 > 0 )
4 COS\2 V2 Max|z,| i
__ T
s( o V2zx ) @1 COS 2Max| ;|
) ‘Q‘Max| ¥ r,
=| %% OMax|z;|
_ m(n V2 ) —a
@3 V2 Max|z;| :
: — A
' P 2% W
_ T k1 2Max| x|
[T S’H(Z «/2Max|x|>; \ : ,

C{QeM ; dim QNPy=Fk}
Since AdK leaves P, P{ invariant we get our assertion. Thus we get

M = Cut locus of P,UInt(FP,)

— -1 T,

B (nez(,%:)zf:l 4 (exp (Adh <Z 02 Maxlx I )

U ( U ) go“l<exp (Adh U (Z tx; N >>) P)
ned L=l 052< ZJ‘—fMaxlx,;[

c{QeM|dimQ N P >0}U{QeM|dim QN P¢=(0)}=M.
Q.E.D.

REMARK 4.7. Note that 7,(M)=Z% and I'%: : = {QeM; dim Qr]P(,l=k}

=U ¢! (exp (Adh <§nl tx; %))) FPy; heK, Yxi=1, Max |z;|=|z; |=-= |xi,c]}

defines a submanifold of codimension £(2k—1) in M. Thus in these exam-
ples, cut loci has a natural stratification. It seems to be interesting to
know whether this holds for all compact symmetric spaces.

REMARK 4.8. After the preparation of the present note, Prof. S.
Murakami informed me that H. Naito has studied the tangent cut loci of
compact symmetric R-spaces.
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