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\S 1. Introduction

Let (M, V) be an almost quaternion manifo1d^{1)} of dimension 4 m(\geqq 8) ,
i.e. , a manifold M which admits a 3-dimensional vector bundle V consisting
of tensors of type (1, 1) over M satisfying the following condition: In any
coordinate neighborhood U of M, there is a local base \{F, G, H\} of V such
that

(F^{2}=G^{2}=H^{2}=-I_{j}

|FG=-GF=H , GH=-HG=F - HF=-FH=G ,

where I is an identity tensor field of type (1, 1) on M. Such a local base
\{F, G, H\} of V is called a canonical local base of V in U (cf. [2]^{2)} ). We
shall discuss in the local and use this canonical local base of V. For con-
venience sake, we put J_{1}=I, J_{2}=F, J_{3}=G and J_{4}=H.

We now consider an affine connection \Gamma and a curve C=x(t) on an
almost quaternion manifold (M, V) satisfying

\nabla_{x(r,)}\dot{x}(t)=\sum_{i=1}^{4}\phi_{i}(t)J_{i}\grave{x}(t)

where \dot{x}(t) is the vector tangent to C at the point x(t) , \phi_{i}(t)(i=1, \cdots, 4)

are certain functions of the parameter t and \nabla is an operator of covariant
differentiation with respect to \Gamma- Such a curve will be called a Q-planar
curve. The purpose of this paper is to prove the following theorem con-
jectured in the previous paper ([1, p. 242]):

THEOREM. In an almost quaternion manifold (M, V) of dimension 4m
(\geqq 8) , affine connections \Gamma and \overline{\Gamma} have all Q-planar curves in common if
and only if there exist local 1-forms \acute{\varphi}_{i}(i=1, \cdots, 4) on M satisfying

(1) S(X, Y)+S(Y, X)= \sum_{i=1}^{4}\{\psi_{i}(X)J_{i}Y+\psi_{i}(Y)J_{i}X\} ,

1) Throughout this paper, we assume that manifolds, tensor fields, curves and affine
connections are differentiate and of class C^{\infty} .

2) Numbers in brackets refer to the references at the end of the paper.
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where \nabla and \overline{\nabla} are operators of covariant differentiation with respect to
\Gamma and \overline{\Gamma} respectively, and S(X, Y)=\overline{\nabla}_{X}Y-\nabla_{X}Y

\S 2. Proof of Theorem

Let W be an n-dimensional real vector space which admits linear trans-
functions L_{2}, L_{3} and L_{4} of W satisfying

L_{i}^{2}=-L_{1} , L_{i}L_{j}=sgn (\begin{array}{lll}2 3 4i j k\end{array}) L_{k}

for k\neq i, j and i\neq j(i,j, k=2,3,4) , where L_{1} and sgn (\begin{array}{l}234ijk\end{array}) denote the

identity transformation of W and the sign of the permutation (\begin{array}{l}234ijk\end{array}) re-

spectively. Such a vector space will be called to have a quaternion structure
\{L_{i}\} and we denote it by (W, \{L_{i}\}) . The following can be obtained easily.

Lemma 1. For a nonzero vector X, L_{i}X(i=1, \cdots, 4) are linearly in-
dependent.

Lemma 2. If vectors L_{1}X, \cdots , L_{4}X and Y are linearly independent,
then L_{1}X, \cdots , L_{4}X, L_{1}Y, \cdots , L_{4}Y are also linearly independent.

COROLLARY. The dimension n of (W, \{L_{i}\}) is 4m and there exist vectors
e_{1} , \cdots , e_{m} of W such that \{L_{1}e_{1^{ }},\cdots, L_{4}e_{1}, \cdots, L_{1}e_{m^{ }},\cdots, L_{4}e_{m}\} is a base of W.

Let Q be a W-valued quadratic form on (W, \{L_{i}\}) which satisfies

(2) Q(X)= \sum_{i=1}^{4}\alpha_{i}(X)L_{i}X

for any vector X and certain functions \alpha_{1} , \cdots , \alpha_{4} on W, and B the W-valued
bilinear form associated with Q, i , e. ,

(3) 2B(X, Y)=Q(X+Y)-Q(X)-Q(Y)

for any vectors X and Y. From (2) and (3), for any real number t, we
have

2B(X, tY)=Q(X+tY)-Q(X)-Q(tY)

=Q(X+tY)-Q(X)-t^{2}Q(Y)

= \sum_{i=1}^{4}\{\alpha_{i}(X+tY)L_{i}(X+tY)-\alpha_{i}(X)L_{i}X-t^{2}\alpha_{i}(Y)L_{i}Y\}

and

2B(X, tY)=2tB(X, Y)
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=t\{Q(X+Y)-Q(X)-Q(Y)\}

=t \sum_{i=1}^{4}\{\alpha_{i}(X+Y)L_{i}(X+Y)-\alpha_{i}(X)L_{i}X-\alpha_{i}(Y)L_{i}Y\}

Thus, we have

\sum_{i=1}^{4}\{\alpha_{i}(X+tY)-\alpha_{i}(X)-t\alpha_{i}(Y)\}L_{i}(X+tY)

= \sum_{i=1}^{4}\{\alpha_{i}(X+tY)L_{i}(X+tY)-\alpha_{i}(X)L_{i}Y-t^{2}\alpha_{i}(Y)L_{i}Y\}

-t \sum_{i=1}^{4}\{\alpha_{i}(X)L_{i}Y+\alpha_{i}(Y)L_{i}X\}

=t \sum_{i=1}^{4}\{\alpha_{i}(X+Y)-\alpha_{i}(X)-\alpha_{i}(Y)\}L_{i}(X+Y) .

from which, if L_{1}X, \cdots , L_{4}X, L_{1}Y, \cdots , L_{4}Y are linearly independent, we have

\alpha_{i}(X+tY)-\alpha_{i}(X)-t\alpha_{i}(Y)=t\{\alpha_{i}(X+Y)-\alpha_{i}(X)-\alpha_{i}(Y)\}

and

t\{\alpha_{i}(X+tY)-\alpha_{i}(X)-t\alpha_{i}(Y)\}=t\{\alpha_{i}(X+Y)-\alpha_{i}(X)-\alpha_{i}(Y)\}

for every i(i=1, \cdots, 4) . Therefore, we have

Lemma 3. If vectors L_{1}X, \cdots , L_{4}X, L_{1}Y, \cdots , L_{4}Y are linearly inde-
pendent,

\alpha_{i}(X+Y)=\alpha_{i}(X)+\alpha_{i}(Y) (i=1, \cdots, 4)

Assume that vectors L_{1}X, \cdots , L_{4}X, L_{1}Y, \cdots , L_{4}Y are linearly independent,

and put Z= \sum_{i=1}^{4}r_{i}L_{i}X(\neq 0) for real numbers r_{1} , \cdots , r_{4} . Then, from Lemmas
2 and 3, we have

(4) \alpha_{i}(X+Y+Z)=\alpha_{i}(X)+\alpha_{i}(Y+Z)

=\alpha_{i}(X)+\alpha_{i}(Y)+\alpha_{i}(Z)r

When X+Z\neq 0 , from Lemmas 2 and 3 and (4), we have
\alpha_{i}(X+Z)=\alpha_{i}(X+Y+Z)-\alpha_{i}(Y)

=\alpha_{i}(X)+\alpha_{i}(Z) (i=1, \cdots, 4) .

When X+Z=0, from (4), we have

(5) \alpha_{i}(X)+\alpha_{i}(Z)=0 (i=1, \cdots, 4)\tau
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Therefore, together with Lemma 3, we have

Lemma 4. If dim W\geqq 8 and X+Y\neq 0 for nonzero vectors X and Y,

\alpha_{i}(X+Y)=\alpha_{i}(X)+\alpha_{i}(Y) (i=1, \cdots, 4)

Since Q(tX)=t^{2}Q(X) , from (2), we have

(6) t \sum_{i=1}^{4}\{\alpha_{i}(tX)-t\alpha_{i}(X)\}L_{i}X=0

From (6) and Lemma 1, we can obtain

Lemma 5. For any nonzero real number t and any nonzero vector X,

\alpha_{i}(tX)=t\alpha_{i}(X) (i=1, \cdots, 4) .

PROPOSITION. In a real vector space W with a quaternion structure
\{L_{i}\} of dimension 4m(\geqq 8) , if a W-valued quadratic form Q on W satis-
fies (2), then there exist linear functions \beta_{1} , \cdots , \beta_{4} on W such that \beta_{i}(X)=

\alpha_{i}(X)(i=1, \cdots, 4) for any nonzero vector X, and the W-valued bilinear
form B associated with Q is given by

2B(X, Y)= \sum_{i=1}^{4}\{\beta_{i}(X)L_{i}Y+\beta_{i}( Y)L_{i}X\}

for any vectors X and Y.
PROOF. Putting

(7) \beta_{i}(X)=\{\begin{array}{l}\alpha_{i}(X) whenX\neq 00 whenX=0\end{array}

for every i(i=1, \cdots, 4) , from (5) and Lemmas 4 and 5, it follows that each
of \beta_{i} (i=1, \cdots, 4) is linear on W. Therefore, using (2), (3) and (7), this
completes the proof.

PROOF of THEOREM. When we put

Q_{p}(X)=(\overline{\nabla}_{X}X-\nabla_{X}X)(p)

for any point p in M and any vector field X defined around p, and denote
by T_{p}(M) the tangent space of M at p, since Q_{p}(X) depends upon the vector
X(p) at p but not the vector field X and there exists the unique Q-planar
curve x(t) such that x(t_{0})=p and \dot{x}(t_{0})=X_{p} for every X_{p}\in TP(M) we see
that Q_{p} is the T_{p}(M) -valued quadratic form on T_{p}(M) . Thus, Theorem
is a direct consequence of Proposition.
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\S 3. Remarks

REMARK 1. Linear functions \beta_{i}(i=1, \cdots, 4) on (W, \{L_{i}\}) defined in (7)
are given by

\beta_{1}(X)=\frac{2}{n^{2}-4}\{\sum_{i=1}^{4}(Tr_{i}B)(X)+(n-2)(Tr_{1}B)(X)\}

and

\beta_{j}(X)=\frac{2}{n^{2}-4}\{\sum_{i=1}^{4}(Tr_{i}B)(L_{j}X)

-(n-2) \sum_{a=1}^{n}e^{a}(B(L_{j}e_{a}, X))\} (j=2,3,4)

for any vector X, where \{e_{1}, \cdots, e_{n}\} and \{e^{1}, \cdots, e^{n}\} are any base of W and
its dual base respectively, and Tr_{i}B(i=1, \cdots, 4) are defined by

( Tr_{i}B)(X)=\sum_{a=1}^{n}e^{a}(B(L_{i}e_{a}, L_{i}X))

for any vector X.
REMARK 2. In an almost quaternion manifold (M, V), let \{F, G, H\}

and \{F’, G_{j}’H’\} be canonical local bases of V in the neighborhoods U and
U’ of M respectively. Then, if U\cap U\neq\phi, we have

1^{(}F’=s_{11}F+s_{12}G+s_{13}H

.
G’=s_{21}F+s_{22}G+s_{23}H,\cdot

H’=s_{31}F+s_{32}G+s_{3_{0}^{\hslash}}Hr
,

in U\cap U’ where (s_{ij})\in SO(3)(i,j=1,2,3) (cf. [2, p. 484]). Thus, using Re-
mark 1, we see that the right hand side of (1) is independent of the choice
of canonical local bases of V. And from Remark 1, it follows that each
of local 1-forms \psi_{i}(i=1, \cdots, 4) on M in (1) is differentiate.

REMARK 3. Let (W, J) be a real vector space W’ with a complex struc-
ture J of dimension 2m(\geqq 4) , i.e. , a linear transformation J of W’ such
that J^{2}=-I, where I is an identity transformation of W’ . By virtue of
the same method as that of the proof of Proposition, which is different
from that given in S. Tachibana and S. Ishihara ([3, p. 95]), we can prove
that, if a W’ -valued quadratic form Q’ on (W’, J) satisfies

Q’(X)=\lambda(X)X+\mu(X)JX

for any vector X and certain functions \lambda and \mu on W’ , then there exist
linear functions \chi and \mu’ on W’ such that \lambda’(X)=\lambda(X) and \mu’(X)=\mu(X)
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for any nonzero vector X, and the W’ -valued bilinear form B’ associated
with Q’ is given by

2B’(X, Y)=\mathcal{X}(X)Y+\mathcal{X}(Y)X+\mu’(X)JY+\mu’(Y)JX

for any vectors X and Y.
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