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Introduction.

In the present paper, the author will study certain hypersurfaces of the
(n+1) -dimensional unit sphere S^{n+1} which are defined by the harmonic con-
jugate relation with respect to it as a quadratic hypersurface in R^{n+2} . Here,
the harmonic conjugate relation is used in the sense as follows: a point x
in R^{n+2} is called harmonic conjugate to a point y in R^{n+2} with respect to
S^{n\dagger 1} , if x is on the polar hyperplane of y with respect to S^{n\dagger 1} .

The motivation of the introduction of such hypersurfaces of S^{n\dagger 1} is due
to his work [3] in which he has investigated minimal hypersurfaces of S^{n+1}

with three principal curvature fields and tried to find out examples of such
hypersurfaces. He succeeded in constructing such hypersurfaces of special
type (Theorem 4 in [3]) under certain conditions for three tangent vector
fields of them determined corresponding to these principal curvature fields.
In order to find out examples of such minimal hypersurfaces of S^{n+1} without
the above mentioned conditions, the author payed his attention to the family
of hypersurfaces dealed with in the present paper which were perceived
through the properties of the examples in [3] and will try to find out min-
imal hypersurfaces of this kind out of these families. And, he will show
naturality of the examples in [3] by Theorem 6 in some sense. However
he will not succeed in finding out minimal hypersurfaces expected to be in
these families.

\S 1. The harmonic conjugate relation

For a subset A\subset R^{n+1} , we denote by [A] the smallest linear subspace
containing A in the following. For A_{1} , A_{2} , \cdots , A_{m}\subset R^{n+1} , let

[A_{1},, A_{2}, \cdots, A_{m}] :=[A_{1}\cup A_{2}\cup\cdots\cup A_{m}]

Let S^{n} be the unit n sphere in R^{n\dagger 1} given by

(1. 1) \sum_{i=1}^{n+1}x_{i}^{2}=1
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and P_{y} the polar hyperplane of a point y of R^{n+1} with respect to S^{n} given
by

(1. 2) \sum_{i=1}^{n+1}y_{i}x_{i}=1 ,

where y=(y_{1^{ }},\cdots, y_{n+1}) . For A\subset R^{n+1} , we define
h-conj A:=\cap {}_{x\epsilon A}P_{x} .

We can easily prove the following
LEMMA 1. For A, B\subset R^{n+1} , we have
i) h -conj A=h-conj [A] ,
ii) dim (h-conj A) =n-dim [A]
iii) h -conj A\supset Barrow h -conj B\supset A

Now, we call A is harmonic conjugate to B with respect to S^{n} , if h-conj
B\supset A . By Lemma 1, we can say A and B are mutually harmonic conjugate
(with respect to S^{n}).

Lemma 2. Let A and B be mutually harmonic conjugate linear sub-
spaces of R^{n+1} with respect to S^{n} , then for any point y of S^{n} , y\overline{\in}A\cup B,
the spheres S_{A}=[A, y]\cap S^{n} and S_{B}=[B, y]\cap S^{n} are orthogonal at y.

PROOF. Putting dim A=p\geqq 1 and dim B=q\geqq 1 , we choose (p+1) points
a_{\alpha}=(a_{\alpha i}) , \alpha=0,1 , \cdots , p, spanning A and (q+1) points b_{\lambda}=(b_{\lambda i}) , \lambda=0,1 , \cdots , q,
spanning B. Then, we have

(1. 3) (a_{\alpha}, b_{\lambda}) := \sum_{i=1}^{n+1}a_{\alpha i}b_{\lambda i}=1

Since any point x\in[A, y] can be written as

(1. 4) x= \sum_{\alpha}u_{\alpha}a_{\alpha}+ty,

where

(1. 5) \sum_{\alpha}u_{\alpha}+t=1 ,

we have

(1. 6) (x, x)= \sum_{\alpha,\beta}(a_{\alpha}, a_{\beta})u_{\alpha}u_{\beta}+2\sum_{\alpha}(a_{\alpha}, y)u_{\alpha}t+t^{2}=1

For y, we have (u_{0}, \cdots, u_{p}, t)=(0, \cdots, 0,1) . Hence for any differential at y
along S_{A} we have from (1. 5) and (1. 6)

\sum_{\alpha}du_{\alpha}+dt=0 , \sum_{\alpha}(a_{\alpha}, y)du_{\alpha}+dt=0 ,

that is

(1. 7) dt=- \sum_{\alpha}du_{\alpha} ,
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(1. 8) \sum_{\alpha}\{(a_{\alpha}, y)-1\}du_{\alpha}=0

Therefore, any tangent vector X of S_{A} at y can be expressed as

(1. 9) X= \sum_{\alpha}\xi_{\alpha}(a_{\alpha}-y) ,

where \xi_{\alpha} satisfy the condition :

(1. 10) \sum_{\alpha}\{(a_{\alpha}, y)-1\}\xi_{\alpha}=0 .

Analogously, any tangent vector Y of S_{B} at y can be expressed as

(1. 11) Y= \sum_{\lambda}\eta_{\lambda}(b_{\lambda}-y) ,

where \eta_{\lambda} satisfy the condition :

(1. 12) \sum_{\lambda}\{(b_{\lambda}, y)-1\}\eta_{\lambda}=0 .

Now, we compute the inner product \langle X, Y\rangle of X and Y. By means
of (1. 9), (1. 11), (1. 10), (1. 12) and (1. 3), we have

\langle X, Y\rangle=\sum_{\alpha,\lambda}(a_{\alpha}-y, b_{\lambda}-y)\xi_{\alpha}\eta_{\lambda}

= \sum_{\alpha,\lambda}\{(a_{\alpha}, b_{\lambda})-(a_{\alpha},y)-(b_{\lambda}, y)+1\}\xi_{\alpha}\eta_{\lambda}

=- \sum_{\lambda}\eta_{\lambda}\sum_{\alpha}\{(a_{\alpha}, y)-1\}\xi_{\alpha}-\sum_{\alpha}\xi_{\alpha}\sum_{\lambda}\{(b_{\lambda}, y)-1\}\eta_{\lambda}=0 ,

which shows that
T_{y}S_{A}\perp T_{y}S_{B} Q. E. D.

Let A and B be linear subspaces as in Lemma 2. If A\cap B\neq\phi , for
any point x\in A\cap B it must be (x, x)=1 , hence x is a point of S^{n} . Fur-
thermore we have A\subset P_{x} and B\subset P_{x} . Since P_{x} is the tangent hyperplane
of S^{n} at x, A and B must be tangent to S^{n} and orthogonal to each other.
If A\cap B=\phi , there exists no direction which is parallel to A and B, because
we have the same situation in the hyperplane at oc with respect to the
induced polarity from S^{n} . Thus, we obtain easily the following

Lemma 3. Let A and B two linear subspaces of R^{n+1} which are not
tangent to S^{n} at the same point and harmonic conjugate to each other, then
A and B are mutually independent, i . e .

dim [A, B]=\dim A+\dim B+1

Lemma 4. If A is harmonic conjugate to B_{1} and B_{2}, then so is A
to [B_{1}, B_{2}] .
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PROOF. By the assumption, we have h-conj A\supset B_{1} and B_{2} hence

h-conj A\supset[B_{1}, B_{2}] Q. E. D.

\S 2. The definition of M^{n}(x_{0} ; L_{1}^{m_{1}}, L_{2}^{m_{2}}, L_{3}^{m_{3}})

In the following, we suppose that L_{l}^{n_{i}} , i=1,2,3, are m_{i}mrdimensional
linear subspaces of R^{n+2} respectively such that they are mutually harmonic
conjugate to each other with respect to the unit (n+1) -sphere:

(2. 1) \sum_{i=1}^{n+2}x_{i}^{2}=1 ,

not tagent to S^{n+1} and

(2. 2) m_{1}+m_{2}+m_{3}=nl

LEMMA 5. We have

(2. 3) h -conj L_{i}^{m_{i}}=[L_{f}^{m_{f}}, L_{k}^{m_{k}}] ( i,j, k : distinct) ,\cdot

(2. 4) [L_{1}^{m_{1}}, L_{2}^{m_{2}}, L_{3}^{m_{3}}]=R^{n+2}

PROOF. By Lemma 3, L_{1}^{m_{1}} and L_{2}^{m_{2}} are mutually independent and so

dim [L_{1}^{m_{1}}, L_{2}^{m_{2}}]=m_{1}+m_{2}+1

By Lemma 4, [L_{1}^{m_{1}}, L_{2}^{m_{2}}] is harmonic conjugate to L_{3}^{m_{\theta}} . Once more by Lemma
3, [L_{1}^{m_{1}}, L_{2}^{m_{2}}\cdot] and L_{3}^{m_{3}} are mutually independent and hence

h -conj L_{3}^{m_{3}}=[L_{1}^{m_{1}}, L_{2}^{m_{2}}]

Since [[L_{1}^{m_{1}}, L_{2}^{m_{2}}], L_{3}^{m_{3}}]=[L_{1}^{n\iota_{1}}, L_{2}^{m_{2}}, L_{3}^{m_{3}}] , it must be

[L_{1}^{m_{1}}, L_{2}^{m_{2}}, L_{3}^{m_{3}}]=R^{n+2} . Q. E. D.

Now, we take a fixed point x_{0} of S^{n\dagger 1} not contained in each L_{i}^{m_{i}} , i=
1,2,3 , and P_{x_{0}}\not\supset L_{i}^{m_{i}} , i=1,2,3 . We choose u_{i}\in L_{i}^{m_{i}} , i=1,2,3 , such that
dim [x_{0}, u_{1}, u_{2}, u_{3}]=3 . Let us put

[x_{0}, u_{i}]\cap S^{n+1}-\{x_{0}\}=X_{i}1

[x_{i}, u_{j}]\cap S^{n+1}-\{x_{i}\}=x_{ij}, i\neq j ;
[x_{ij}, u_{k}]\cap S^{n+1}-\{x_{ij}\}=x_{ijk} , k\neq i, k\neq j ;

i,j, k=1,2,3
Here we have used the convention that for x\in S^{n+1} , u\in R^{n+2} , u\neq x, [x, u]\cap

S^{n+1}-\{x\}=x if the straight line [x, u] is tangent to S^{n+1} .

Lemma 6. x_{ij}=x_{ji} and x_{ijk}=x_{ikj} for i\neq j, k\neq i, k\neq j .
PROOF. We may put i=1 , j=2, k=3 . Since u_{1} and u_{2} are harmonic
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conjugate to each other with respect to the circle:

S^{1}=[u_{1}, u_{2}, x_{0}]\cap S^{n+1}

Hence, by the well-known fact in projective geometry as shown in Fig. 1,
we have

x_{12}=x_{21} .

Fig. 1.

Next, since \{x_{1}, x_{12}, x_{13}\} satisfies analogous conditions to those of \{x_{0}, x_{1} ,
x_{2}\} we obtain easily x_{123}=x_{132} . Q. E. D.

By virtue of this lemma, we denote the point x_{123} by x=x(u_{1}, u_{2}, u_{3})

Now, for i\neq j we put

p_{ij}=[x_{0}, x_{ij}]\cap[u_{i}, u_{j}]=p_{ji} ,
t_{ij}=[x_{i}, x_{j}]\cap[u_{i}, u_{j}]=t_{ji},

q_{if}=P_{x_{0}}\cap[u_{i}, u_{j}]=q_{ji}

then we see easily that
i) the pair { u_{i} , u_{j}\rangle is harmonic conjugate to the pair \{p_{ij}, t_{ij}\} ,
ii) p_{ij} and q_{if} are harmonic conjugate to each other with respect to

S^{v+1} .
Since p_{12}\in[u_{1}, u_{2}] , p_{12} and u_{3} are harmonic conjugate to each other

with respect to S^{n+1} . Regarding as

[x_{0},p_{12}]\cap S^{n\dagger 1}-\{x_{0}\}=x_{12} ,

we have
[x_{0}, x_{123}]\cap[p_{12}, u_{3}]=[x_{0}, x]\cap[u_{1}, u_{2}, u_{3}]-

which we denote p=p(u_{1}, u_{2}, u_{3},) .
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Fig. 2.

Using the fact that 3 lines [u_{1}, p_{23}] , [u_{2}, p_{31}] and [u_{3}, p_{12}] are concurrent
at p and the above mentioned fact i), we obtain easily the following

LEMMA 7. 3 points t_{23} , t_{31} and t_{12} are on the line m which is harmonic
conjugate to the point p with respect to the triangle u_{1}u_{2}u_{3} and 3 points
q_{23}, q_{31} and q_{12} are on the line l=P_{x_{0}}\cap[u_{1}, u_{2}, u_{3}] .

Fig. 3.

DETINITION. Let L_{i}^{m_{i}} , i=1,2,3, and x_{0} be the above mentioned linear
subspaces of R^{n+2} and a point of S^{n+1} . We denote the set of points x(u_{1} ,
u_{2}, u_{3}) for u_{i}\in L_{i}^{m_{i}} , i=1,2,3, such that

i) dim [x_{0}, u_{1}, u_{2}, u_{3}]=3 ,
ii) at most one of \{u_{1}, u_{2}, u_{3}\} belongs to P_{x_{0}} ,
iii) [u_{1}, u_{2}, u_{3}] does not tangent to S^{n+1} at one of \{u_{1}, u_{2}, u_{3}\} ,

by M^{n}=M^{n}(x_{0}, L_{1}^{m_{1}}, L_{2}^{m_{2}}, L_{3}^{n\iota_{3}}) .
Lemma 8. For a point x(u_{1}, u_{2}, u_{3}) as in the above definition, we have

x_{23}\overline{\in}L_{1}^{m_{1}} , x_{31}\overline{\in}L_{2}^{m_{2}}, x_{12}\overline{\in}L_{3}^{m_{3}} .
PROOF. Supposing x_{12}\in L_{3}^{n\iota_{3}} , we obtain immediately
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[L_{1}^{n\iota_{1}}, L_{2}^{m_{z}}]\subset P_{x_{12}} ,

hence P_{x_{1}}\underline,\ni u_{1} , u_{2}, which implies x_{12}=x_{1}.=x_{2}=x_{0} and so
u_{1}\in P_{x_{0}} and u_{2}\in P_{x_{0}} .

This fact contradicts to the condition ii). Q. E. D.
Lemma 9. S_{i}^{m_{i}}(u_{j}, u_{k}):=[L_{i}^{m_{i}}, x_{jk}]\cap S^{n+1} , w/iere (2, k) is one of (1, 2, 3),

(2, 3, 1) and (3, 1, 2), is an m_{i} dimensional sphere.
PROFF. By Lemma 8, [L_{3}^{m_{3}}, x_{12}] is an m_{3}+1 dimensional linear subspace

of R^{n+2} . Since we have
T_{x_{12}}S_{3}^{m_{s}}(u_{1}, u_{2})=P_{x_{12}}\cap[L_{3}^{m_{3}}, x_{12}] ,

it is sufficient to prove that P_{x_{12}}\not\supset[L_{3}^{n\iota_{3}}, x_{12}] .
Now, we suppose P_{x_{12}}\supset L_{3}^{m_{3}} . Then, we have x_{12}\in h -conj L_{3}^{m_{3}}=[L_{1}^{m_{1}}, L_{2}^{m_{\underline{\eta}}}]

by Lemma 5. If x_{12}=x_{0} , we have P_{x_{0}}\ni u_{1} , u_{2} , u_{3}, which contradicts to the
above condition ii) for x. Therefore, we have x_{12}\neq x_{0} . If x_{12}\neq p_{12} , it must
be x_{0}\in[L_{1}^{m_{1}}, L_{2}^{m_{2}}] and hence P_{x_{0}}\supset h -conj [L_{1}^{m_{1}}, L_{2}^{m_{2}}]=L_{3}^{m_{S}} , which contradicts
to the way of choice of the point x_{0} . Therefore, we have x_{12}=p_{12} . In the
following we divide our argument into the two cases:

\alpha) p_{12}\neq u_{1} and u_{2} ; \beta) p_{12}=u_{1} or u_{2} .
Case \alpha). It must be x_{1}=u_{1} and x_{2}=u_{2}, which is impossible, because

S^{n\dagger 1} is a sphere.
Case \beta). If p_{12}=u_{1} , then x_{1}=u_{1} and [u_{1}, u_{2}] is tangent to S^{n+1} at u_{1} .

If S^{n+1}\cap[u_{1}, u_{2}, u_{3}] is a circle, then it is impossible that the triangle u_{1}u_{2}u_{3}

is self-conjugate with respect to this circle. Hence, the plane [u_{1}, u_{2}, u_{3}] is
tangent to S^{n\dagger 1} at u_{1} , and this is also impossible by the condition iii) for
x. Thus, we see that P_{x_{12}}\not\supset L_{3}^{m_{3}} . Q. E. D.

By virtue of Lemma 9, setting

(2. 5) E_{1}^{m_{1}}(x):=T_{x}S_{1}^{m_{1}}(u_{2}, u_{3}) , E_{2}^{m_{2}}(x):=T_{x}S_{2}^{m_{2}}(u_{3}, u_{1}) , E_{2}^{m_{3}}(x):=T_{x}S_{3}^{m_{3}}(u_{1}, u_{2}) ,

we have
E_{i}^{n_{i}}(x)\perp E_{f}^{m_{f}}(x) for i\neq j

by Lemma 2, because we can prove

(2. 6) x\overline{\in}L_{i}^{m_{i}} , i=1,2,3 .
For if x\in L_{i}^{m_{i}} , it must be u_{i}=x, therefore [u_{1}, u_{2}, u_{3}] must be tangent to
S^{n+1} at u_{i} by the analogous argument to the proof of Lemma 9.

Therefore E_{i}^{m_{i}}(x) makes an m_{i}mrdimensional distribution of M^{n} for i=1 ,
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2, 3 and these are mutually orthogonal to each other.

\S 3. The normal vector of M^{n} in S^{n+1}

In this section, we shall determine the normal unit vector N_{x} of M^{n}

at x.
At the beginning, for fixed i=1,2,3, we denote the hyperplane con-

taining L_{i}^{m_{i}} and parallel to h-conj L_{i}^{m_{i}} by P_{i}^{n+1} . Then, by means of Lemma
5, we can express a point x\in R^{n+2} uniquely as

(3. 1) x=p_{1}\hat{u}_{1}+p_{2}\hat{u}_{2}+p_{3}\hat{u}_{3} ,

where
p_{1}+p_{2}+p_{3}=1 , \hat{u}_{i}\in L_{i}^{m_{i}} , i=1,2,3 .

We call a point x of M^{n} a general point provided x \overline{\in}\bigcup_{i=1}^{3}P_{i}^{n+1} .

Lemma 10. On the expression (3. 1) for a general point x of M^{n} we
have

N_{x}||[\hat{u}_{1},\hat{u}_{2},\hat{u}_{3}]\cap P_{x} .
PROOF. By the argument at the end of \S 2, we have

(3. 2) E_{i}^{m_{i}}(x)=[L_{i}^{m_{i}}, x]\cap P_{x}=[L_{i}^{m_{i}}, x_{fk}]\cap P_{x}, i\neq j, i\neq k,

which are orthogonal subspaces in P_{x} .
Now, we shows that x\overline{\in}[L_{i}^{m_{i}}, L_{j}^{m_{j}}] for i\neq j. Suppose that x\in[L_{1}^{m_{1}}, L_{2}^{m_{2}}] ,

then P_{x}\supset L_{3}^{m_{3}} , which implies x=x_{12} . The fact x_{12}\in[L_{1}^{m_{1}}, L_{2}^{m_{2}}] implies x_{0}\in[L_{1}^{m_{1}},
L_{2}^{n\iota_{2}}] and hence P_{x_{0}}\supset L_{3}^{m_{\theta}} . This is impossible from the way of choice of x_{0}.

Therefore [L_{i}^{m_{i}}, x]\cap P_{x}=E_{i}^{m_{i}}(x) and [L_{f}^{m_{j}}, L_{k}^{m_{k}}, x]\cap P_{x} are mutually
orthogonal complements in P_{x} by means of Lemma 2. Hence, we obtain
the fact:

N_{x}||[L_{f}^{m_{f}}, L_{k}^{m_{k}}, x] for j\neq k .
Next, we obtain from (3. 1) for x=x(u_{1}, u_{2}, u_{3})

\sum_{i=1}^{3}p_{i}(\hat{u}_{i}-X)=0 .

For the point x, it is clear that p_{i}\neq 0 , for i=1,2,3 , since x\overline{\in}[L_{i}^{m_{i}}, L_{f}^{m_{f]}} for
i\neq j . By the expression

p_{1}(\hat{u}_{1}-x)=-p_{2}(\hat{u}_{2}-x)-p_{3}(\hat{u}_{3}-x) ,

we see that
\hat{u}_{1}-x||[[L_{2}^{m_{2}}, x], [L_{3}^{m_{3}}, x]]=[L_{2}^{m_{2}}, L_{3}^{m_{3}}, x] .
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We have also
\hat{u}_{1}-x||[L_{3}^{m_{3}}, L_{1}^{m_{1}}, x] and \hat{u}_{1}-x||[L_{1}^{m_{1}}, L_{2}^{m_{2}}, x] .

Hence we obtain
\hat{u}_{1}-x||\bigcap_{i=1}^{3} [h -conj L_{i}^{m_{i}} , x].

Analogously we obtain the relations
\hat{u}_{j}-x||\bigcap_{i=1}^{3} [h -conj L_{i}^{m_{i}} , x], for j=1,2,3 ,

from which, using the fact x\in[\hat{u}_{1},\hat{u}_{2},\hat{u}_{3}] , we get

(3. 3) [ \hat{u}_{1},\hat{u}_{2},\hat{u}_{3}]\subset\bigcap_{i=1}^{3} [h -conj L_{i}^{m_{i}} , x].

Therefore, we obtain

[ \hat{u}_{1},\hat{u}_{2},\hat{u}_{3}]\cap P_{x}\subset\bigcap_{i=1}^{3} ([h -conj L_{i}^{m_{i}} , x] \cap P_{x}),
of which the right hand side has the common direction of the orthogonal
complements of E_{i}^{m_{i}}(x) in P_{x} , that is the normal direction of T_{x}M^{n} in P_{x} .
Hence we have

N_{x}||[\hat{u}_{1},\hat{u}_{2},\hat{u}_{3}]\cap P_{x} . Q. E. D.

Now, we suppose that x_{0} \overline{\in}\bigcup_{i=1}^{3}P_{i}^{n+1} in the following. Then, by (3. 1)
we can put

(3. 4) x_{0}=p_{1}^{0}\hat{u}_{I}^{0}+p_{2}^{0}\hat{u}_{2}^{0}+p_{3}^{0}\hat{u}_{3}^{0} ,
p_{1}^{0}+p_{2}^{0}+p_{3}^{0}=1 , \iota l_{i}^{0}\in L_{i}^{m_{i}} , i=1,2,3 .

Lemma 12. On (3. 4), we have p_{i}^{0}\neq 0 , i=1,2,3 .
PROOF. Supposing p_{1}^{0}=0 , we have x_{0}\in[L_{2}^{m_{I}}, L_{3}^{m_{3}}] , Hence L_{1}^{m_{1}}\subset P_{x_{0}} which

contradicts to the way of choice of the point x_{0} given in \S 2. Hence p_{1}^{0}\neq 0 .
Analogously we have p_{2}^{0}\neq 0 and p_{3}^{0}\neq 0 . Q. E. D.

LEMMA 13. When m_{3}\geqq 2 , the normal lines of M^{n} along S_{3}^{n_{\theta}}(u_{1}, u_{2}) in
R^{n+2} form locally an (m_{3}+1) dimensional right cone.

PROOF. Fixing u_{1} and u_{2} , we regard u_{3} as a variable. By the definition
of x=x(u_{1}, u_{2}, u_{3}) , we can put

(3. 5) x_{12}=x_{0}+q_{1}(u_{1}-x_{0})+q_{2}(u_{2}-x_{0})

=(1-q_{1}-q_{2})x_{0}+q_{1}u_{1}+q_{2}u_{2}

and

(3. 6) x=(1-\rho)x_{12}+\rho u_{3} ,

where \rho is regarded as a real valued function of u_{3} . Substituting (3. 4) and
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(3. 5) into (3. 6), we obtain

x=(1- \rho)\{(1-q_{1}-q_{2})\sum F_{ii}^{00}\hat{u}+q_{1}u_{1}+q_{2}u_{2}\}+\rho u_{3}

=(1-\rho)\{(1-q_{1}-q_{2})p_{1}^{0}\hat{u}_{1}^{0}+q_{1}u_{1}\}

(3. 7)
+(1-\rho)\{(1-q_{1}-q_{2})p_{2}^{0}\hat{u}_{2}^{0}+q_{2}u_{2}\}

+(1-\rho)(1-q_{1}-q_{2})p_{3}^{0}\hat{u}_{3}^{0}+\rho u_{3} .
Setting

(3. 8)

’

p_{1}=(1-\rho)\{(1-q_{1}-q_{2})p_{1}^{0}+q_{1}\} ,

p_{2}=(1-\rho)\{(1-q_{1}-q_{2})p_{2}^{0}+q_{2}\} ,

\backslash p_{3}=(1-\rho)(1-q_{1}-q_{2})p_{3}^{0}+\rho ,

we can easily see that

(3. 9) p_{1}+p_{2}+p_{3}=1 .
By means of (2. 6), x\neq u_{3} , hence we have

(3. 10) \rho\neq 1 .
We have also

(3. 11) q_{1}+q_{2}\neq 1 .
Otherwise, from (3. 5) we get x_{12}=q_{1}u_{1}+(1-q_{1})u_{2} , which implies

i) x_{1}=u_{1} , x_{2}=u_{2}, x_{12}\neq x_{1} and x_{2} ;

or

ii) x_{1}=u_{1}=x_{12} ; or iii) x_{2}=u_{2}=x_{12} .
i) is impossible for S^{n+1} and ii) and iii) are also impossible since the triangle
u_{1}u_{2}u_{3} is self-conjugate with respect to the circle [u_{1}, u_{2}, u_{3}]\cap S^{n+1} .

We consider the case

(3. 12) p_{i}\neq 0 for i=1,2,3 .

This condition is equivalent to the following:

(3. 13)

’
(1-q_{1}-q_{2})p_{1}^{0}+q_{1}\neq 0 ,
(1-q_{1}-q_{2})p_{2}^{0}+q_{2}\neq 0 ,

\backslash (1-\rho)(1-q_{1}-q_{2})p_{3}^{0}+\rho\neq 0

by (3. 10). Then, we can set
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(3. 14) \{

\hat{u}_{1}=\frac{(1-q_{1}-q_{2})p_{1}^{0}\hat{u}_{1}^{0}+q_{1}u_{1}}{(1-q_{1}-q_{2})p_{1}^{0}+q_{1}} ,

\hat{u}_{2}=\frac{(1-q_{1}-q_{2})p_{2}^{0}\acute{u}_{2}^{0}+q_{2}u_{2}}{(1-q_{1}-q_{2})p_{2}^{0}+q_{2}} ,

\hat{u}_{3}=\frac{(1-\rho)(1-q_{1}-q_{2})p_{3}^{0}\hat{u}_{3}^{0}+\rho u_{3}}{(1-\rho)(1-q_{1}-q_{2})p_{3}^{0}+\rho} ,

and (3. 7) can be written as

(3. 15) x= \sum_{i=1}^{3}p_{i}\hat{u}_{i}, p_{1}+p_{2}+p_{3}=1,\hat{u}_{i}\in L_{i}^{m_{i}} , i=1,2,3 .

The first two of (3. 14) shows that the points \hat{u}_{1} and \hat{u}_{2} are also fixed.

Fig. 4. Fig. 5.

By Lemma 10, the normal line of M^{n} at x is [\hat{u}_{1},\hat{u}_{2},\hat{u}_{3}]\cap P_{x} and we denote
its intersection with [\hat{u}_{1},\hat{u}_{2}] by y_{3} . It is clear that the point w_{3}=[x,\hat{u}_{3}]\cap

[\hat{u}_{1},\hat{u}_{2}] is a fixed point on the (m_{3}+1) plane [x, L_{3}^{m_{3}}]=[x_{12}, L_{3}^{m_{3}}] and dim
[\hat{u}_{1},\hat{u}_{2}, x_{12}, L_{3}^{m_{3}}]=m_{3}+2 . Therefore, as is shown in Fig. 4, S_{3}^{n_{\theta}}(u_{1}, u_{2}),\hat{u}_{1} ,
\hat{u}_{2}, the normal line at x are all in a fixed (m_{3}+2) -dimensional linear space.

Now, noticing m_{3}\geqq 2 , we can prove that y_{3} is on the line in this linear
space which passes the centor Z_{3} of S_{3}^{m_{3}}(u_{1}, u_{2}) and is perpendicular to [x_{12},
L_{3}^{m_{3}}] . Otherwise, let y_{3}’\neq z_{3} be the orthogonal projection of y_{3} onto [x_{12}, L_{3}^{m_{3}}] .
Then, 3 points y_{3}’ , z_{3} and x are collinear. Accordingly, the moving point
x must be on the great circle which is the intersection of S^{n+1} and the plane
determined by Z_{3} and the orthogonal projection of the h.ne [\hat{u}_{1},\hat{u}_{2}] onto [x_{12},
L_{3}^{m_{3}}] . This contradicts to m_{3}\geqq 2 .

We see easily that the point y_{a} is a fixed point on [\hat{u}_{1},\hat{u}_{2}] . This shows
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that the normal lines of M^{n} along S_{3}^{n_{3}}(u_{1}, u_{2}) make locally a right cone.
Q. E. D.

THEOREM 1. When m_{i}\geqq 2 , i=1,2,3 , M^{n}=M^{n}(x_{0}, L_{1}^{m_{1}}, L_{2}^{m_{2}}, L_{3}^{m_{3}}) is a
hypersurface of S^{n+1} with 3 principal curvatures of multiplicities m_{1}, m_{2}

and m_{3} respectively.
PROOF. On each L_{i}^{m_{i}} , i=1,2,3 , we choose an orthonormal cartesian

coordinates
u^{\alpha_{1}} , \alpha_{1}=1 , \cdots , m_{1} ; u^{\alpha_{2}} , \alpha_{2}=m_{1}+1 , \cdots , m_{1}+m_{2} ; u^{\alpha_{3}} , \alpha_{3}=m_{1}+m_{2}+1 , \cdots , n

and denote the tanget vector fields on M^{n} corresponding to \partial/\partial u^{\alpha_{1}} on L_{1}^{m_{1}} ;
\partial/\partial u^{\alpha_{2}} on L_{3}^{m_{2}} ; \partial/\partial u^{\alpha_{3}} on L_{3}^{m_{3}} , through the projections from x_{23} , x_{31} , x_{12} by
X_{\alpha_{1}} ; X_{\alpha_{2}} ; X_{\alpha_{3}} , respectively.

Using the local coordinates u^{1} , \cdots , u^{n} , we denote the line element of M^{n}

by

(3. 16) ds^{2}.= \sum_{i,f=1}^{n}g_{ij}(u)du^{i} duj ,

then we have
q_{ij}=\langle X_{i}, X_{j}\rangle=(X_{i}, K_{j}) ,

where \langle , \rangle denotes the Riemannian innerproduct of M^{n} and (, ) the Euclidean
inner product in R^{n+2} . By means of Lemma 2, we have

(3. 17) q_{\alpha_{i^{\alpha}j}}=0 for i\neq j

Next, we set the components of the 2nd fundamental form of M^{n} :

(3. 18) h_{ij} :=\langle\nabla_{r_{i}\sim}X_{j}, N\rangle=h_{ji} , i,j=1,2, \cdots , n,

where \nabla denotes the covarint differentiation of S^{n+1} . At each point x of
M^{n} , we assign a vector \xi_{3}(x) which is the unit outer normal vector of S_{3}^{m_{3}}

(u_{1}, u_{2}) at x. Then, we decompose N=N_{x} as

(3. 19) N=\langle N, \xi_{3}\rangle\xi_{3}+\eta_{3} .
We see easily that

\eta_{3}\perp[x_{12}, L_{3}^{m_{3}}]

By means of Lemma 13, \langle N, \xi_{3}\rangle is constant and \eta_{3} is parallel along S_{3}^{n_{3}}(u_{1} ,
u_{2}) . Therefore, from (3. 19) we obtain

\frac{\partial N}{\partial u^{\alpha_{3}}}=\langle N, \xi_{3}\rangle\frac{\partial\xi_{3}}{\partial u^{\alpha_{3}}} ,

and
\langle\frac{\partial x}{\partial u^{\alpha_{i}}}r\frac{\partial N}{\partial u^{\alpha_{3}}}\rangle=\langle N, \xi_{3}\rangle\cdot\langle\frac{\partial x}{\partial u^{\alpha_{i}}}, \frac{\partial\xi_{3}}{\partial u^{\alpha}\}\rangle .
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On the other hand, we have x-z_{3}=|x-z_{3}|\xi_{3} , where z_{3}=z_{3}(u_{1}, u_{2}) is
the centor of S_{3}^{m_{3}}(u_{1}, u_{2}) and so

\frac{\partial x}{\partial u^{\alpha_{3}}}=|x-z_{3}|\frac{\partial\xi_{3}}{\partial u^{\alpha}\}

Hence, we obtain from (3. 18)

h_{\alpha_{i^{\alpha_{3}}}}=- \langle\frac{\partial x}{\partial u^{\alpha_{i}}}, \frac{\partial N}{\partial u^{\alpha_{d}}}\rangle=-\frac{\langle N,\xi_{3}\rangle}{|x-z_{3}|}\langle\frac{\partial x}{\partial u^{\alpha_{i}}}, \frac{\partial x}{\partial u^{\alpha_{3}}}\rangle ,

i. e.

h_{\alpha_{i^{\alpha}s}}=- \frac{\langle N,\xi_{3}\rangle}{|x-z_{3}|}g_{\alpha_{i}\alpha_{3}}

Considering analogously z_{1}(u_{2}, u_{3}) , \xi_{1}(u_{2}, u_{3}) for S_{1}^{m_{1}}(u_{2}, u_{3}) and z_{2}(u_{3}, u_{1}) , \xi_{2}

(u_{3}, u_{1}) for S_{2}^{m_{2}}(u_{3}, u_{1}) , we obtain the following:

(3. 20) \{

h_{\alpha_{i^{\alpha}j}}=0 , i\neq j ;

h_{\alpha_{i^{\beta_{i}}}}=- \frac{\langle N,\xi_{i}\rangle}{|x-z_{i}|}q_{\alpha_{i^{\beta_{i}}}} , i,j=1,2,3,

which shows that

(3. 21) \mu_{i}=-\frac{\langle N,\xi_{i}\rangle}{|x-z_{i}|}

,\cdot i=1,2,3,

is a principal curvature of M^{n} of multiplicity m_{i} and the corresponding eigen
space is E_{i}^{m_{i}}(x) . Q. E. D.

Lemma 14. For M^{n} as in Theorem 1, we have

(3. 22) \sum_{i=1}^{3}m_{i}\mu_{i}=\sum_{i=1}^{3}\frac{m_{i}}{\overline{xy_{i}}} ,

where xy_{i} denotes the length with sign measured by N on the normal line
of M^{n} at x.

PROOF. Along S_{3}^{m_{3}}(u_{1}, u_{2}) , let \theta_{3} be the angle as is shown in Fig. 6
determined by

\langle N, -\xi_{3}\rangle=\cos\theta_{3} .
Then, we have easily

\overline{xy_{3}} cos \theta_{3}=|x-z_{3}| :

and hence from (3. 21)

\mu_{3}=\frac{\cos\theta_{3}}{|x-z_{3}|}=\frac{1}{\overline{xy_{3}}}

Fig. 6.
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We shall obtain analogous formulas for \mu_{1} and \mu_{2} and so (3. 22).
Q. E. D.

Now, we compute the right-hand side of (3.22). Let x\in M^{n} be a gen-
eral point, then by (3. 1) we can put

x=p_{1}\hat{u}_{1}+p_{2}\hat{u}_{2}+p_{3}\hat{u}_{3\prime}.
where

p_{1}+p_{2}+p_{3}=1 , \hat{u}_{i}\in L_{i}^{m_{i}} , i=1,2,3
Foe any point y on the normal line in [\hat{u}_{1},\hat{u}_{2},\hat{u}_{3}] , we put

y=q_{1}\hat{u}_{1}+q_{2}\hat{u}_{2}+q_{3}\hat{u}_{3}, q_{1}+q_{2}+q_{3}=1

Then, we have

0=(x, y-x)= \sum_{i,f=1}^{3}p_{i}(q_{j}-p_{j})(\hat{u}_{i},\hat{u}_{j})

= \sum_{i=1}^{3}p_{i}(q_{i}-p_{i})(\hat{u}_{i},\hat{u}_{i})-1)+\sum_{i=1}^{3}p_{i}\sum_{j=1}^{3}(q_{j}-p_{j}) ,

hence

\sum_{i=1}^{3}b_{i}p_{i}(q_{i}-p_{i})=0 ,

where

(3. 23) b_{i} :=(\hat{u}_{i},\hat{u}_{i})-1 , i=1,2,3
We have also

\sum_{i=1}^{3}(q_{i}-p_{i})=0 .

Therefore, we obtain the equalities

(3. 24) \frac{b_{2}p_{2}=b_{3}p_{3}}{q_{1}-p_{1}}=\frac{b_{3}p_{3}-b_{1}p_{1}}{q_{2}-p_{2}}=\frac{b_{1}p_{1}-b_{2}p_{2}}{q_{3}-p_{3}}l

THEOREM 2. Let x be a general point of M^{n}=M^{n}(x_{0}, L_{1}^{m_{1}}, L_{2}^{m_{2}}, L_{3}^{m_{3}})

with m_{i}\geqq 2 , i=1,2,3 , and represent it as

x= \sum_{i=1}^{3}p_{i}\hat{u}_{i} , p_{1}+p_{2}+p_{3}=1 , \hat{u}_{i}\in L_{i}^{m_{i}} , i=1,2,3

Then, M^{n} is minimal at x, if and only if

(3. 25) \frac{m_{1}}{p_{1}}(b_{2}p_{2}-b_{3}p_{3})+\frac{m_{2}}{p_{2}}(b_{3}p_{3}-b_{1}p_{1})+\frac{m_{3}}{p_{3}}(b_{1}p_{1}-b_{2}p_{2})=0

PROOF. First, we notice that p_{i}\neq 0 , i=1,2,3 , which was shown in
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the proof of Lemma 10. Using (3. 24), we put

y_{3}=x+ \rho_{3}\sum_{i=1}^{3}r_{i}\hat{u}_{i} ,

where
r_{1}=b_{2}p_{2}-b_{3}p_{3} , r_{2}=b_{3}p_{3}-b_{1}p_{1} , r_{3}=b_{1}p_{1}-b_{2}p_{2} .

Since y_{3}\in[\hat{u}_{1},\hat{u}_{2}] , it must be p_{3}+\rho_{3}r_{3}=0 , hence we have

y_{3}-x=- \frac{p_{3}}{r_{3}}\sum_{i=1}^{3}r_{i}\hat{u}_{i} .

By the way of measuring length on the normal h.ne of M^{n} at x, we have

\overline{xy_{3}}=-\frac{p_{3}}{r_{3}} ( \sum_{i=1}^{3}r_{i}\hat{u}_{i}, N).
We obtain analogous formulas for y_{1} and y_{2} . Hence, from (3. 22) and these
formulas we obtain the following:

\sum_{i=1}^{3}m_{i}\mu_{i}=-\cross\frac{1}{(\sum_{i=1}^{3}r_{i}\hat{u}_{i},N)}

(3. 26)

\cross\{\frac{m_{1}}{p_{1}}(b_{2}p_{2}-b_{3}p_{3})+\frac{m_{2}}{p_{2}}(b_{3}p_{3}-b_{1}pil+\frac{m_{3}}{p_{3}}(b_{1}p_{1}-b_{2}p_{2})\} ,

which implies immediately the statement of this theorem. Q. E. D.

\S 4. The conditions in order that M^{n} is minimal
In this section, we shall investigate the conditions that M^{n}=M^{n}(x_{0}, L_{1}^{m_{1}} ,

L_{2}^{m_{2}} , L_{3}^{m_{3}}) with m_{i}\geqq 2 , i=1,2,3, is a minimal hypersurface in S^{n+1} .
Using the notation in the proof of Theorem 2, since we have

1=(x, x)= \sum_{i=1}^{3}p_{t^{2}}(\hat{u}_{i},\hat{u}_{i})+2(p_{2}p_{3}+p_{3}p_{1}+p_{1}p_{2})

for a general point x of M^{n} , we obtain the equality:

(4. 1) \sum_{i=1}^{3}b_{i}p_{i}^{2}=0 ,

where

(4. 2) b_{i}=(\hat{u}_{i},\hat{u}_{i})-1 , i=1,2,3,

(4. 3) p_{1}+p_{2}+p_{3}=1 .

If we consider b_{i} as constants and p_{i} as variables, (4. 1) represents in
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general an ellipse or hyperbola. In fact, considering (p_{1}, p_{2}, p_{3}) as homoge-
neous coordinates in the projective plane P^{2}(R) , (b_{2}b_{3}, b_{3}b_{1}, b_{1}b_{2}) is the pole
of the projective line p_{1}+p_{2}+p_{3}=0 . Using this fact, p_{1} , p_{2} and p_{3} satisfying
(4. 3) can be written as

(4. 4)

’

p_{1}= \frac{b_{2}b_{3}}{B}-\xi+b_{2}\eta ,

p_{2}= \frac{b_{3}b_{1}}{B}+\xi+b_{1}\eta,

-p_{3}= \frac{b_{1}b_{2}}{B}-(b_{1}+b_{2})\eta ,

where B=b_{2}b_{3}+b_{3}b_{1}+b_{1}b_{2} . Substituting (4. 4) into (4. 1), we obtain

(4. 5) \xi^{2}+B\eta^{2}=-\frac{b_{1}b_{2}b_{3}}{(b_{1}+b_{2})B} .

Now, we fix u_{1} and u_{2} in x=x(u_{1}, u_{2}, u_{3}) . Then, \hat{u}_{1} and \hat{u}_{2} given by
(3. 14) and b_{1} and b_{2} given by (4. 2) are all fixed. Suppose u_{3} moves along
a curve in L_{3}^{n_{3}} and we denote the derivatives with respect to the parameter
of this curve by ee,” . Setting

(4. 6) p_{i}’=q_{i} , i=1,2,3,

we obtain from (4. 3) and (4. 1)

(4. 7) q_{1}+q_{2}+q_{3}=0 ,

(4. 8) \sum_{i=1}^{3}b_{i}p_{i}q_{i}+\frac{b_{3}’}{2}p_{3}^{2}=01

On the other hand, by means of (3. 24), the equality \langle x’, N_{x}\rangle=0 implies

\langle x’,\sum_{i=1}^{3}r_{i}\hat{u}_{i}\rangle=\langle\sum_{i=1}^{3}q_{i}\hat{u}_{i}+p_{3}\hat{u}_{3}’ , \sum_{f=1}^{3}r_{j}\hat{u}_{f}\rangle

= \sum_{i=1}^{3}b_{i}r_{i}q_{i}+\frac{b_{3}’}{2}p_{3}r_{3}=0 , i . e .

(4. 9) \sum_{i=1}^{3}b_{i}r_{i}q_{i}+\frac{b_{3}’}{2}p_{3}r_{3}=0 .

Since we have easily

p_{1}r_{3}-r_{1}p_{3}=-b_{2}p_{2}, p_{2}r_{3}-r_{2}p_{3}=b_{1}p_{1}

by (4. 1) and (4. 3), we get from (4. 8) and (4. 9)

\sum_{i=1}^{3}b_{i}(p_{i}r_{3}-r_{i}p_{3})q_{i}=b_{1}b_{2}(p_{1}q_{2}-p_{2}q_{1})=0 .
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Now, in general we may suppose that b_{1}b_{2}\neq 0 , i . e .
(4. 10) \hat{u}_{1}\overline{\in}S^{n+1} amd \hat{u}_{2}\overline{\in}S^{n\dagger 1} ,

taking note of the right-hand side of (3. 14). Therefore, from the above
computation we may put

(4. 11) q_{1}=\rho p_{1} , q_{2}=\rho p_{2}, q_{s}=-\rho(p_{1}+p_{2}) .
Then, substituting (4. 11) into (4. 8) we obtain

\rho\{b_{1}p_{1}^{2}+b_{2}p_{2}^{2}-b_{3}p_{3}(p_{1}+p_{2})\}+\frac{p_{3}^{2}}{2}b_{3}’=0 , i . e .
(4. 12)

b_{3}’=2 \rho\frac{b_{3}}{p_{3}}

by (4. 1) and (4. 2).

Finally, we compute the derivatives of the quantities in (3. 25), using
the formulas obtained above. Since

( \frac{b_{2}p_{2}-b_{3}p_{3}}{p_{1}})’=-\frac{q_{1}}{p_{1}^{2}}(b_{2}p_{2}-b_{3}p_{3})+\frac{1}{p_{1}}(b_{2}q_{2}-b_{3}q_{3}-b_{3}’p_{3})=-\rho\frac{b_{3}}{p_{1}}
,\cdot

( \frac{b_{3}p_{3}-b_{1}p_{1}}{p_{2}})’=-\frac{q_{2}}{p_{2}^{2}}(b_{3}p_{3}-b_{1}p_{1})+\frac{1}{p_{2}}(b_{3}q_{3}-b_{1}q_{1}+b_{3}’p_{3})=\rho\frac{b_{3}}{p_{2}} ,

( \frac{b_{1}p_{1}-b_{2}p_{2}}{p_{3}})’=-\frac{q_{3}}{p_{3}^{2}}(b_{1}p_{1}-b_{2}p_{2})+\frac{1}{p_{3}}(b_{1}q_{1}-b_{2}q_{2})=\rho\frac{b_{1}p_{1}-b_{2}p_{2}}{p_{3}^{2}} ,

we have

(’ \sum_{i=1}^{3}\frac{m_{i}r_{i}}{p_{i}})’=\rho b_{3}(_{-}\frac{m_{1}}{p_{1}}+\frac{m_{2}}{p_{2}})+\frac{\rho m_{3}}{p_{s^{2}}}(b_{1}p_{1}-b_{2}p_{2})

= \frac{\rho}{p_{3}}\sum_{i=1}^{3}\frac{m_{i}r_{i}}{p_{i}}-\frac{\rho}{p_{3}}\{\frac{m_{1}(b_{2}p_{2}-b_{3}p_{3})}{p_{1}}+\frac{m_{2}(b_{3}p_{3}-b_{1}p_{1})}{p_{2}}\}+\rho b_{3}(_{-}\frac{m_{1}}{p_{1}}+\frac{m_{2}}{p_{2}}) ,

i . e .

(4. 13) ( \sum_{i=1}^{3}\frac{m_{i}r_{i}}{p_{i}})’=\frac{\rho}{p_{3}}\sum_{i=1}^{3}\frac{m_{i}r_{i}}{p_{i}}+\frac{\rho m_{1}m_{2}}{p_{1}p_{2}p_{3}}(\frac{b_{1}p_{1}^{2}}{m_{1}}-\frac{b_{2}p_{2}^{2}}{m_{2}}) .

We obtain easily

(4. 14) ( \frac{b_{1}p_{1}^{2}}{m_{1}}-\frac{b_{2}p_{2}^{2}}{m_{2}})’=2\rho(\frac{b_{1}p_{1}^{2}}{m_{1}}-\frac{b_{2}p_{2}^{2}}{m_{2}}) .

THEOREM 3. M^{n}(x_{0}, L_{1}^{m_{1}}, L_{2}^{m_{2}}, L_{3}^{m_{3}}) with m_{i}\geqq 2 , i=1,2,3, can not be
minimal in S^{n+1} .

PROOF. It is clear that on M^{n}=M^{n}(_{\iota}x_{0}, L_{1}^{m_{1}}, L_{2}^{m_{2}}, L_{3}^{m_{3}}) almost all points
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are general points in the sense stated at the beginning of \S 3. Therefore,
we can use the argument above. Hence, from (4. 13) and (4. 14) and Theorem
2, the condition in order that M^{n} is minimal is that there exist general points
such that

(i) \frac{b_{1}p_{1}^{2}}{m_{1}}=\frac{b_{2}p_{2}^{2}}{m_{2}}=\frac{b_{3}p_{3}^{2}}{m_{3}}f

(ii) \frac{m_{1}}{p_{1}}(b_{2}p_{2}-b_{3}p_{3})+\frac{m_{2}}{p_{2}}(b_{3}p_{3}-b_{1}p_{1})+\frac{m_{3}}{p_{3}}(b_{1}p_{1}-b_{2}p_{2})=0 .

From (i), we get easily

\frac{b_{i}p_{i}^{2}}{m_{i}}=\frac{\sum_{f=1}^{3}b_{j}p_{j}^{2}}{n}=0

for i=1,2,3,

and so p_{1}=p_{2}=p_{3}=0 . This is impossible. Q. E. D.

\S 5. The limiting case L_{3}^{m_{3}}\subset P_{\propto}^{n+1}

In this section, we shall consider the case in which L_{3}^{m_{3}} in M^{n}(x_{0}, L_{1}^{m_{1}} ,
L_{2}^{m_{2}} , L_{3}^{m_{3}}) goes into the hyperplane at infinity of R^{n+2} which we denote by

P_{\propto}^{n+1} . Then, we have

h -conj L_{3}^{m_{3}}\ni origin O of R^{n+2}

hence
h-conj L_{3}^{m_{3}}=[L_{1}^{m_{1}}, L_{2}^{m_{l}}] :=E_{3}^{m_{1}+m_{\mathfrak{n}}+1}.\perp[O, L_{3}^{m_{\delta}}] ,

where [O, L_{3}^{m_{3}}] denotes the (m_{3}+1) -dimensional plane through the origin O
of R^{n+2} with the direction L_{3}^{m_{3}}\subset P_{\propto}^{n+1} . Therefore,

S_{3}^{m_{1}+m_{2}} :=S^{n+1}nE_{3}^{m_{1}+m_{2}+1}

is an (m_{1}+m_{2}) -dimensional great sphere of S^{n+1} and L_{1}^{m_{1}} and L_{2}^{m_{2}} are har-
monic conjugate with respect to \tilde{S}_{3}^{m_{1}+m_{2}} .

We define M^{n} by an analogous way to the definition of M^{n} described
in \S 2, but we represent u_{3}\in L_{3}^{m_{3}} by a unit vector v\perp E_{3}^{m_{1}+m_{2}+1} whose direction
corresponds to u_{3} . Let P_{i}^{n+1} be the hyperplane through L_{i}^{m_{i}} and parallel
to [L_{J^{j}}^{m}, L_{3}^{m_{3}}](i, j=1.2, i\neq j) .

We take a fixed point x_{0} of S^{n+1} not contained in P_{1}^{n+1}\cup P_{2}^{n+1}\cup E_{3}^{m_{1}+m_{z}+1} ,
and P_{x_{0}}\ddagger 2L_{i}^{m_{i}} , i=1,2,3. For u_{i}\in L_{i}^{g_{i}} , i=1,2,3, such that i) dim [x_{0}, u_{1} , u_{2},
u_{3}]=3 , ii) at no t one of \{u_{1}, u_{2}, u_{3}\} belongs to P_{x_{0}} , iii) [u_{1}, u_{2}, u_{3}] does not
tangent to S^{n+1} at u_{1} or u_{2}, we construct the points x_{i} , x_{ij}(i\neq j) , x_{ijk}(i\neq j,
k\neq i, k\neq j) as before. The point x=x_{123}=x(u_{1}, u_{2}, u_{3}) not contained in P_{1}^{n+1}

\cup P_{2}^{n+1}\cup E_{3}^{m_{1}+m_{Z}+1} is called a general point of M^{n}=M^{n}(x_{0}, L_{1}^{m_{1}}, L_{2}^{m_{2}}, L_{3}^{m_{\theta}}) and
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it can be written as

(5. 1) x=p_{1}\hat{u}_{1}+p_{2}\hat{u}_{2}+p_{\hat{v}},

where
\hat{u}_{i}\in L_{i}^{m_{i}} , i=1,2;\hat{v}1E_{3}^{m_{1}+m_{2}+1}, |\hat{v}|=1 ;

(5. 2) p_{1}+p_{2}=1

Since x\in S^{n+1} , we get from (5. 1)

(5. 3) b_{1}p_{1}^{2}+b_{2}p_{2}^{2}+p^{2}=0’.
where

(5. 4) b_{i}=(\hat{u}_{i},\hat{u}_{i})-1 , i=1,2 .
We can express a vector with the direction of normal vector N_{x} at

x\in M^{n}=M^{n}(x_{0}, L_{1}^{m_{1}}, L_{2}^{m}-., L_{3}^{m_{3}}) as r_{1}\hat{u}_{1}+r_{2}\hat{u}_{2}+s\hat{v} , r_{1}+r_{2}=0 , and get from the
equality

0=\langle x, r_{1}\hat{u}_{1}+r_{2}\hat{u}_{2}+s\hat{v}\rangle=b_{1}p_{1}r_{1}+b_{2}p_{2}r_{2}+p_{S}

=(b_{1}p_{1}-b_{2}p_{2})r_{1}+p_{S},

(5. 5) N_{x}||-p\hat{u}_{1}+p\hat{u}_{2}+(b_{1}p_{1}-b_{2}p_{2})\hat{v} .
Now, we assume that m_{i}\geqq 2 , i=1,2,3 . Then, Lemma 14 is true with

slight modifications owing to the fact L_{3}^{m_{3}}\subset P_{\propto}^{n+1} and so we have

(5. 6) \sum_{i-1}^{3}m_{i}\mu_{i}=\sum_{i=1}^{3}\frac{m_{i}}{\overline{xy_{i}}} :

Setting

y_{i}=x+\rho_{i}\{p(\hat{u}_{2}-\hat{u}_{1})+(b_{1}p_{1}-b_{2}p_{2})\hat{v}\} ,

we have the following

p_{1}-\rho_{1}p=0 , p_{2}+\rho_{2}p=0 , p+\rho_{3}(b_{1}p_{1}-b_{2}p_{2})=0 , Fig. 7.

from which we see that the equality \sum_{i=1}^{3}m_{i}\mu_{i}=0 is equivalent to the equality:

( \frac{m_{1}}{p_{1}}-\frac{m_{2}}{p_{2}})F-m_{3}\frac{b_{1}p_{1}-b_{2}p_{2}}{p}=0c

Therefore, we have the following

THEOREM 4. Let x be a general point of M^{n}=M^{n}(x_{0}, L_{1}^{m_{1}}, L_{2}^{m_{2}}, L_{3}^{m_{\}})

with m_{i}\geqq 2 , i=1,2,3, and L_{3}^{m_{3}}\subset P_{\propto}^{n+1} and represent it as
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x=p_{1}\hat{u}_{1}+p_{2}\hat{u}_{2}+p\hat{v} , p_{1}+p_{2}=1 , \hat{u}_{i}\in L_{i}^{m_{i}} , i=1,2,
\hat{v}\perp[L_{1}^{m_{1}}, L_{2}^{m_{2}}] , |\hat{v}|=1 .

Then, M^{n} is minimal at x, if and only if

(5. 7) ( \frac{m_{1}}{p_{1}}-\frac{m_{2}}{p_{2}})p_{-}\frac{m_{3}}{p}(b_{1}p_{1}-b_{2}p_{2})=0’.
where b_{i}=\langle\hat{u}_{i}, \text{\^{u}}\rangle -l.

First, fixing u_{1} and u_{2} in x=x(u_{1}, u_{2}, v) , by an analogous consideration
to that in \S 3, \hat{u}_{1} and \hat{u}_{2} , so b_{1} and b_{2} are all fixed. Let move v along a
curve and put

(5. 8) p_{i}’=q_{i} , i=1,2, and p’=q .
Since we have q_{1}+q_{2}=0 , from (5. 3) we obtain easily

(5. 9) (b_{1}p_{1}-b_{2}p_{2})q_{1}+pq=0 .

The equality \langle x, N_{x}\rangle=0 and (5. 5) imply

\langle q_{1}\hat{u}_{1}-q_{1}\hat{u}_{2}+q\hat{v}+p_{\hat{v}’},-p\hat{u}_{1}+p\hat{u}_{2}+(b_{1}p_{1}-b_{2}p_{2})\hat{v}\rangle

=-pq_{1}(b_{1}+b_{2})+(b_{1}p_{1}-b_{2}p_{2})q=0 , i . e .
(5. 10) (b_{1}+b_{2})pq_{1}-(b_{1}p_{1}-b_{2}p_{2})q=0 .
Regarding (5. 9) and (5. 10) as linear equations of q_{1} and q, we have

(b_{1}p_{1}-b_{2}p_{2})^{2}+(b_{1}+b_{2})p^{2}

=(b_{1}p_{1}-b_{2}p_{2})^{2}+(b_{1}+b_{2})p^{2}-(b_{1}+b_{2})(b_{1}p_{1}^{2}+bp_{2}^{2}+p^{2})

=-b_{1}b_{2}(p_{1}+p_{2})^{2}=-b_{1}b_{2} .
Since we may suppose that b_{1}b_{2}\neq 0 as before, we get from (5. 9) and (5. 10)

(5. 11) q_{1}=q_{2}=q=0 ,

hence
x’=pv^{\Delta}

Therefore, we obtain in this case

(5. 12) [( \frac{m_{1}}{p_{1}}-\frac{m_{2}}{p_{2}})p_{-}\frac{m_{3}}{p}(b_{1}p_{1}-b_{2}p_{2})]’=0t

Second, fixing u_{1} and v in x=x(u_{1}, u_{2}, v) , let move u_{2} along a curve.
In this case, x_{1} , x_{3} and x_{13} are fixed. Using (5. 8) and noting b_{1} is constant,
we obtain from (5. 3)

(5. 13) (b_{1}p_{1}-b_{2}p_{2})q_{1}+pq+ \frac{b_{2}’}{2}p_{2}^{2}=0
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Fig. 8.

The equality \langle x’, N_{x}\rangle=0 and (5. 5) imply

\langle q_{1}\hat{u}_{1}-q_{1}\hat{u}_{2}+q\hat{v}+p_{2}\hat{u}_{2}’, -p\hat{u}_{1}+p\hat{u}_{2}+(b_{1}p_{1}-b_{2}p_{2})\hat{v}\rangle

=-pq_{1}(b_{1}+b_{2})+(b_{1}p_{1}-b_{2}p_{2})q+ \frac{b_{2}’}{2}pp_{2}=0 , i . e .

(5. 14) -(b_{1}+b_{2})pq_{1}+(b_{1}p_{1}-b_{2}p_{2})q+ \frac{b_{2}’}{2}pp_{2}=0 .

Eliminating b_{2}’ from (5. 13) and (5. 14), we get

\{b_{1}p_{1}-b_{2}p_{2}+(b_{1}+b_{2})p_{2}\}pq_{1}+\{p^{2}-(b_{1}p_{1}-b_{2}p_{2})p_{2}\}q=b_{1}(pq_{1}-p_{1}q)=0 .

We may suppose in general that b_{1}b_{2}\neq 0 as before. Hence, we can put

(5. 15) q_{1}=\rho p_{1} , q_{2}=-\rho p_{1} , q=\rho p .
Substituting (5. 15) into (5.14), we get

\rho\{-(b_{1}+b_{2})pp_{1}+(b_{1}p_{1}-b_{2}p_{2})p\}+\frac{b_{2}’}{2}pp_{2}=0 , i . e .

- \rho b_{2}p+\frac{b_{2}’}{2}pp_{2}=0

For a general point, we may suppose p\neq 0 and p_{2}\neq 0 . Hence

(5. 16) b_{2}’= 2\rho\frac{b_{2}}{p_{2}}

By (5. 15) and (5. 16), we have

[( \frac{m_{1}}{p_{1}}-\frac{m_{2}}{p_{2}})p_{-}\frac{m_{3}}{p}(b_{1}p_{1}-b_{2}p_{2})]’=-(^{\frac{m_{1}}{p_{1}^{2}}q_{1}-}\frac{m_{2}}{p_{2}^{2}}q_{2})p

+( \frac{m_{1}}{p_{1}}-\frac{m_{2}}{p_{2}})q+\frac{m_{3}q}{p_{2}}(b_{1}p_{1}-b_{2}p_{2})-\frac{m_{3}}{p}(b_{1}p_{1}-b_{2}q_{2}-b_{2}’p_{2})
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= \rho[-(\frac{m_{1}}{p_{1}^{2}}+^{1}\frac{m_{2}}{p_{2}^{2}})p_{1}p+(\frac{m_{1}}{p_{1}}-\frac{m_{2}}{p_{2}})q+\frac{m_{3}}{p}(b_{1}p_{1}-b_{2}p_{2})

- \frac{m_{3}}{p}(b_{1}+b_{2})p_{1}+\frac{2m_{3}b_{2}}{p}]=\rho(_{-}\frac{m_{2}}{p_{2}^{2}}p+\frac{m_{3}}{p}b_{2}) , i . e .

(5. 17) [( \frac{m_{1}}{p_{1}}-\frac{m_{2}}{p_{2}})p_{-}\frac{m_{3}}{p}(b_{1}p_{1}-b_{2}p_{2})]’=\rho(-^{\frac{m_{2}p}{p_{2}^{2}}}+\frac{m_{3}b_{2}}{p}) .

We have laso

( \frac{b_{2}p_{2}^{2}}{m_{2}}-\frac{p^{2}}{m_{3}})’=\frac{2b_{2}p_{2}q_{2}}{m_{2}}+\frac{b_{2}’p_{2}^{2}}{m_{2}}-\frac{2pq}{m_{3}}

=-2 \rho(\frac{b_{2}p_{1}p_{2}}{m_{2}}-\frac{b_{2}p_{2}}{m_{2}}+\frac{p^{2}}{m_{3}})=2\rho(\frac{b_{2}p_{2}^{2}}{m_{2}}-\frac{p^{2}}{m_{3}}) , i . e .

(5. 18) ( \frac{b_{2}p_{2}^{2}}{m_{2}}-\frac{p^{2}}{m_{3}})’=2\rho(\frac{b_{2}p_{2}^{2}}{m_{2}}-\frac{p^{2}}{m_{3}}) .

By means of (5. 18), we see that if there exists a general point x of
M^{n} such that

(5. 19) \frac{b_{2}p_{2}^{2}}{m_{2}}-\frac{p^{2}}{m_{3}}=0 ,

then on the m_{2}-sphere S_{2}^{n\iota_{2}}(u_{1}, v)=S^{n+1}\cap[x, L_{2}^{m_{2}}] this equality holds identically.
Third, fixing u_{2} and v in x=x(u_{1}, u_{2}, v) and moving u_{1} along a curve,

we obtain

(5. 20) [( \frac{m_{1}}{p_{1}}-\frac{m_{2}}{p_{2}})p_{-}\frac{m_{3}}{p}(b_{1}p_{1}-b_{2}p_{2})]’=\rho(_{-}\frac{m_{1}p}{p_{1}^{2}}+\frac{m_{3}b_{1}}{p})

and

(5. 21) (^{\frac{b_{1}p_{1}^{2}}{m_{1}}}- \frac{p^{2}}{m_{3}})’=2\rho(^{\frac{b_{1}p_{1}^{2}}{m_{1}}-}\frac{p^{2}}{m_{3}})

by an analogous computation. Hence, we see that if there exists a general
point x of M^{n} such that

(5. 22) \frac{b_{1}p_{1}^{2}}{m_{1}}-\frac{p^{2}}{m_{3}}=0 ,

then on the m_{1} -sphere S_{1}^{n\iota_{1}}(u_{2}, v)=S^{n+1}\cap[x, L_{1}^{m_{1}}] this equality holds identically.

THEOREM 5. M^{n}(x_{0}, L_{1}, L_{2}, L_{3}) with m_{i}\geqq 2 , i=1,2,3, and L_{3}^{m_{3}}\subset P_{\propto}^{n+1}

can not be minimal in S^{n+1} .
PROOF. If M^{n}=M^{n}(x_{0}, L_{1}^{m_{1}}, L_{2}^{m_{2}}, L_{3}^{m_{3}}) is minimal in S^{n+1} , then (5. 7) holds

on it by Theorem 4. Hence, from (5. 17) and (5. 20) we obtain



210 T. Otsuki

\frac{b_{1}p_{1}^{2}}{m_{1}}=\frac{b_{2}p_{2}^{2}}{m_{2}}=\frac{p^{2}}{m_{3}}=\frac{b_{1}p_{1}^{2}+b_{2}p_{2}^{2}+p^{2}}{n}=0 ,

and so p_{1}=p_{2}=p=0 . This is impossible. Therefore, M^{n} can not be minimal
in S^{n+1} . Q. E. D.

\S 6. The limiting case L_{2}^{m_{2}} , L_{3}^{m_{3}}\subset P_{\propto}^{n+1}

In this section, we shall consider the case in which L_{2}^{m_{B}} and L_{3}^{m_{3}} in
M^{n}(x_{0}, L_{1}^{m_{1}}, L_{2}^{m_{2}}, L_{3}^{m_{3}}) go into the hyperplane at infinity P_{\propto}^{n+1} of R^{n+2} . L_{2}^{m_{2}} ,
L_{3}^{m_{3}}\subset P_{\propto}^{n+1} implies

h-conj L_{2}^{m_{Z}} :=E_{2}^{m_{3}+m_{1}+1}\ni O, h -conj L_{3}^{m}\:=E_{3}^{m_{1}+m_{2}+1}\ni O

and hence
L_{1}^{m_{1}}=h -conj L_{2}^{m_{2}}\cap h- con!

.
L_{3}^{m_{\theta}}=E_{2}^{m_{3}+m_{1}+1}nE_{3}^{m_{1}+m_{2}+1}

is a linear space through the origin O of R^{n+2} , and L_{1}^{m_{1}} , [L_{2}^{m_{2}}, O] and [L_{3}^{m_{a}} ,
O] are mutually orthogonal to others at O.

As in the case of L_{3}^{m_{3}}\subset P_{\propto}^{n+1} treated in \S 5, we represent u_{2} and u_{3} in
x=x(u_{1}, u_{2}, u_{3}) by unit vectors v_{2} and v_{3} whose directions correspond to u_{2}

and u_{3} respectively.
We take a fixed point x_{0} of S^{n+1} not contained in E_{2}^{m_{3}+m_{1}+1}\cup E_{3}^{n\iota_{1}+m_{2}+1} ,

and P_{x_{0}}z) L_{i}^{m_{i}} , i=1,2,3 . For u_{i}\in L_{i}^{m_{i}} , i=1,2,3 , such that
i) dim [x_{0}, u_{1}, u_{2}, u_{3}]=3 ,

ii) at no t one of \{u_{1}, u_{2}, u_{3}\} belongs to P_{x_{0}} in P^{l}.+2=R^{n+2}\cup P_{\propto}^{m+1} .
iii) [u_{1}, u_{2}, u_{3}] does not tangent to S^{n+1} at u_{1} ,

we construct the point x=x(u_{1}, u_{2}, u_{3}) as before. Then, the point x can
be written as

(6. 1) x=\hat{u}_{1}+p_{2}\hat{v}_{2}+p_{3}\hat{v}_{3} ,

where
\hat{u}_{1}\in L_{1}^{n_{1}}\acute{/} , \hat{v}_{2}\in[O, L_{2}^{m_{2}}] , \hat{v}\in[O, L_{3}^{m_{3}}] , |\hat{v}_{2}|=1\hat{v}_{3}||=1 .

Since x\in S^{n+1} , we get from (6. 1)

(6. 2) b_{1}+p_{2}^{2}+p_{3}^{2}=0 ,

where

(6. 3) b_{1}=(\hat{u}_{1},\hat{u}_{1})-1 .
Lemma 15. On the expression (6. 1) of x, we have

N_{x}||^{\frac{1}{p_{2}}\hat{v}_{2}-} \frac{1}{p_{3}}\hat{v}_{3} .
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PROOF. For simplicity, we set L_{1}^{m_{1}}=R_{1}^{m_{1}} , [O, L_{2}^{n\iota_{2}}]=R_{2}^{m_{2}+1} , [O, L_{3}^{m_{3}}]=R_{3}^{m_{3}+1}

and we have R^{n+2}=R_{1}^{m_{1}}\cross R_{2}^{n\iota_{2}+1}\cross R_{3}^{m_{3}+1} . Then, we put

(6. 4) x_{0}=(\hat{u}_{1}^{0},p_{2}^{0}\hat{v}_{2}^{0},p_{3}^{0}\hat{v}_{3}^{0})

and we have

(6. 5) b_{1}^{0}+(p_{2}^{0})^{2}+(p_{3}^{0})^{2}=0 , b_{1}^{0}=(\hat{u}_{1}^{0},\hat{u}_{1}^{0})-1 .
Writing x_{2}=x_{2}(u_{2}) as

x_{2}=x_{0}+\lambda v_{2} , |v_{2}|=1 ,

we have
x_{2}=(\hat{u}_{1}^{0}, p_{2}^{0}\hat{v}_{2}^{0}+\lambda v_{2},p_{3}^{0}\hat{v}_{3}^{0})(

From 1=(x_{2}, x_{2}) , we have
b_{1}^{0}+|p_{2}^{0}\hat{v}_{2}^{0}+\lambda v_{2}|^{2}+(p_{3}^{0})^{2}=0

and \lambda+2p_{2}^{0}\langle\hat{v}_{2}^{0}, v_{2}\rangle=0 by (6. 5). Hence, we get

(6. 6) x_{2}=(\hat{u}_{1}^{0},p_{2}^{0}(\hat{v}_{2}^{0}-2\langle\hat{v}_{2}^{0}, v_{2}\rangle v_{2}),p_{3}^{0}\hat{v}_{3}^{0})t

Next, writing x_{23}=x_{23}(u_{2}, u_{3}) as

x_{23}=x_{2}+\lambda v_{3}, |v_{3}|=1 ,

we have

x_{23}=(\hat{u}_{1}^{0},p_{2}^{0}(\hat{v}_{2}^{0}-2\langle\hat{v}_{2}^{0}, v_{2}\rangle v_{2}), p_{3}^{0}\hat{v}_{3}^{0}+\lambda v_{3})

From 1=(x_{23}, x_{23}) , we have
b_{J}^{0}+(p_{2}^{0})^{2}+|p_{3}^{0}\hat{v}_{3}^{0}+\lambda v_{3}|^{2}=0

and \lambda+2p_{3}^{0}\langle\hat{v}_{3}^{0}, v_{3}\rangle=0 by (6. 5). Hence, we get

(6. 7) x_{23}=(\hat{u}_{1}^{0},p_{2}^{0}(\hat{v}_{2}^{0}-2\langle\hat{v}_{2}^{0}, v_{2}\rangle v_{2}), p_{3}^{0}(\hat{v}_{3}^{0}-2\langle\hat{v}_{3}^{0}, v_{3}\rangle v_{3}))

Then, writing x=x(u_{1}, u_{2}, u_{3}) as

x=\lambda x_{23}+(1-\lambda)u_{1} ,

from (x, x)=1 we have

1=|\lambda\hat{u}_{1}^{0}+(1-\lambda)u_{1}|^{2}+\lambda^{2}((p_{2}^{0})^{2}+(p_{3}^{0})^{2})

=\lambda^{2}(b_{1}^{0}+1)+2\lambda(1-\lambda)\langle\hat{u}_{1}^{0}, u_{1}\rangle

+(1-\lambda)^{2}(b_{1}+1)-\lambda^{2}b_{1}^{0} , i . e .
(\lambda-1)[\lambda+1-2\lambda\langle\hat{u}_{1}^{0}, u_{1}\rangle+(\lambda-1)(b_{1}+1)]=0,

Fig. 9.
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where b_{1}=(u_{1}, u_{1})-1 . In general, we may put \lambda\neq 1 , we get

(6. 8) \lambda=\frac{b_{1}}{b_{1}+2-2\langle\hat{u}_{1}^{0},u_{1}\rangle}’. b_{1}=\langle u_{1}, u_{1}\rangle-1

Hence, regarding the expression (6. 1) for x, we have

(6. 9)

’

\hat{u}_{1}=\lambda\hat{u}_{1}^{0}+(1-\lambda)u_{1}=u_{1}+\lambda(\hat{u}_{1}^{0}-ui)

| \hat{v}_{2}=\hat{v}_{2}^{0}-2\langle\hat{v}_{2}^{0}, v_{2}\rangle v_{2} , \hat{v}_{3}=\hat{v}_{3}^{0}-2\langle\hat{v}_{3}^{0}, v_{3}\rangle v_{3} ,
-p_{2}=\lambda p_{2}^{0}, p_{3}=\lambda p_{3}^{0} , where \lambda is given by (6. 8)

Now, putting N_{x}=(\xi_{1}, \xi_{2}, \xi_{3}) , \xi_{1}\in R_{1}^{m_{1}} , \xi_{2}\in R_{2}^{m_{2}+1}, \xi_{3}\in R_{3}^{m_{3}+1} , we have

\langle x, N_{x}\rangle=\langle\hat{u}_{1}, \xi_{1}\rangle+p_{2}\langle\hat{v}_{2}, \xi_{2}\rangle+p_{3}\langle\hat{v}_{3}, \xi_{3}\rangle=0 .
Fixing v_{2} and v_{3} and moving u_{1} along a curve in L_{1}^{m_{1}} , we have from (6. 9)

x’=\hat{u}_{1}’+p_{2}’\hat{v}_{2}+p_{3}’\hat{v}_{3}=\hat{u}_{1}’+\chi(p_{2}^{0}\hat{v}_{2}+p_{3}^{0}\hat{v}_{3})

=(1-\lambda)u_{1}’+\mathcal{X}(\hat{u}_{1}^{0}-u_{1}+p_{2}^{0}\hat{v}_{2}+p_{3}^{0}\hat{v}_{3})

=(1- \lambda)u_{1}’+\frac{\lambda’}{\lambda}(x-u_{1})
:

and hence

0=\langle x’, N_{x}\rangle=\langle
(1- \lambda)u_{1}’+\frac{\lambda’}{\lambda}(x-uj,N_{x}\rangle , i . e .

(6. 10) \langle(1-\lambda)u_{1}’-\frac{\chi}{\lambda}u_{1}, \xi_{1}\rangle=0 .

On the other hand, we get from (6. 8)

1- \lambda=\frac{2(1-\langle\hat{u}_{1}^{0},u_{1}\rangle)}{b_{1}+2-2\langle\hat{u}_{1}^{0},u_{1}\rangle}\neq 0

and so (6. 10_{1}^{\backslash } implies \xi_{1}=0 . Therefore, N_{x} is of the form

N_{x}=(0, \xi_{2}, \xi_{3})

Next, fixing u_{1} and v_{3} and moving v_{2} along a curve in the unit m_{2}-

sphere of R_{2}^{m_{2}+1} with centor at the origin. Then, \lambda , p_{2}, p_{3},\hat{u}_{1} and \hat{v}_{3} are all
fixed by (6. 9). Hence we have

x’=p_{2}\hat{v}_{2}’=-2p_{2}(\langle\hat{v}_{2}^{0}, v_{2}’\rangle v_{2}+\langle\hat{v}_{2}^{0}, v_{2}\rangle v_{2}’)

and hence from \langle x’, N_{x}\rangle=0

\langle\hat{v}_{2}^{0}, v_{2}’\rangle\langle v_{2}, \xi_{2}\rangle+\langle\hat{v}_{2}^{0}, v_{2}\rangle\langle v_{2}’, \xi_{2}\rangle=01

Taking first v_{2}’\perp v_{2} and \hat{v}_{2}^{0} , we get \langle v_{2}’, \xi_{2}\rangle=0 , because we may put \langle\hat{v}_{2}^{0}, v_{2}\rangle
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\neq 0 in general. Hence \xi_{2} linearly depends on v_{2} and \hat{v}_{2}^{0} . Second, we put
in the above equality as

v_{2}’=\{\hat{v}_{2}^{0}-\langle\hat{v}_{2}^{0}, v_{2}\rangle v_{2}\}/\sqrt{1-\langle\hat{v}_{2}^{0},v_{2}\rangle^{2}}

and we obtain

\frac{\langle\xi_{2},v_{2}\rangle}{-\langle\hat{v}_{2}^{0},v_{2}\rangle}=\frac{\langle\xi_{2},v_{2}’\rangle}{\langle\hat{v}_{2}^{0},v_{2}’\rangle}’\eta

which shows that \xi_{2}||\hat{v}_{2} . Analogously, we obtain \xi_{3}||\hat{v}_{3} . Therefore, we can
write N_{x} as N_{x}=(0, r_{2}\hat{v}_{2}, r_{3}\hat{v}_{3}) . Then, from \langle x, N_{x}\rangle=p_{2}\langle\hat{v}_{2}, \xi_{2}\rangle+p_{3}\langle\hat{v}_{3}, \xi_{3}\rangle=

p_{2}r_{2}+p_{3}r_{3}=0 , we get

N_{x}|| \frac{1}{p_{2}}\hat{v}_{2}-\frac{1}{p_{3}}\hat{v}_{3} . Q. E. D.

By means of Lemma 15, we see that M^{n} has also 3 principal curvatures
\mu_{i} with multiplicity m_{i} , i=1,2,3, as in the previous cases and that

(6. 11) \mu_{1}=0 , \mu_{2}=\frac{1}{\overline{xy_{2}}} , \mu_{3}=\frac{1}{\overline{w_{3}}}j

where y_{2} and y_{3} are the points on the normal
line at x as is shown in Fig. 10. Therefore,
we have

(6. 12) \sum_{i=1}^{3}m_{i}\mu_{i}=\frac{m_{2}}{\overline{xy_{2}}}+\frac{m_{3}}{\overline{xy_{3}}}

Setting Fig. 1O.

y_{i}=x+ \rho_{i}(\frac{1}{p_{2}}\hat{v}_{2^{-}}\frac{1}{p_{3}}\hat{v}_{3}) , i=2,3 ,

we have

p_{2}+ \frac{\rho_{2}}{p_{2}}=0 and p_{3}- \frac{\rho_{3}}{p_{3}}=0 ,

from which we see that the equality \sum_{i=1}^{3}m_{i}\mu_{i}=0 is equivalent to the equality

\frac{m_{2}}{p_{2}^{2}}-\frac{m_{3}}{p_{3}^{2}}=0 .

Now, first fixing u_{2} and u_{3} in x=x(u_{1}, u_{2}, u_{3}) , i . e . v_{2} and v_{3} , let move
u_{1} along a curve in L_{1}^{m_{1}} and put p_{2}’=q_{2}, p_{3}’=q_{3} . Then, from (6. 2) we obtain

\frac{1}{2}b_{1}’+p_{2}q_{2}+p_{3}q_{3}=0
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The equality \langle x, N_{x}\rangle=0 and Lemma 15 imply

\langle\hat{u}_{1}’+q_{2}\hat{v}_{2}+q_{3}\hat{v}_{3}, ^{\frac{1}{p_{2}}\hat{v}_{2}-}\frac{1}{p_{3}}\hat{v}_{3}\rangle=\frac{q_{2}}{p_{2}}-\frac{q_{3}}{p_{3}}=0 ,

because \hat{v}_{2} and \hat{v}_{3} are also fixed by (6. 9). Hence, we can put

(6. 13) q_{2}=\rho p_{2}, q_{3}=\rho p_{3} , b_{1}’=-2\rho(p_{2}^{2}+p_{3}^{2})=2\rho b_{1} .
Therefore, we have

(6. 14) ( \frac{m_{2}}{p_{2}^{2}}-\frac{m_{3}}{p_{3}^{2}})’=-2\rho(\frac{m_{2}}{p_{2^{2}}}-\frac{m_{3}}{p_{3}^{2}}) ,

from which we see that if there exists a general point x of M^{n} such that

(6. 15) \frac{m_{2}}{p_{2}^{2}}-\frac{m_{3}}{p_{3}^{2}}=0 ,

then on the m_{1}-sphere S_{1}^{m_{1}}(u_{2}, u_{3})=S^{n+1}\cap[x_{23}, L_{1}^{m_{1}}] this equality holds iden-
tically.

Second, fixing u_{1} and u_{3} in x=x(u_{1}, u_{2}, u_{3}) , i . e . u_{1} and v_{3} , let move v_{2}

along a curve in the unit m_{2}-sphere of R_{2}^{m_{2}+1} . Then, x_{1} , x_{3}, x_{13},\hat{u}_{1},\hat{v}_{3} , p_{2} and
p_{3} are all fixed as easily seen from (6. 9). Therefore, we have

(6. 16) ( \frac{m_{2}}{p_{2}^{2}}-\frac{m_{3}}{p_{3}^{2}})’=0 ,

from which we see that the analogous fact holds in this case. And, we
have the same fact for the case in which u_{1} and u_{2} in x(u_{1}, u_{2}, u_{2}) are fixed
and u_{3} is moved.

In the present case, a point x of M^{n} is called a general point if x\overline{\in}

E_{2}^{m_{3}+m_{1}+1}\cup E_{3}^{m_{1}+m_{2}+1} . From the argument above, we obtain the following

Lemma 16. M^{n}=M^{n}(x_{0}, L_{1}^{m_{1}}, L_{2}^{m_{2}}, L_{3}^{m_{3}}) with m_{i}\geqq 2 , i=1,2,3, and
L_{2}^{m_{2}}\subset P_{\propto}^{n+1} , L_{3}^{m_{2}}\subset P_{\propto}^{n+1} , is minimal in S^{n+1} , if there exists a general point x
of M^{n} such that m_{2}/p_{2}^{2}=m_{3}/p_{3}^{2} .

THEOREM 6. M^{n}=M^{n}(x_{0}, L_{1}^{m_{1}}, L_{2}^{m_{z}}, L_{3}^{m_{3}}) with m_{i}\geqq 2 , i=1,2,3, and
L_{2}^{m_{2}}\subset P_{\propto}^{n\dagger 1} , L_{3}^{m_{3}}\subset P_{\propto}^{n+1} , is minimal in S^{n+1} by suitable choice of the point x_{0} .

PROOF. It is sufficient to prove this theorem to show that there exist
points x_{0} satisfing the condition stated in Lemma 16.

First of all, putting p_{2}=\rho\epsilon_{2}\sqrt{m_{2}}, p_{3}=\rho\epsilon_{3}\sqrt{m_{3}}, \epsilon_{2}=\pm 1 , \epsilon_{3}=\pm 1 , we get
from (6. 2)

(\hat{u}_{1},\hat{u}_{1})=1+b_{1}=1-p_{2}^{2}-p_{3}^{2}=1-\rho^{2}(m_{2}+m_{3}) .
Therefore, taking a number \rho>0 such that \rho<1/\sqrt{m_{2}+m_{3}}, we take a point
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x for \hat{u}_{1},\hat{v}_{2},\hat{v}_{3} given by
x=\hat{u}_{1}+p_{2}\hat{v}_{2}+p_{3}\hat{v}_{3} ,

where
\hat{u}_{1}\in L_{1}^{m_{1}} and |\hat{u}_{1}|=\sqrt{1-_{l}o^{2}(m_{2}+m_{3})} ;
\hat{v}_{2}\perp R_{2}^{m_{3}+m_{1}+1} , |\hat{v}_{2}|=1 ; \hat{v}_{3}\perp R_{3}^{m_{1}+m_{2}+1} , |\hat{v}_{3}|=1

It is obvious that we can choose u_{1},\hat{u}_{1}^{0}, v_{2},\hat{v}_{2}^{0} , v_{3},\hat{v}_{3}^{0} so that they satisfy (6. 9)

for the given point x above. In fact, taking \hat{v}_{2}^{0},\hat{v}_{3}^{0} , u_{1} and setting \hat{u}_{1}^{0}=u_{1}+

(1/\lambda)(\hat{u}_{1}-u_{1}) , where \lambda is now considered as a variable to be determined, we
substitute this into (6. 8). Then, we obtain easily

\lambda=\frac{\langle u_{1},u_{1}\rangle+1-2\langle\hat{u}_{1},u_{1}\rangle}{\langle u_{1},u_{1}\rangle-1}

Using this value of \lambda,\hat{v}_{1}^{0} is determined by the above equality. By virtue
of this process, we obtain x_{0} given by the equality

x_{0}= \hat{u}_{1}^{0}+\frac{p_{2}}{\lambda}\hat{v}_{2}^{0}+\frac{p_{3}}{\lambda}\hat{v}_{3}^{0}t Q. E. D.
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