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On a theorem of Manning-Cameron*

By Shiro IWASAKI
(Received December 25, 1975)

In 1929, Manning ([6]) proved that if G is a uniprimitive permutation
group on f2 (i.e. , (G,\Omega) is primitive, but not doubly transitive), and if the
stabilizer G_{a} of a point a\in\Omega acts doubly transitively on an orbit of length
k>2 , then G_{a} has an orbit whose length is greater than k and a divisor
of k(k-1) . Recently this was reproved more explicitly and strongly by
Cameron ([1], [2]). In this short note, we remark that a similar result holds
even when G_{a} does not act doubly transitively on an orbit of length k.

DEFINITIONS and NOTATION. All permutation groups and sets considered
in this note are finite. For definitions and notation, we follow those of
Wielandt [7] and Higman [5]. Let G be a transitive permutation group on
a finite set 12. For a\in\Omega, g\in G and a subgroup H of G, we denote by al
the image of a under g and set a^{H}=\{a^{g}|g\in H\} . For a subset S of \Omega , we
set S^{g}=\{a^{g}|a\in S\} , G_{S}= {g\in G|a^{g}=a for all a\in S}, and G_{(S)}=\{g\in G|\theta=S\} .
If S=\{a, b,\cdots\} , G_{s} is written G_{ab}\ldots .

The number of G_{a} orbit on \Omega counting the trivial orbit \{a\} is inde-
pendent of the choice of a\in\Omega and is called the rank of G. If (G, \Omega) is
primitive and has rank greater than 2, it is said uniprimitive. The lengths
of the G_{a} -0rbits are called the subdegrees of G. Any G_{a} orbit \Delta(a) is chosen
so that \Delta(a)^{g}=\Delta(a^{g}) for all a\in\Omega and all g\in G, and \Delta is called an orbital of
G. Each \Delta(a) has a paired orbit defined by \{a^{g^{-1}}|g\in G, aF\in\Delta(a)\} , which is
also G_{a}-0rbit and denoted by \Delta’(a) . |\Delta(a)|=|\Delta’(a)|,\Delta’(a)=\Delta(a) by [7, \S 16],
and

b\in\Delta(a) if and only if a\in\Delta’(b)

If \Delta’(a)=\Delta(a) , \Delta or \Delta(a) is said self-paired. Following Cameron [1], for
orbitals \Delta and \Gamma

- we define

(\Delta\circ\Gamma)(a)=\{b\in\Omega|\Delta(a)\cap\Gamma’(b)\neq\phi, b\neq a\} ,

which is a union of some G_{a}-0rbits.

THEOREM. Let G be a uniprimitive permutation group on a finite set

* This partly overlaps with “Jikken-Haichi no Kumiawase-Sugaku to Gunron”, {\rm Res} . Inst.
Math. Sci., 1974, 75-82 (in Japanese).
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\Omega, and for a\in\Omega let \Delta(a) a G_{a} -Orbit of length k\geqq 2 on which G_{a} acts as
rank r group with subdegrees 1, k_{1} , \cdots , k_{r-1}(k=1+k_{1}+\cdots+k_{r-1}) . Suppose,
either

(*) \Delta(a) is self-paired, or

(^{**}) |G_{a} : G_{a\cup\Delta(a)}| is even.
Then, there exists a G_{a} orbit \Gamma(a) of length l such that

(i) \Gamma\neq\Delta, \Delta’ and \Gamma(a)\subseteq(\Delta’\circ\Delta)(a) ,

and for some k_{i}(1\leqq i\leqq r-1) ,

(ii) k_{i}<l and l is a divisor of kk_{i} ,
(iii) if b\in\Delta(a) , |\Gamma(b)\cap\Delta(a)|=a sum of some k_{j}’s containing k_{i}

(so |\Delta(b)\cap\Delta(a)| is 0 or a sum of some k_{j}
’ s, j\neq i).

Furthermore, if all the rG_{ab} orbits on \Delta(a)(b\in\Delta(a)) are self-paired,
\Gamma(a) is self-paired.

PROOF. Proof is almost trivial. Take a point b\in\Delta(a) . By assumption,
G_{ab} has r orbits on \Delta(a) , say \{b\} , \Delta_{1} , \cdots , \Delta_{r-1} with |\Delta_{i}|=k_{i}(and so \Delta(a)-\{b\}

=^{7}\overline{\bigcup_{i=1}}\Delta_{i)}1 . First, we show that \Delta(b)\not\geq\Delta(a) – \{b\} in the case (^{*}) and that
\Delta(b)\cup\Delta’(b)\not\geq\Delta(a) – \{b\} in case \Delta is not self-paired and (^{**}) holds. In the
former case, if \Delta(b)\supseteq\Delta(a)-\{b\} , then \{a\}\cup\Delta(a)=\{b\}\cup\Delta(b) . This implies that,
if we take g\in G with a^{g}=b , then g\in G_{(a\cup\Delta(a))} and so G_{a\neq}<G_{(a\cup\Delta(a))\neq}<G, which
contradicts the primitivity of (G, \Omega) . In the latter case, suppose (\Delta(b)\cup\Delta’(b))

\cap\Delta(a)=\Delta(a)-\{b\} . By Higman [5, (4. 2)], |\Delta(b)\cap\Delta(a)|=|\Delta’(b)\cap\Delta(a)|=(k-1)/2 .
t

Since \Delta(b)\cap\Delta(a) is a union of some G_{ab} -0rbits, we may set \Delta(b)\cap\Delta(a)=\bigcup_{i=1}\Delta_{i} .

Then we have \Delta’(b)\cap\Delta(a)=\bigcup_{i=1}^{t}\Delta_{i}’ , where \Delta_{i}’=\{b^{h^{-1}}|h\in G_{a}, b^{h}\in\Delta_{i}\} , the paired
orbit of \Delta_{i} , because for all i, 1\leqq i\leqq t, \Delta_{i}’ is contained in \Delta’(b) and \Delta(a) by
definition, \Delta_{i}\neq\Delta_{j} implies \Delta_{i}’\neq\Delta_{f}’ , and |\Delta(b)\cap\Delta(a)|=|\Delta’(b)\cap\Delta(a)| . Thus
\Delta(a)=\{b\}\cup(\Delta_{1}\cup\Delta_{1}’)^{\cup\ldots\cup}(\Delta_{t}\cup\Delta_{t}’) and the transitive permutation group (G_{a}/

G_{a\cup\Delta(a)} , \Delta(a)) has no nontrivial self-paired orbit and so |G_{a}/G_{a\cup\Delta(a)}| is odd
by Wielandt [7, Theorem 16.5]. This contradicts the assumption (^{**}) .
Therefore, in both cases there exists an element c of some \Delta_{i} such that
c\not\in\Delta(b)\cup\Delta’(b) . Let \Gamma(b) be a G_{b} -0rbit containing c and set l=|\Gamma(a)| . Then
\Gamma\neq\Delta , \Delta’r By definition (\Delta’\circ\Delta)(b)\ni c and so (\Delta’\circ\Delta)(b)\supseteq c^{G_{b}}=\Gamma(b) , proving (i).
\Gamma(b)\cap\Delta(a) contains c and so is a union of some G_{ab} -0rbits containing
c^{G_{ab}}=\Delta_{i} , proving (iii). Since |G_{a} : G_{abc}|=|G_{a} : G_{ab}|\cdot|G_{ab} : G_{abc}|=kk_{i} and |G_{b} :
G_{abc}|=|G_{b} : G_{bc}|\cdot|G_{bc} : G_{abc}|=l|G_{bc} : G_{abc}| , it follows that l is a devisor of kk_{i} .
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\Gamma(b)\cap\Delta(a)\supseteq\Delta_{i} implies l\geqq k_{i} . If l=k_{i} , then k=|G_{bc} : G_{abc}|=|a^{G_{bc}}| . Since G_{bc}

acts on \Delta’(b)\cap\Delta’(c) containing a, we have \Delta’(b)\cap\Delta’(c)\supseteq a^{G_{bc}} and so \Delta’(b)=\Delta’(c) ,
which implies G_{b\neq(\Delta’(b))\neq}^{<<}G and contradicts the primitivity of (G, \Omega) . Thus
we have l>k_{i} , proving (ii).

Next we assume that, for b\in\Delta(a) , all the G_{ab} -0rbits on \Delta(a) are self-
paired. Since \Gamma(b)\cap\Delta(a) is nonempty and a union of some G_{ab} -0rbits on
\Delta(a) , we may set \Gamma(b)\cap\Delta(a)=\cup\Delta_{j}s . Then we have \Gamma’(b)\cap\Delta(a)=\cup\Delta_{f}’s as

f=1 f=1
before. On the other hand, by assumption \Delta_{f}’=\Delta_{j} , 1\leqq j\leqq s and so \Gamma’(b)\cap

\Delta(a)=\Gamma(b)\cap\Delta(a) . Thus \Gamma’(b)\cap\Gamma(b) is nonempty and \Gamma’(b)=\Gamma(b) . This
completes the proof.

REMARK 1. If r=2 and k>2 , Cameron [2] asserts 2k\leqq l (and so
2 (k-1)\leqq l) . However, in general 2k_{i}\not\leqq l . For example, let G be the Higman-
Sims simple group of degree 100 with subdegrees 1, 22, 77. G_{a}(\cong the
Mathieu group M_{22}) acts on the orbit of length 77 (the blocks of the associated
Steiner system) as rank 3 group with subdgrees 1, 16, 60. Although 16<
22|77\cdot 16,2\cdot 16\not\leqq 22 .

From (ii) and the last assertion of Theorem, we have immediately

COROLLARY 1. Let G be a uniprimitive permutation group on 12, and
for a\in\Omega\Delta(a) a G_{a}-Orbit with |\Delta(a)|\geqq 2 . Suppose |\Delta(a)|<|\Gamma(a)| for any
G_{a}-Orbit \Gamma(a) different from \{a\} and \Delta(a) . Then G_{a} does not act regularly
on \Delta(a) .

COROLLARY 2. There exists no uniprimitive permutation group (G, \Omega)

such that G_{a}(a\in\Omega) has only one nontrivial self-paired orbit \Delta(a) and for
b\in\Delta(a) , all the G_{ab} -Orbits on \Delta(a) are self-paired.

REMARK 2. The simple unitary group PSU(3,3^{2}) has a representation
as a primitive group G of rank 4 such that G_{a}\cong PSL(3,2) and the subdegrees
are 1, 21, 7, 7, and the G_{a}-0rbits of lenth 7 are paired. However, G_{a} on
the G_{a}-0rbit of length 21 has subdegrees 1, 2, 2, 4, 4, 8 and the orbits of
length 4 are paired.

Incidentally we add

PROPOSITION. Let (G, \Omega) be a transitive permutation group and for
a\in\Omega let \Delta(a) and \Gamma(a) be G_{a}-Orbits different from \{a\} . Let m be the number
of G_{a}-Orbits contained in (\Delta’\circ\Gamma)(a) and for some b\in\Delta(a) let t be the number
of G_{ab} -Orbits on \Gamma(a) . Then we have

(i) 1\leqq m\leqq t-1 if \Gamma=\Delta (i.e. , G_{a} acts on \Delta(a) as a group of rank t)
and |\Gamma(a)|\geqq 2 . In particular, if G_{a} acts doubly transitively on \Delta(a) , then
(\Delta’\circ\Delta)(a) is a self-paired G_{a}-Orbits
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(ii) 1\leqq m\leqq t if \Gamma\neq\Delta . In particular, if |\Delta(a)| and |\Gamma(a)| are relatively
prime and |\Delta(a)| or |\Gamma(a)|\geqq 2 , then (\Delta\circ\Gamma)(a) is a single G_{a}-Orbit.

PROOF. Let \Gamma_{0}(a)=\{a\} , \Gamma_{1}(a)=\Delta(a) , \Gamma_{2}(a)=\Gamma(a) , \Gamma_{3}(a) , \cdots be the set of
G_{a}-0rbits on \Omega . Following Higman [5] we set \mu_{if}^{(\alpha)}=|\Gamma_{\alpha}(c)\cap\Gamma_{i}(a)| for c\in\Gamma_{j}(a) .
Then, by definition (\Delta’\circ\Gamma)(a)= \cup\Gamma_{i}(a) , where \Gamma_{j’}(a)=\Gamma_{f}’(a) . By [5, (4. 2)],

\mu_{1}(\begin{array}{l}2’,i\end{array})\neq 0 if and only if
\mu_{i1}^{(2)},\neq 0,a’ nd^{i}’ soi\neq 0^{(2’)}\mu_{1}\neq 0(\Delta’\circ\Gamma)(a)=

\cup \Gamma_{i}(a) . Set (\Delta’\circ\Gamma)(a)=

i\neq 0,\mu_{l1}(2),\neq 0

\cup m\Gamma_{i_{f}}(a) . Then, for all j, 1\leqq j\leqq m , \Gamma(a)\cap\Gamma_{i_{j}}(b) is nonempty and a union
f=1
of some G_{ab} -0rbits on \Gamma(a) . Therefor we have m\leqq(the number of G_{ab} -0rbits
on \Gamma(a))=t . In particular, if \Gamma=\Delta , then b\in\Gamma(a) and m\leqq(the number of
G_{ab} -0rbits on \Gamma(a) different from \{b\})=t-1 . Since \sum_{i}\mu_{i1}^{(2)},=|\Gamma(a)| and \Gamma_{\grave{0}1}^{2)}=1’,

or 0 according as \Gamma=\Delta or \Gamma\neq\Delta , \mu_{i1}^{(0)}, \neq 0 for some i\neq 0 (in case \Gamma=\Delta,
|\Gamma(a)|\geqq 2 by assumption) and so m\geqq 1 . In general, since \mu_{1}(\begin{array}{l}1’i\end{array}), =\mu_{1}(\begin{array}{l}1’,i\end{array}), , if
(\Delta’\circ\Delta)(a) contains a G_{a} orbit \Gamma_{i}(a) , then it does also the paired orbit \Gamma_{i}’(a^{\backslash }, ,
so the ein particular’ part of (i) is obvious. If |\Delta(a)| and |\Gamma(a)| are relatively
prime and |\Delta(a)| or |\Gamma(a)|\geqq 2 , then \Delta\neq\Gamma and by [7, theorem 17. 3] G_{ab} is
transitive on \Gamma(a) , i.e. , t=1, hence m=1, i.e. , (\Delta’\circ\Gamma)(a) is a G_{a}-0rbit.
Therefore, by replacing \Delta’ by \Delta , (\Delta\circ\Gamma)(a) is a G_{a}-0rbit.

Theorem is a little available in dealing with primitive extensions of rank
3 of some permutation groups. Here we say a permutation group (G, \Omega) is
a primitive extension of rank 3 of a transitive permutation group (H, \Delta) if
(G, \Omega) is primitive and has rank 3 and there exists an orbit \Delta(a) of a stabi-
lizer G_{a} , a\in\Omega, such that G_{a} is faithful on \Delta(a) and (G_{a}, \Delta(a)) is isomorphic
to (H, \Delta) . For example, the following simple groups have no primitive exten-
sions of rank 3 (Here, for a group H and its subgroup K, “H>K” denotes
the representation of H on K).

1) PSU(3,5^{2})>A_{7}

2) The Janko’s simple group of order 175560>PSL(2,11)
3) Mclaughlin’s simple group >PSU(4,3^{2})

4) Higman-Sims simple group >M_{22}

Indeed, assume that each one of the above groups has a primitive rank 3
extension (G, \Omega) and let \{a\} , \Delta(a) , \Gamma(a) be the G_{a}-0rbits with |\Delta(a)|=k,
|\Gamma(a)|=l, and set \lambda=|\Delta(a)\cap\Delta(b)| for b\in\Delta(a) . As to 1), by Theorem,
7<l|50\cdot 7 with \lambda=0 or 42, or 42<l|50\cdot 42 with \lambda=0 or 7. However, by
Higman [4, Lemma 7] we have l=30,45 or 48 if l<50 , and l=50\cdot 49/2 if
l\geqq 50 and \lambda=0,7 or 42. These are inconsistent. As to 3), take c\in\Gamma(a) .
G_{ac} is contained in a maximal subgroup of G_{a} and by Finkelstein [3, Theorem
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1] we have l\geqq k=275 . By [4, Lemma 7] and Theorem, the case l=330,
\lambda=112 remains. However, by [3] G_{a} has no maximal subgroup whose index
is a divisor of 330. Likewise, in another cases we have a contradiction.
Here we use a table of parameters of possible rank 3 permutation groups
made by Dr. H. Enomoto on the basis of [4, Lemma 7] with the help of a
computer, and the author thanks him.
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