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On homomorphisms of a group algebra into
a convolution measure algebra
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Throughout this paper, G denotes a LCA group with the dual group \hat{C_{I}}.
The group operation in G (resp. \zeta_{y}^{\hat{\neg}}) is expressed under the multiplicative
notation. M(G) denotes the convolution algebra of all the bounded regular
complex Borel measures on G, and L^{1}(G) denotes the group algebra of G,
the convolution algebra of all the absolutely continuous members of M(G)
with respect to the Haar measure of G. \mathfrak{M} denotes a commutative semi-
simple convolution measure algebla (cf. J. L. Taylor [6]).

In this paper, we consider the following problem: how can we deter-
mine all the homomorphisms of L^{1}(G) into \mathfrak{M} ? If \mathfrak{M} is a measure algebra
M(H) of some LCA group H, a complete answer to this problem is known
(cf. P. J. Cohen [1], [2]). Using the Cohen’s results and the Taylor’s theory
on convolution measure algebras, we will give, in theorem 2 and in theorem
17 below, an anologous answer to this problem in the general setting of M.

\S 1. On the range of the homomorphisms.

In this section, we consider the range of a homomorphism of L^{1}(G)

into \mathfrak{M}. For this purpose, we can assume without loss of generality that
\mathfrak{M} contains an identity of norm 1. By Taylor’s representation theorem
on convolution measure algebras, there exists a compact commutative t0-
pological semi-group S, called the structure semi-group of \mathfrak{M}, and we can
consider \mathfrak{M} a weak*-dense closed L-subalgebra of the measure algebra
M(S) of S. Moreover the maximal ideal space of \mathfrak{M} can be identified
with \hat{S}, the set of all the non-zero bounded continuous semi-characters on
S, and the Gelfand transform of \mu\in \mathfrak{M} is expressed by \hat{\mu}(f)=!_{S}fd\mu(f\in\hat{S}).

\hat{S} is a compact separately continuous topological semi-group with respect
to the Gelfand topology and the pointwise multiplication. \hat{S}^{+}=\{f\in\hat{S}|f\geqq 0\}

is a closed subsemi-group of \hat{S}, and \hat{S}^{+} becomes a partially ordered set
with the natural order: f\geqq g if and only if f(s)\geqq g(s)(s\in S). Every closed
subset (\neq\phi) of \hat{S}^{+} has a minimal element, and this fact will play an im-
portant role later.
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An element h of \hat{S}^{+} is called a critical point if and only if h is an is0-
lated point in h\acute{\grave{S}}^{+}=\{hf|f\in\hat{S}^{+}\} . If h is a critical point, \Gamma_{h}=\{f\in\hat{S}||f|=h\}

becomes a LCA group with respect to the induced topology and the multi-
plication in \Gamma_{h} . The following theorem which we need in this paper is
due to J. L. Taylor.

THF_{I}OREM1 (Taylor). Let h be a critical point of \grave{S}^{+} .
(a) There exists a LCA group G(h) such that:

i) \Gamma_{h} is the dual group of G(h),
ii) the kemel K(h) of the compact subsemi-group S_{h}=\{s\in S|h(s)=1\}

is the Bohr compactification of G(h).
(b) Let \alpha be the canonical injection of G(h) into K(h), and let i_{\alpha} be

the isomorphic isometry given by M(G(h))arrow M(K(h)):\muarrow\mu\circ\alpha^{-1} . Then, if
we identify \mu with i_{\alpha}(\mu)(\mu\in M(G(h)), we have

L^{1}(G(h))\subset \mathfrak{M}_{\cap}M(K(h))\subset RadL^{1}(G(h)) .

A commutative semi-simple convolution measure algebra \mathfrak{R} is called
an almost group algebra if there exist a LCA group G’ and a L-subalgebra
\mathfrak{R}’\subset M(G’), with L^{1}(G’)\subset \mathfrak{R}’\subset RadL^{1}(G’) , such that \mathfrak{R}’ is isomorphic to \mathfrak{R}

as a measure algebra. By the above theorem, \mathfrak{M}_{\cap}M(K(h)) is an almost
group algebra for each critical point h\in\hat{S}^{+} . Converse of this result is
also true, that is each subalgebra of \mathfrak{M} which is an almost group algebra
is a subalgebra of \mathfrak{M}_{\cap}M(K(h)) for some critical point h\in\hat{S}^{+} . The closed
linear span of {L^{1}(G(h))|h : critical point of A_{-}\hat{9}^{+} } is a subalgebra of \mathfrak{M}, which
is called the spine of M. For the proof of above result, we can refer to [7].

In the rest of this paper, Z_{j} and C denote the set of all the rational
integers and the complex number field, respectively. If C\ni\alpha, we express
by \overline{a}’ the complex conjugate of \alpha. If \mu, \nu\in \mathfrak{M} , \mu^{\perp}\nu implies that \mu and \nu

are mutually singular.

THEOREM 2. If \Phi is a homomorphism of L^{1}(G) into \mathfrak{M}, there exist
a fifinite number of critical points h_{1} , \cdots , h_{m} of \acute{\grave{S}}^{+} such that

\Phi(L^{1}(G))\subset\sum_{i=1}^{m}L^{1}(G(h_{i}))(

For the proof of theorem 2, we prepare the following lemmas.

DEFINITION 1. Let 0 be the 0-homomorphism of L^{1}(G) into C. We
consider U^{\cup}’ \bigwedge_{\neg}\{0\} the one point compactification of \hat{\text{\’{U}}}.
If \Psi is a homomorphism of L^{1}(G) into \mathfrak{M}, we call the mapping

A\acute{\grave{g}}^{\wedge}-\acute{tJ}U\{0\} : f1-f\circ\Psi,\cdot
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the dual map of \Psi.
We denote by \varphi the dual map of the homomorphism \Phi of theorem 2.

Obviously \varphi is continuous, and if\wedge express the Gelfand transform, we have

\hat{\mu}(\varphi(f))=\acute{\Phi}\grave{(\mu})(f) (f\in\hat{S}, \mu\in L^{1}(G))

LEMMA 3. If h\in\acute{\grave{S}}^{+} is a critical point, the set A=\{f\in 1\hat{S}^{+}|f\geqq h\} is
open and closed in \hat{S}^{+} .

PROOF. Let \mu be a positive normalised measure in L^{1}(G(h)), then the
Gelfand transform of \mu restricted to \hat{S}^{+} is the characteristic function of A.
This shows that A is open and closed in \hat{S}^{+} .

LEMMA 4. If h\in\hat{S}^{+} and \mu\in \mathfrak{M} satisfifies \hat{\mu}(f)=0(f\in L\backslash ’, |f|\wedge\leqq h) , then
we have h\mu=0 .

PROOF. Since \mathfrak{M} is semi-simple, the relation

\hat{h\mu}(f)=\int_{S}fhd\mu=\hat{\mu}(hf)=0 (f\in\iota\hat{9}) ,

implies h\mu=0 .
Lemma 5. For each \mu\in L^{1}(G), \Phi(\mu) is a symmetric measure in \mathfrak{M}.

PROOF. For each \mu\in L^{1}(G) , we define \tilde{\mu} by \tilde{\mu}(E)=\overline{\mu(E^{-1}})(E : Borel set
of G). Then the relation

\overline{\Phi(\mu)}*\Phi(\mu)(f)=\hat{-\Phi(\mu*\tilde{\mu}})(f)=\hat{(\mu*\tilde{\mu}})\approx-(\varphi(f))

=|\hat{\mu}(\varphi(f))|^{2}=|\acute{\Phi}\hat{(\mu})(f)|^{2} (f\in\acute{\dot{S}}) ,

shows that \Phi(\mu) is symmetric in \mathfrak{M}.
LEMMA 6. If r_{1} , \cdots , r_{N}\in\hat{G}, and if V is a compact neighberhood of the

unit of \acute{r}_{J}^{\neg}\backslash, there exists \mu\in L^{1}(G) such that

i) ||\mu||\leqq\sqrt{N},

ii) \hat{\mu}(r)=/1 : r\in\{r_{1^{ }N},\cdots, r_{\#}.\}

|0 : r\not\in\{r_{1^{ }},\cdots, r_{N}\}\cdot V

PROOF. Let \rho denote the Haar measure of \hat{G}. For each open set W
in \acute{G} with W=W^{-1} and WW\subset V. we can choose \mu\in L^{1}(G) (cf. [5], 2. 6. 1.)
such that

i)
\hat{\mu}(r)=\{

1 : r\in\{r_{1^{ }},\cdots, r_{N}\}

0: r\not\in\{r_{1^{ }},\cdots, r_{N}\}\cdot W\cdot W_{:}
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ii) ||\mu||\leqq\{\rho(\{r_{1\prime}, \cdots r_{N}\}\cdot W)/\rho(W)\}^{*}\leqq\sqrt{N} ,

and \mu satisfies the required properties i) and ii) of lemma 6.
Let n be a non negative integer, and we express the following set of

assumptions by (^{*}) .
(^{*}) i) h_{1} , \cdots , h_{n}\in\hat{S}^{+}: critical points,

ii) \epsilon_{1} , \cdots , \epsilon_{n}\in Z ,

iii) Y= \{f\in\hat{S}|(\Phi(\mu)+\sum_{i=1}^{n}\epsilon_{i}h_{i}\Phi(\mu)\hat{)(}f)\neq 0 for some \mu\in L^{1}(G)\}\neq\phi .

iv) h_{i}\hat{S}nY=\phi and h_{i} \Phi(\mu)\in\sum_{f=1}^{n} Rad L^{1}(G(h_{f}))

(\mu\in L^{1}(G)) for i=1, \cdots , n .

v) |Y|=\{|f||f\in Y\} , |Y|^{-}: closure of |Y| ,

vi) h : one of the minimal points of |Y|^{-}

Remark 1. Under the assumption (^{*}), \Phi(\mu)+\sum_{i=1}^{n}\epsilon_{i}h_{i}\Phi(\mu) is concentrated

in S \backslash \bigcup_{i=1}^{n}\{s\in S||h_{i}(s)|=1\} by lemma 4 and, || \Phi(\mu)||\geqq||\Phi(\mu)+\sum_{i=1}^{n}\epsilon_{i}h_{i}\Phi(\mu)||

(\mu\in L^{1}(G)).

Lemma 7. Under the assumption (^{*}), h\in|Y| implies that h is a criti-
cal point.

PROOF. Obviously Y is open in \hat{S}. Since h\in|Y| , there exists f\in Y

such that |f|=h. Let \mu\in L^{1}(G) be such that ( \Phi(\mu)+\sum_{i=1}^{n}\epsilon_{i}h_{i}\Phi(\mu))(f)\neq 0.
Since \Phi(\mu) is symmetric by lemma 3, \Phi(\mu) is concentrated in S\backslash \{s\in S|0<

|f(s)|<1\} (cf. [6]\rangle Therefore the minimality of h in |Y|^{-} implies |f|^{2}=

|f| , and thus
h\hat{S}-h\hat{S} : g[–\overline{f}g

is a homeomorphism. So \{h\}=\overline{f}(Y_{\cap}h\tilde{S})_{\cap}h\hat{S}^{+} is open in h\acute{\grave{S}}^{+} , and h is
a critical point by definition.

Lemma 8. Let the assumption (^{*}) be satisfified, and let (f_{\lambda})_{\lambda_{\backslash }’A}\sim\subset Y be
a net such that \lim_{\lambda}|f_{\lambda}|=h . Then for each i(1\leqq i\leqq n), we can choose \lambda_{i}\in\Lambda

such that g\in Y and |g|\leqq|f_{\lambda}| for some \lambda\geqq\lambda_{i} imply either of the following
a\grave{)} or b).



82 J. Inoue

a) h\not\leqq h_{i} and |g|\not\leqq h_{i} ,

b) h\geqq h_{i} and |g|\geqq h_{i} .

PROOF. First we suppose that h\not\leqq h_{i} . By lemma 3, A=\{f\in\hat{S}^{+}|f\not\leqq h_{i}\}

is open in \hat{S}^{+} , and we can choose \grave{\lambda}_{i}\in\Lambda such that |f_{\lambda}|\in A(\lambda\geqq\lambda_{i}). Hence
if |g|\leqq|f_{\lambda}| for some \lambda\geqq\lambda_{i} , we get |g|\not\leqq h_{i} .

Next we suppose h\geqq h_{i} . By lemma 3, A’=\{f\in\hat{S}^{+}|f\geqq h_{i}\} is open in
\hat{S}^{+} . If b) were not true, \Lambda_{1}= { \lambda\in\Lambda||g|\leqq|f_{\lambda}| for some g\in Y with |g|\oplus\cdot A’ }
is a cofinal subset of \Lambda . For each \lambda\in\Lambda_{1} , fix an element g_{\lambda}\in Y such that
|g_{\lambda}|\leqq|f_{\lambda}| and |g_{\lambda}|\not\subset.A’ . Then \{g_{\lambda}\}_{\lambda\in\Lambda_{1}} has a subnet \{b_{\beta}\}_{\beta\in B} such that \{|b_{\beta}|\}_{\beta\in B}

converges to an element of \hat{S}^{+} , say g^{*} . Hence we have

\int_{S}g^{*}d\mu=\lim_{\beta}\int_{S}|b_{\beta}|d\mu\leqq\lim_{\lambda}\int_{S}|f_{\lambda}|d\mu=\int_{S}hd\mu (0\leqq\mu\inmathfrak{M}) (1)

and (1) implies g^{*}\leqq h. Since h is minimal in |Y|^{-} , we have g^{*}=h\in A’ ,

and there exists \beta_{i}\in B such that |b_{\beta}|\in A’(\beta\geqq\beta_{i}) . On the other hand,
|b_{\beta}|\not\in A’(\beta\in B) by definition, and this is a contradiction. This completes
the proof of lemma 8.

Lemma 9. Suppose the assumption (^{*}) is satisfified, and let (f_{\lambda})_{\lambda\in A} be
a net in Y such that \lim_{\lambda}|J_{\lambda}^{\cdot}|=h . Then there exists \lambda_{0}\in\Lambda such that

( \sum_{i=1}^{n}\epsilon_{i}h_{i}\Phi(\mu)\hat{)(}f)=(\sum_{i=1}^{n}\epsilon_{i}h_{i}\Phi(\mu)\hat{)(}hf)

(2)
(\mu\in L_{1}(G) , f\in Y with |f_{\lambda}|\geqq|f| for some \lambda\geqq\lambda_{0})

PROOF. By lemma 8. there exists \lambda_{i}\in\Lambda such that g\in Y and |f_{\lambda}|\geqq|g|

for some \lambda\geqq\lambda_{i} imply either of the following a) or b).

a) h\not\leqq h_{i} and |g|\not\leqq h_{i} ,

b) h\geqq h_{i} and |g|\geqq h_{i} .

It is easy to see from (3) that (2) holds for \lambda_{0}=\sup\{\lambda_{1} , \cdots , \lambda_{n}\rangle , and lemma
9 is proved.

LEMMA 10. Under the assumption (^{*}), h is a critical point.

PROOF. To prove lemma 10. it is enough to show h\in|Y| by lemma
7. So by assuming h\not\in|Y| , we will reduce to a contradiction.

Let (f_{\lambda})_{\lambda\in\Lambda} be a net in Y such that \lim_{\lambda}|f_{\lambda}|=h . Here we can assume
|f_{\lambda}|^{2}=|f_{\lambda}|(\lambda\in\Lambda) . To prove this, we put |f_{\lambda}|^{\infty}= \lim_{rarrow\infty}|f|^{r} and g_{\lambda}=|f_{\lambda}|^{\infty}f_{\lambda}

(\lambda\in\Lambda) . Then |g_{\lambda}|^{2}=|g_{\lambda}| is obvious, and g_{\lambda}\in Y follows from lemma 5. ChO-
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ose a subnet \{b_{\beta}\}_{\beta_{\acute{E}}B} of \{g_{\lambda}\}_{\lambda\in A} and g^{*}\in|Y|^{-} such that \lim_{\beta}|b_{\beta}|=g^{*} . Then
the relation

\int_{S}g^{*}d\mu=\lim_{\beta}\int_{S}|b_{\beta}|d\mu\leqq\lim_{\lambda}\int_{S}|f_{\lambda}|d\mu=\int_{S}hd\mu (0\leqq\mu\in \mathfrak{M}) ,

implies h\geqq g^{*} . Since h is minimal in |Y\}^{-} , we have h=g*and we can
take \{b_{\beta}\}_{\beta\epsilon B} for \{f_{\lambda}\}_{\lambda\in A} .

We choose \lambda_{0}\in\Lambda so that (2) of lemma 9 holds, and put g_{1}=f_{\lambda_{0}} . Sup-
pose that g_{1} , \cdots , g_{k} are already chosen in Y, which satisfy

i) |g_{i}|=|g_{i}|^{2} (i=1, \cdots, k) ,

ii) ( \sum_{f=1}^{n}\epsilon_{f}h_{j}\Phi(\mu)\hat{)(}f)=(\sum_{f=1}^{n}\epsilon_{j}h_{f}\Phi(\mu)\hat{)(}hf)

(\mu\in L^{1}(G) , f\in Y with |g_{i}|\geqq|f| for some i(1\leqq i\leqq k)) .
(4)

To choose g_{k+1} in Y, we show that either of the following a) or b) holds.
a) There exists i(1\leqq i\leqq k) and g\in Y such that

i) |g_{i}| is minimal in \{|g_{1}| , \cdots , |g_{k}|\} ,

ii) |g|^{2}=|g|\leqq|g_{i}| ,

iii) \varphi(g_{i})\neq\varphi(g_{i}|g|) .

b) There exists \lambda_{k}\in\Lambda such that

i) \lambda_{k}\geqq\lambda_{0}

ii) if |g_{i}| is minimal in \{|g_{1}| , \cdots , |g_{k}|\} , we have (f_{\lambda_{k}}g_{i^{k}}\hat{9})\ulcorner 1Y=\phi .

To prove this, we suppose that both a) and b) are not true. Since b)
is not true, there exists, for each (\Lambda\ni)\lambda\geqq\lambda_{0} , i=i(\lambda)\in\{1, \cdots, k\} such that
|g_{i}| is minimal in \{|g_{1}|, \cdots, |g_{k}|\} and (g_{i}f_{\lambda}\hat{S})_{\cap}Y\neq\phi. Choose an element of

(g_{i}f_{\lambda}\hat{S})_{\ulcorner 1}Y\ni g such that |g|^{2}=|g| , then we have \varphi(g_{i})=\varphi(g_{i}|g|) since a) is
not true. Putting g_{\lambda}=g_{i}|g|(\lambda\in\Lambda, \lambda\geqq\lambda_{0}), we get a net \{g_{\lambda}\}_{\lambda\geqq\lambda_{0}} . If we choose
a subnet \{b_{\beta}\}_{\beta_{\acute{\overline{c}}}B} of \{g_{\lambda}\}_{\lambda\geqq\lambda_{0}} and g^{*}\in|Y|^{-} such that \{|b_{\beta}|\}_{\beta_{\overline{\vee}}’B} converges to g^{*} ,

then we have

\int_{S}g^{*}d\mu=\lim_{\beta}\int_{S}|b_{\beta}|d\mu\leqq\lim_{\lambda}\int_{S}|f_{\lambda}|d\mu=\int_{S}hd\mu (0\leqq\mu\in \mathfrak{M}) (5)

(5) shows g^{*}\leqq h , and we have g^{*}=h by the minimality of h. Further,
by taking to a subnet of \{b_{\beta}\} again if necessary, we can find i_{0}(1\leqq i_{0}\leqq k)

such that
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|g_{i_{0}}| is minimal in \{|g_{1}| , \cdots , |g_{k}|\},\cdot

\varphi(g_{i_{0}})=\varphi(b_{\beta}) , b_{\beta}=g_{i_{0}}|b_{\beta}| (\beta\in B) ,

and thus we have, for each \mu\in L^{1}(G) ,

\Phi\grave{(\mu})(g_{i_{0}})=\lim_{\beta}\hat{\Phi(\mu})(b_{\beta})=\lim_{\beta}\hat{\Phi(\mu})(g_{i_{0}}|b_{\beta}|)=\hat{\Phi(\mu})(g_{i_{0}}h)\nearrow (6)

On the other hand, since g_{i_{0}}\in Y and g_{i_{0}}h\not\in Y, we have from (4)

0 \neq(\Phi(\mu)+\sum_{i=1}^{n}\epsilon_{i}h_{i}\Phi(\mu)\hat{)(}g_{i_{0}})-(\Phi(\mu)+\sum_{i=1}^{n}\epsilon_{i}h_{i}\Phi(\mu))(g_{i_{0}}h)\wedge

=\hat{\Phi(\mu})(g_{i_{0}})-\hat{\Phi(\mu})(g_{i_{0}}h) for some \mu\in L^{1}(G) ,

and this contradict to (6). Therefore either of a) or b) must hold.
If a) holds for g\in Y, we put g_{k+1}=g . If a) dose not hold, then b)

must hold for some \lambda_{k}\in\Lambda, and we put g_{k+1}=f_{\lambda_{k}} . It is easy to see that
g_{1} , \cdots , g_{k+1} satisfy (4) and thus we can construct a sequence \{g_{i}\}_{i=1}^{\infty} inductively.

Now let N be an integer which satisfies \sqrt{N}>||\Phi||=\sup|\}0\neq\mu\in L^{1}(G\Phi(\mu)||/||\mu|| .
By taking to a subsequence if necessary, we can suppose that \{g_{i}\}_{i=1}^{\infty} satisfy
fies either I or II below.

I. |g_{1}|>|g_{2}|>\cdots ; \varphi(g_{k})\neq\varphi(|g_{k+1}|g_{k}) (k=1,2, \cdots) ,

II. (g_{i}g_{f}\hat{S})_{\cap}Y=\phi (i\neq j;i,j =1,2, \cdots).
Choose elements g_{n_{1}} , \cdots , g_{n_{N+1}} from \{g_{i}\}_{i=1}^{\infty} which satisfy I’ or II’ below
according as \{g_{i}\}_{i=1}^{\infty} satisfies I or II.

I’. i) |g_{n_{1}}|>|g_{n_{2}}|>\cdots>|g_{n_{N+1}}| ,

ii) \{\varphi(g_{n_{i}}), \varphi(g_{n_{i}}|g_{n_{i}+1}|)|i=1 , \cdots , N+1\}=A\cup B, A_{\cap}B=\phi .
iii) A dose not contain both \varphi(g_{n_{i}}) and \varphi(g_{n_{i}}|g_{n_{i}}+1|) for each i(1\leqq

i\leqq N+1), and the same is true for B.
II’ . i) (g_{n_{i}}g_{n_{f}}\hat{S})_{\cap}Y=\phi (i\neq j, i,j=1, \cdots, N+1) ,

ii) \{\varphi(g_{n_{i}}), \varphi(g_{n_{i}}h)|i=1 , \cdots , N+1\}=A\cup B, A_{1\gamma}B=\phi ,

iii) A dose not contain both \varphi(g_{n_{i}}) and \varphi(g_{n_{i}}h) for each i(1\leqq i\leqq

N+1), and the same is true for B.
Such a choice of g_{n_{1}} , \cdots , g_{n_{Iv+1}} in the case II is possible by (4) and the

fact g_{n_{i}}h\not\in Y.
In either cases of I’ and \coprod’ above, there exists by lemma 6 an element

\mu\in L^{1}(G) such that ||\mu||\leqq\sqrt{N} and \hat{\mu}|A (the restriction of \hat{\mu} to A) =1,\hat{\mu}|B=0.
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In the case I’. ||\Phi(\mu)||\geqq N is obvious. In the case II’ , ||\Phi(\mu)||\geqq||\Phi(\mu)+

\sum_{i=1}^{n}\epsilon_{i}h_{i}\Phi(\mu)||\geqq N+1 follows from remark 1, (4) and lemma 4. Thus, in both
cases, we have ||\Phi||\geqq||\Phi(\mu)||/||\mu||\geqq\sqrt{N}, which contradict to the choice of N.
The proof of lemma 10 is now complete.

PROOF OF THEOREM 2. Let N be an integer such that \sqrt{N}>||\Phi|| . In
the first, we show that there exists a finite number of critical points
h_{1} , \cdots , h_{m}\in\hat{S}^{+} such that

\Phi(L^{1}(G))\subset\sum_{i=1}^{m} Rad L^{1}(G(h_{i})) (7)

Let Y_{1}= { f\in\acute{\grave{S}}|\Phi(\mu)(f)\neq 0 for some \mu\in L^{1}(G)}. If Y_{1}=\phi, we have
\Phi=0 and theorem 2 is trivial. If Y_{1}\neq\phi, there exists a minimal element
h of |Y_{1}|^{-}-

, and since the assumption (^{*}) is trivially satisfied with n=0 for
Y=Y_{1} and h, h is a critical point by lemma 10. We put h_{1}=h and Y_{2}=

{ f\in\hat{S}|(\Phi(\mu)-h_{1}\Phi(\mu))(f)\neq 0\wedge for some \mu\in L^{1}(G)}. If Y_{2}=\phi, we have \Phi(\mu)\in

Rad L^{1}(G(h_{1}))(\mu\in L^{1}(G)) , and we get (7). If Y_{2}\neq\phi, and if h is a minimal
point of |Y_{2}|^{-}\neg

,
(^{*}) is satisfied with n=1 for h_{1} , \epsilon_{1}^{(2)}=-1 , Y=Y_{2} and h, and

h is a critical point by lemma 10 again. We put h_{2}=h and Y_{3}=\{f\in\hat{S}|

(\Phi(\mu)-h_{1}\Phi(\mu)-h_{2}\Phi(\mu)+h_{1}h_{2}\Phi(\mu))(f)\neq 0\wedge for some \mu\in L^{1}(G)\} . If Y_{3}=\phi, we
have \Phi(\mu)\in RadL^{1}(G(h_{1}))+RadL^{1}(G(h_{2}))(\mu\in L^{1}(G)) and we have (7) again.
If Y_{3}\neq\phi and h is a minimal point of |Y|^{-},\cdot(^{*}) is satisfied with n=2 for
h_{1} , h_{2} , \epsilon_{1}^{(3)}=a, \epsilon_{2}^{(3)}=-1 , Y=Y_{3} and h, where a=0 or -1 according as
h_{1}h_{2}=h_{1} or h_{1}h_{2}<h_{1} . Suppose this process continues to the k-th step and
that (^{*}) is satisfied with n=k-1 for h_{1} , \cdots , h_{k-1}, \epsilon_{i}=\epsilon_{i}^{(k)}(i=1, \cdots, k-1),

Y=Y_{k} and h, where Y_{k}= \{f\in\hat{S}|(\Phi(\mu)+\sum_{i=1}^{k-1}\epsilon_{i}^{(k)}h_{i}\Phi(\mu))(f)\neq 0\wedge for some \mu\in

L^{1}(G)\} , then h is a critical point by lemma 10.
We put h_{k}=h, and choose integers \epsilon_{1}^{(k+1)} , \cdots , \epsilon_{k}^{(k+1)} such that Y_{k+11\urcorner}h_{i}\acute{\grave{S}}=\phi

(i=1, \cdots, k), where Y_{k+1}= \{f\in\hat{S}|(\Phi(\mu)+\sum_{i=1}^{k}\epsilon_{i}^{(k+1)}h_{i}\Phi(\mu))(f)\wedge\neq 0 for some \mu\in

L^{1}(G)\} . Such a choice of \epsilon_{1}^{(k+1)} , \cdots , \epsilon_{k}^{(k+1)} is possible by theorem 1. If
Y_{k+1}=\phi, we have \Phi(\mu)=-\sum_{i=1}^{k}\epsilon_{i}^{(k+1)}h_{i}\Phi(\mu)\in\sum_{i=1}^{k} Rad L^{1}(G(h_{i}))(\mu\in L^{1}(G)) , and

the process ends here. If Y_{k+1}\neq\phi and h is a minimal point of |Y_{k+1}|_{-}^{-}
, it

is easy to see that (^{*}) is satisfied with n=k for h_{1}, \cdots , h_{k} , \epsilon_{1}^{(k+1)} , \cdots , \epsilon_{k}^{(k+1)} ,
Y=Y_{k+1} and h, and we go on the same way as before.

Suppose that this process continues infinitely. Then we have the infi-
nite sequences \{h_{k}\}_{k=1}^{\infty} , \{\epsilon_{1}^{(k)}, \cdots, \epsilon_{k-1}^{(k)}\}_{k=2}^{\infty} and \{Y_{k}\}_{k=1}^{\infty} , where h_{k-1} , \epsilon_{1}^{(k)} , \cdots , \epsilon_{k-1}^{(k)}

and Y_{k} are given at the k-th step of the above process. Let f_{i}\in\hat{S} be such
that |f_{i}|=h_{i}(i=1,2, \cdots), and put
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A_{n}=\{r\in\hat{G}
\varphi(X_{k}f)=’ r|\sum_{1\leq k\leqq n}\epsilon_{k}^{(n)}\neq 0\}

(n=1,2, \cdots) ,

where \epsilon_{n}^{(r\iota)}=1 for each n. Since Y_{n}\neq\phi, we have A_{n}\neq\phi(n=1,2, \cdots) .

CASE I. Assume that \bigcup_{n=1}A_{n} is an infinite set. Then there exists an

increasing sequence of positive integers n_{1} , \cdots , n_{N} such that

A_{n_{1}}\subset\neq A_{n_{1}}\cup A_{n_{2}}\neq\subset \subset_{A_{n_{1}}\cup\cdots\cup A_{n_{N}}}\neq .

Choose r_{i}\in(A_{n_{1}}\cup\cdots\cup A_{n_{i}})\backslash (A_{n_{1}}\cup\cdots\cup A_{n_{i-1}})(i=1,2, \cdots, N), and define a func-

tion F of \bigcup_{i=1}^{N}A_{n_{i}}\cup\{0\} into {0, 1} such that

i) F(r)=0 (r\xi \{r_{1}, \cdots, r_{N}\})’.

ii) | \sum_{i=1}^{n_{k}}\epsilon_{i}^{(n_{k})}F(\varphi(h_{i}f_{n_{k}}))|\geqq 1 (k=1, \cdots, N) .

From the choice of r_{i} , such function F can be defined inductively on \bigcup_{i=1}^{k}A_{n_{i}} .
from k=1 to N. By lemma 4, we can find \mu_{1}\in L^{1}(G) such that ||\mu_{1}||\leqq\sqrt{N}

and \hat{\mu}_{1}|\bigcup_{i=1}^{N}A_{n_{i}}=F. Therefore we get

|( \Phi(\mu_{1})+\sum_{t=1}^{n_{k}-1}\epsilon_{i}^{(n_{k})}h_{i}\Phi(\mu)\hat{)(}f_{n_{k}})|=|^{lb}\sum_{i=1}^{k}\epsilon_{i}^{(n_{k})}\hat{\mu}_{1}(\varphi(f_{n_{k}}h_{i})|

(8)

=| \sum_{i=1}^{n_{k}}\epsilon_{i}^{(n_{k})}F(\varphi(f_{n_{k}}h_{i}))|\geqq 1 (k=1, \cdots, N)

For each \nu\in \mathfrak{M} and i(1\leqq i<\infty) , we decompose \nu as

\nu=(\nu)_{i}+(\nu)_{i}’ : (\nu)_{i}\in M(K(h_{i})) , (\nu)_{i}’\in(\mathfrak{M}_{\cap}M(K(h_{i})))^{\perp} (9)

Then (8) with the notation of (9) becomes

||( \Phi(\mu_{1}))_{n_{k}}||=||(\Phi(\mu_{1})+\sum_{i=1}^{n_{k}-1}\epsilon_{i}^{(n_{k})}h_{i}\Phi(\mu_{1}))_{n_{k}}||\geqq 1 (k=1, \cdots, N) ,

and thus || \Phi(\mu_{1})||\geqq\sum_{k=1}^{N}||(\Phi(\mu_{1}))_{n_{k}}||\geqq N. From this we have ||\Phi||\geqq||\Phi(\mu_{1})||/||\mu_{1}||

\geqq\sqrt{N}, whic contradicts to the choice of N.

CASE II. Assume next \cup A_{k}\infty is a finite set. Then there exist a strictly
k=1

increasing sequence n_{1} , \cdots , n_{N} of positive integers and r_{1} , \cdots , r_{l}\in\acute{\backslash \mathcal{J}}\wedge such that
A_{n_{1}}=\cdots=A_{n\backslash }=\{r_{1}, \cdots, r_{l}\} .
Let \mu_{2}\in L^{1}(G) be such that ||\mu_{2}||\leqq 1,\acute{\dot{\mu}}_{2}(r_{1})=1 and \hat{\mu}_{2}(r_{2})=\cdots=\hat{\mu}_{2}(r_{l})=0 . In
the same way as the Case I, we have for this \mu_{2} ,
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||( \Phi(\mu_{2}))_{n_{k}}||=||(\Phi(\mu_{2})+\sum_{i=1}^{n_{k}-1}\epsilon_{i}^{(n_{k})}h_{i}\Phi(\mu_{2}))_{n_{k}}||\geqq 1 (k=1, \cdots, N) ,

and we have ||\Phi(\mu_{2})||\geqq N. Hence we have ||\Phi||\geqq||\Phi(\mu_{2})||/||\mu_{2}|_{1}^{1}\geqq N, which
again contradicts to the choice of N. This proves (7).

To complete the proof of theorem 2, suppose that theorem 2 is false.
Then there exist k(1\leqq k\leqq m) and \nu_{1}\in L^{1}(G) such that

(\Phi(\nu_{1}))_{k}\in RadL^{1}(G(h_{k}))\backslash L^{1}(G(h_{k})) ,
(10)

(\Phi(\nu_{1}))_{i}\in L^{1}(G(h_{i})) (h_{i}<h_{k}) .

If h_{i}<h_{k} and if \delta_{e_{k}} denotes the unit mass at the unit e_{k} of the group K(h_{k}),
L^{1}(G(h_{i})) - M(K(h_{k})) : \mu Iarrow\mu*\delta_{e_{k}} and L^{1}(G)arrow M(K(h_{k}) : \nuarrow(h_{k}(\Phi(\nu)))*\delta_{e_{k}} are
homomorphisms, and hence both \mu*\delta_{e_{k}} and (h_{k}(\Phi(\nu)))*\delta_{e_{k}} belong to the spine
of M(K(h_{k})) (cf. [4]). Therefore

( \Phi(\nu_{1}))_{k}=(\Phi(\nu_{1}))_{k}*\delta_{e_{k}}=(h_{k}\Phi(\nu_{1}))*\delta_{e_{k}}-\sum_{h_{i}<h_{k}}(\Phi(\nu_{1}))_{i}*\delta_{e_{k}}

belongs to the spine of M(G(h_{k})) , which contradict to (10). This completes
the proof of theorem 2.

REMARK 2. In the proof of theorem 2, the only properties which we
required to L^{1}(G) were that L^{1}(G) is a commutative symmetric Banach
algebra which satisfies lemma 6. In other words, theorem 2 remains true
if we replace L^{1}(G) with a commutative symmetric Banach algebra A which
satisfies the following propery (^{**}).

(^{**}) . There exists c>0 such that if r_{1} , \cdots , r_{N} are a finite mimber of
elements of the maximal ideal space \Delta_{A} of A, and if W is a compact
subset of \Delta_{A} which contains \{r_{1^{ }},\cdots, r_{N}\} in the interior, then there exists
a\in A which satisfies

||a||\leqq c\sqrt{N}, \^a
(r)=\{

1 : r\in\{r_{1}, \cdots, r_{N}\}

0 : r\not\in W

COROLLARY 11. Let A be a commutative symmetric Banach algebra
which satisfifies (^{**}). If \Phi is a homomorphism of A into \mathfrak{M}, there exist

a fifinite number of critical points h_{1}, \cdots , h_{m}\in\hat{S}^{+}such that \Phi(A)\subset\sum_{i=1}^{n\iota}L^{1}(G(h_{i}).

COROLLARY 12. Let \mathfrak{M} be a commutative semi-simple symmetric con-
volution measure algebra which satisfifies (^{**}). Then there exist a fifinite
number of critical points h_{1}, \cdots , h_{n\iota}\in\hat{S}^{+} such that \mathfrak{M}=\sum_{i=1}^{m}L^{1}(G(h_{i})).

PROOF. Let \Phi be an identity map of \mathfrak{M} into M. Then by corollary
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11, there exist a finite number of critical points h_{1} , \cdots , h_{m}\in\hat{S}^{+} such that

\mathfrak{M}=\Phi(A)\subset\sum_{i=1}^{m}L^{1}(G(h_{i}))\subset \mathfrak{M} .

This completes the proof.
COROLLARY 13. Let A be a commutative symmetric Banach algebra

which satisfifies (^{**}), and let S be a commutative discrete semi-group such
that \hat{S}, the set of all the bounded semi-characters, separates points of S.
Then if \Phi is a homomorphism of A into M(S), there exist subgroups
G_{1}, \cdots , G_{m} of S such that \Phi(A)\subset M(G_{1}\cup\cdots\cup G_{m}).

PROOF. Since \hat{S} separates points of S, M(S) is semi-simple (cf. [3]).
The structure semi-group of M(S) is the Bohr compactification \overline{S} of S,
and the Taylor’s representation of M(S) is given by

i_{\alpha} : M(S)-M(\overline{S}) : \mu 1-\mu\circ\alpha^{-1} (11)

where \alpha is the canonical injection of S into \overline{S} (cf. [7] \S 4. 1).
By corollary 11, there exist a finite number of critical points h_{1} , \cdots , h_{m}\in S^{+}\simeq

such that

i_{a}( \Phi(A))\subset\sum_{i=1}^{m}L^{1}(G(h_{i}))\subset\sum_{i=1}^{m}M(K(h_{i})) (12)

By (11) and (12), we have \Phi(A)\subset M(\alpha^{-1}(K(h_{1}))\cup\cdots U\alpha^{-1}(K(h_{m})) , and \alpha^{-1}(K(h_{i}))

(i=1, \cdots, m) is a subgroup of S. This completes the proof.

\S 2. A characterization of the dual maps.

At the point of view of theorem 2, we restrict ourselves to the case:

\hat{S}^{+}=\{h_{1^{ }},\cdots, h_{m}\} , \mathfrak{M}=\sum_{i=1}^{m}L^{1}(G(h_{i})) and \hat{S}=\bigcup_{i=1}^{m}\Gamma_{h_{i}}c

We can suppose without loss of generality that h_{i} is maximal in \{h_{1^{ }},\cdots, h_{i}\}

(i=1, \cdots, m).
Let \hat{H} be a LCA group. A subset E of \hat{H} is called an open coset

if E is a coset of some open subgroup of \hat{H}. The cost ring of \hat{H} means
the ring generated by all the open cosets of \hat{H}. A map \alpha of an open
coset K of \hat{H} into \hat{G} is called affine if \alpha satisfies

\alpha(rr’r^{\prime\prime-1})=\alpha(r)\alpha(r’)\alpha(r’)^{-1} (r, r’,\cdot r’\in K) .
DEFINITION 2. Let \alpha be a map of \hat{H} into \hat{G}\cup\{0\} . Suppose that:
(1) \alpha^{-1}(\hat{G}) is a fifinite disjoint union of elements E_{1}, \cdots , E_{n} of the coset

ring of \hat{H},
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(2) for each l(1\leqq l\leqq n), there exist an open coset K_{l} and a map \alpha_{l} of
K_{l} into \hat{G} such that E_{l}\subset K_{l} and \alpha_{l} is continuous affine with \alpha_{l}|E_{l}=\alpha|E_{l} .

Then such \alpha is called a piecewise affine map.
DEFINITION 3. Let X be a topological space and let \alpha be crm\psi of X

into \backslash \grave{J}\hat{\Gamma}\cup\{0\} . If \alpha(X)\subset\hat{G}, we call \alpha a k-map if the inverse image of a com-
pact set is also compact. If \alpha(X)=\langle 0 }, \alpha will be called a trivial map.

DEFINITION 4. Let Y be a subset of a set X, and let \alpha be a map of
Y into \hat{C_{Y}} . A trivial extension \alpha^{*} of \alpha to X is the map of X into \acute{\grave{G}}^{I}|\lrcorner\{0\}

such that

\alpha^{*}(x)=\{

\alpha(x) : x\in Y ,

0 : x\not\in Y ,

Let H be the dual group of \hat{H}. We consider \hat{H} an open subset of
the maximal ideal space \Delta_{M(H)} of the measure algebra M(H). If \mathfrak{M}=M(H),
the following theorem determines all the homomorphisms of L^{1}(G) into \mathfrak{M}

by characterizing the dual maps restricted to \hat{H}.
THEOREM 14 (Cohen). Let \alpha be a map of \hat{H} into \hat{G}\cup\{0\} .
(a), \alpha is the restriction to \hat{H} of the dual map of a homomorphism

of L^{1}(G) into M(H) if and only if \alpha is piecewise affine.
(b). \alpha is the dual map of a homomorphism of L^{1}(G) into L^{1}(H) if

and only if \alpha is piecewise affine and \alpha|\alpha^{-1}(\acute{\grave{G}}) is a k-map.
DEFINITION 5. Let J(\Gamma_{h_{i}}) denote the coset ring of \Gamma_{h_{i}}(1\leqq i\leqq m). Sup-

pose J(\Gamma_{h_{i}})\ni E has a representation of the form
E=r_{0}H_{0} \backslash \bigcup_{f=1}^{n}r_{f}H_{f} (13)

with i) \{r_{0^{ }},\cdots, r_{n}\}\subset\Gamma_{h_{i}} , ii)H_{0}, \cdots , H_{n} is a set of open subgroups of \Gamma_{h_{i}} ,
iii)H_{0}/H_{f}{}_{\cap}H_{0} is an infifinite group (j=1,\cdots, n).

Such E will be called a canonical element of J(\Gamma_{h_{i}}).
Lemma 15. Every non-void element of J(\Gamma_{h_{i}})(1\leqq i\leqq m) can be repre-

sented as a fifinite disjoint union of canonical elements of J(\Gamma_{h_{i}}).
PROOF, Let E be a non-void element of J(\Gamma_{h_{i}}) and let \chi_{E} be the

characteristic function of E. It is easy to see from the definition of the
coset ring that \chi_{E} has a representation of the form

\chi_{E}=\sum_{f=1}^{n}a_{f}\chi_{r_{f^{H}f}} (14)

with i) a_{f}\in Z and r_{f}\in\Gamma_{h_{i}} , ii) H_{f} is an open subgroup of \Gamma_{h_{i}} , iii) if H_{f}=H_{f’} ,
then we have r_{j}r_{f}^{-1},\not\in H_{f} .
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Further, by dividing r_{f}H_{f}(1\leqq j\leqq n) into the cosets of a subgroup of H_{f} if nec-
essary, we can assume without loss of generality that \mathfrak{H}=\{r_{i}H_{i}|i=1, \cdots, n\}

satisfies the following: iv) r_{f}H_{jI\urcorner}r_{f’}H_{j’} is a finite desjoint union of ele-
ments in \mathfrak{H} , and if H_{f}c\ddagger H_{f} , we have \#(H_{f}/H_{f}{}_{\cap}H_{J’})=\infty , for 1\leqq j, j’\leqq n .
By rearranging the sequence r_{1}H_{1} , \cdots , r_{n}H_{n} if necessary, we can suppose
H_{n} is maximal in \{H_{1^{ }},\cdots, H_{n}\} . Then r_{7l}H_{n}\not\subset\overline{\bigcap_{f=1}}r_{f}H_{f}n1 is obvious, and from
\langle 14) we have a_{n}=0 or a_{n}=1 . If a_{n}=0 , the representation

\chi_{E}=\sum_{f=1}^{n-1}a_{j}\chi_{r_{f^{H}f}} (15)

satisfies i)\sim iv ) above. If a_{n}=1 , F=r_{n}H_{n}\backslash (\overline{\bigcup_{j=1}}r_{f}H_{f})n1 is a canonical element

of J(\Gamma_{h_{i}}) and

\chi_{EF}=\chi_{E}-\chi_{F}=\sum_{f=1}^{n-1}a_{f}’\chi_{r_{f^{H}f}} for some a_{f}’\in Z (16)

If n-1\neq 0 , we repeat, using (15) or (16), the same process as before, and
n times repetition of this process will give the conclusion of lemma 15.

DEFINITION 6. For each \nu\in M(G(h_{i}))(1\leqq i\leqq m), we decompose \nu as

\nu=\nu’+\nu’\neg
,

\nu’\in L^{1}(G(h_{i})).
,

\nu’\in L^{1}(G(h_{i}))^{\perp}

and defifine the projection P_{h_{i}} by

P_{h_{i}} : M(G(h_{i}))-L^{1}(G(h_{i}))^{\perp}: \nu|-\nu’

LEMMA 16. Let E\in J(\Gamma_{h_{i}})(1\leqq i\leqq m) be canonical, and let K be an
open coset of \Gamma_{h_{i}} which contains E. Suppose that \alpha is a continuous afflne
map of K into \acute{\grave{G}}. and that \Psi is a homomorphism of L^{1}(G) into M(G(h_{i}))

such that the dual map \psi of \Psi satisfifies

\psi(r)=\{
0 : r\in\Gamma_{h_{i}} , r\not\in E ,

\alpha(r) : r\in E .
Then, if \psi|E is not a k-map, we have

P_{h_{i}}\acute{(}\tilde{\Psi(\mu}))(r)=\hat{\Psi(\mu})(r) (r\in E, \mu\in L^{1}(G))

PROOF. Let \nu be the idempotent of M(G(h_{i})) such that the Fourier-
Stieltjes transform of \nu is \chi_{E} . Since E is canonical, we can represent \nu

in the form

\nu=r_{0}\rho_{H_{0}}\perp+\sum_{f=1}^{n}a_{f}r_{f}\rho_{E_{f}^{\perp}} ,
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with i) \{r_{0}, \cdots, r_{n}\}\in\Gamma_{h_{i}} , ii)a_{f}\in Z and H_{j} is an open subgroup of \Gamma_{h_{i}} , iii)
\rho_{H_{f}}\perp is the normalized Haar measure of the annihilator H_{j}^{\perp} of H_{f} in G(h_{i}),
iv)r_{0}H_{0}\supset r_{f}H_{J} and H_{0}/H_{f} is an infinite group, v) r_{f}H_{j\cap}E=\phi(j=1, \cdots, n).

Let \Psi’ be a homomorphism of L^{1}(G) into M(G(h_{i})) such that the dual
map \psi’ of \Psi’ satisfies

\psi’(r)=\{
0 : r\in\Gamma_{h_{i}} , r\not\subset r_{0}H_{0} ,

\alpha(r) : r\in r_{0}H_{0} ,

then we have \Psi’(\mu)*\nu=\Psi(\mu)(\mu\in L^{1}(G)). Since \psi’|E is not a k-map, we
have P_{h_{i}}(\Psi’(\mu)*r_{0}\rho_{H_{0}}\perp)=\Psi’(\mu) and P_{h_{i}}(\Psi’(\mu)*r_{f}\rho_{H_{f}}\perp) is either \Psi’(\mu)*r_{f}\rho_{H_{f}^{\perp}} or
0 (1 \leqq j\leqq n) (cf. [4]). Therefore we get from v) above

P_{h_{i}}\acute{(}i\tilde{I^{\Gamma}(\mu}))(r)=P_{h_{i}}\overline{(\Psi}’\tilde{(\mu)*}\nu)(r)

-\sim -\sim
=P_{h_{i}}( \Psi’(\mu)*r_{0}\rho_{H_{j}}\perp)(r)+\sum_{f=1}^{n}a_{j}P_{h_{i}}(r_{f}\rho_{H_{f}^{\llcorner}}*\Psi’(\mu))(r)

=\hat{\Psi’(\mu})(r)=\acute{\Psi(}\tilde{\mu)}(r) (r\in E, \mu\in L^{1}(G)) (17)

This completes the proof.

DEFINITION 7. Let \alpha be a map of,\hat{\vee q}=\cup\Gamma_{h_{i}}m into \hat{G}\cup\{0\} . We call
i=1

a non-void subset E of \hat{S} a \alpha-admissible set (in abbr. \alpha-set) if E is a ca-
nonical element of the coset ring of some \Gamma_{h_{i}} and that either \alpha|E is trivial
or there exist an open coset K of \Gamma_{h_{i}} and a continuous affine map \alpha’ of K
into \hat{G} such that \alpha|E=\alpha E’. E is called a(k, \alpha)-set if E is a \alpha-set and that
\alpha|E is a non-trivial k-map.

DEFINITION 8. If h_{f}<h_{i} , we denote by \eta_{j}^{i} the continuous homomor-
phism

\Gamma_{h_{i}}-\Gamma_{h_{j}} : f|-fh_{f} .

DEFINITION 9. Let \alpha be a map of \acute{\grave{S}} into \hat{G}^{1\lrcorner}\{0\} , and let

\mathfrak{A}=\{E_{i;l}|E_{i;l}\subset\Gamma_{h_{i}} , l=1, \cdots , n_{i} , i=1, \cdots , m\}

be a collection of subsets of \hat{S} . \mathfrak{A} will be called a fifinite disjoint system

of \alpha-sets if \mathfrak{A} satisfifies the following conditions.

i) E_{i;l} is a \alpha set (l=1, \cdots, n_{i}, i=1, \cdots, m) ,

ii) E_{i;l\cap}E_{i’;l’}=\phi (i\neq i’arl\neq l’) ,

iii) \hat{S}=\bigcup_{i=1}^{m}\bigcup_{l=1}^{n_{i}}E_{i;l}
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iv) For each i, j and l with h_{f}<h_{i} and 1\leqq l\leqq n_{i} , we have
\eta_{f}^{i}(E_{i;l})\subset E_{J;l(j,i)} for some l(j, i)\in\{1, \cdots, n_{j}\}

DEFINITION 10. Let \alpha be a map of A_{-}\hat{q} into \acute{LJ}^{\cup}\wedge\{0\} , and let

\mathfrak{A}=\{E_{i;l}|E_{i;l}\subset\Gamma_{h_{i}} , l=1, \cdots , n_{i} , i=1, \cdots , m\}

be a fifinite desjoint systm of \alpha-sets. For each i, j and l with h_{j}<h_{i} and
1\leqq l\leqq n_{i} , we put

\mathfrak{T}(j, i;l)=\{h_{k}|h_{f}\leqq h_{k}\leqq h_{i} and \alpha\circ\eta_{J}^{k}|E_{k;l(k,i)} is a non-trivial k- map\}

DEFINITION 11. Let \alpha be a map of \acute{\grave{S}} into \hat{G}^{L1}\{0\} , and suppose that

\mathfrak{A}=\{E_{i;l}|E_{i;l}\subset\Gamma_{h_{i}} , l=1, \cdots , n_{i} , i=1, \cdots , m\}

be a fifinite disjoint systm of \alpha-sets. Suppose moreover \mathfrak{A} satisfifies the fol-
lowing conditions.

(a) If E_{i;l} is a(k, \alpha)-set or \alpha|E_{i;l} is trivial, and if h_{f}<h_{i} such that
E_{f;l(f,i)} is a(k, \alpha)-set we have \#\mathfrak{T}(j, i;l)\geqq 2(^{\#}A denotes the cardinal number
of A).

(b) If E_{i;l} is not a(k, \alpha)-set and that \alpha|E_{i;l} is non-trivial, then there
exists one and only one j such that h_{j}<h_{i} and E_{J;l(j,i)} is a(k, \alpha)-set with
\#\mathfrak{T}(j, i;l)=1 . Moreover in this case, we have \alpha|E_{i;l}^{i}=\alpha\circ\eta_{J}|E_{i;l} .

We call such a system \mathfrak{A} a compatible system of \alpha-sets.
DEFINITION 12. Let \alpha be a map of \hat{S} into \hat{G}\cup\langle 0 }, and suppose that

\mathfrak{A}=\{E_{i;l}|E_{i;l}\subset\Gamma_{h_{i}} , l=1, \cdots , n_{i} , i=1, \cdots , m\}

is a fifinite disjoint system of \alpha-sets. If E_{i;l}\in \mathfrak{A} and h_{f}<h_{i} , we denote by
\Phi_{i;l} (resp. \Phi_{f,i;l}) the homomorphism of L^{1}(G) into M(G(h_{i})) such that the
trivial extension of \alpha|E_{i,l} (resp. \alpha\circ\eta_{J}^{i}|E_{i,l}) to \Gamma_{h_{i}} is the restriction to \Gamma_{h_{i}} of
the dual map of \Phi_{i;l} (resp. \Phi_{f,i;l}). \nu_{i,l} is the idempoint of M(G(h_{i})) such
that the Fourier-Stieltjes transform of \nu_{i;l} is the characteristic function of
E_{i;l} . With these notations we have

\Phi_{f;l(f,i)}(\mu)*\nu_{i;l}=\Phi_{f,i;l}(\mu) (\mu\in L^{1}(G)) .

THEOREM 17. A map \alpha of \hat{S} into \hat{G}\cup\{0\} is the dual map of a homO-
morphism \Phi of L^{1}(G) into \mathfrak{M} if and only if there exists a compatible system
of \alpha-sets.

LEMMA 18. If \alpha is the dual map of a homomorphism \Phi of L^{1}(G) into
\mathfrak{M}, there exists a fifinite disjoint system of \alpha-sets.
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PROOF. Let \Phi_{i}(1\leqq i\leqq m) be the homomorphism of L^{1}(G) into M(G(h_{i}))

defined by L^{1}(G)- M(G(h_{i})):\mu\mapsto(h_{i}\Phi(\mu))*\delta_{e_{i}} , where \delta_{e_{i}} is the unit mass at
the unit e_{i} of K(h_{i}) . Then the restriction to \Gamma_{h_{i}} of the dual map of \Phi_{i}

is equal to \alpha|\Gamma_{h_{i}} , and by theorem 14 a) and lemma 15, there exist a finite
disjoint system of \alpha|\Gamma_{h_{i}}-sets \mathfrak{A}^{(i)}=\{E_{i;l}|E_{i;l}\subset\Gamma_{h_{i}}, l=1, \cdots, n_{i}\}(i=1, \cdots, m).
If h_{f}<h_{i} and E\in\prime J(\Gamma_{h_{f}}), (\eta_{J}^{i})^{-1}(E) is an element of J(\Gamma_{h_{i}}). So, dividing
elements of \mathfrak{A}^{(i)}(i=1, \cdots, m) if necessary, we can suppose without loss of
genefality that \mathfrak{A}=\cup \mathfrak{A}^{(i)}m satisfies the condition iv) of definition 9. This

i=1
completes the proof.

Lemma 19. Let \alpha be the dual map of a homomorphism \Phi of L^{1}(G)

into \mathfrak{M}, and suppose
\mathfrak{A}=\{E_{i;l}|E_{i;l}\subset\Gamma_{h_{i}} , l=1, \cdots , n_{i} , i=1, \cdots , m\}

is a fifinite disjoint system of \alpha-sets. If h_{j}<h_{i} and 1\leqq l\leqq n_{i} such that E_{J;l(f,i)}

is a(k, \alpha) set, then \mathfrak{T}(j, i;l) has an unique maximal element.
PROOF. If h_{u} , h_{v}\in \mathfrak{T}(j, i;l), there exists h_{w}\in\hat{S}^{+} such that (cf. [7])

L^{1}(G(h_{u}))*L^{1}(G(h_{v}))\subset L^{1}(G(h_{w})) (18)

By definition 12, we have for each \mu\in L^{1}(G),

\Phi_{f,u;l(u,i)}(\mu)*\nu_{w;l(w,i)}=\Phi_{j,w;l(w,i)}(\mu)

(19)
\Phi_{f,v;l(v,i)}(\mu)*\nu_{w;l(w,i)}=\Phi_{f,w;l(w,i)}(\mu)

By (18) and (19), we have

\Phi_{f,w;l(w,i)}(\mu)*\Phi_{f,w;l(w,i)}(\mu)

=\Phi_{f,u;l(i,u)}(\mu)*\Phi_{f,v;l(v,i)}(\mu)*\nu_{w;l(w,i)}\in L^{1}(G(h_{w}))

(20)

By theorem 14 b), (20) shows that \alpha\circ\eta_{j}^{w}|E_{w;l(w,i)} is a k-map. Since \mathfrak{T}(j, i;l)

is a finite set, this completes the proof of lemma 19.
PROOF OF THEOREM 17. Suppose that \alpha is the dual map of a hom0-

morphism \Phi of L^{1}(G) into \mathfrak{M}. By lemma 18, there exists a finite disjoint
system of \alpha-sets

\mathfrak{A}=\{E_{i;l}|E_{i;l}\subset\Gamma_{h_{i}} , l=1, \cdots , n_{i} , i=1, \cdots , m\}

If m=1, \mathfrak{A} is a compatible system of \alpha-sets by theorem 14 b). If
m>1 , \{E_{1;1^{ }},\cdots, E_{1;n_{1}}\} is a compatible system of \alpha|\Gamma_{h_{1}}-sets by theorem 14 b)

again. If we put
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\epsilon(1,1 ; l)=1 (l=1, \cdots, n_{1}) ,

\mathfrak{A}_{i}=\{E_{j;l}|h_{f}\leqq h_{i} , 1\leqq l\leqq n_{f}\} (i=1, \cdots, m) ,

it is clear that the following (21) holds with k=1.
a) \mathfrak{A}_{i} is a compat
b) \{\epsilon(j, i;l)|h_{j}\leqq h_{\iota}

which satisfies the follo
i) If i\leqq k and

\epsilon(i, i;l)=\{

ii) If h_{f}<h_{i} a
set or \alpha\circ\eta_{J}^{1}

iii) If h_{j}, <h_{i}

set and th
h_{u}\in \mathfrak{T}(f,i;l)\Sigma\epsilon(j, u ;

c) If i\leqq k, we ha

h_{i} \Phi(\mu)=\sum_{h_{f}\leqq h_{i}}\sum_{h_{f}\leqq h_{u}\leqq h}

ible system of \alpha|h_{i^{A}}\hat{q,}-sets (i=1, \cdots, k) .

wing conditions.
1\leqq l\leqq n_{i} , then we have
1 : \alpha|E_{i;l} is either trivial or &-map

0 : otherwise.

.a’ nd1\leqq l\leqq.n_{i},andif.E_{j,l(j,i)}..is.a(k,\cdot\alpha)-\dot{n}d1\leqq l\leqq n_{i},andifE_{f,l(j,i)}isnota(k,\alpha)-{?} ve|E_{i,l}isnotak- map,hen\epsilon(j,i,l)=0at\alpha\circ\eta_{j}^{i}|E_{i,l}isak- map,thenwehavei\leqq k,l=1,\cdots,n_{i}\}isasetofintegers(21)

l(u, i))=0.

i \sum_{l=1}^{n_{u}}\epsilon(j, u;l)\Phi_{f,u;l}(\mu) (\mu\in L^{1}(G))(

We suppose that (21) holds with k=p(<m) , and we will show that (21)
also holds with k=p+1 by defining an appropriate set of integers

\{\epsilon(j,p+1 ; l)|h_{f}\leqq h_{p+1},1\leqq l\leqq n_{p+1}\}t

To prove (21) a) with k=p+1, fix an integer 1\leqq l\leqq n_{p+1} arbitrary,
and put

A(p+1 ; l)= {j|h_{f}<h_{p+1} , E_{f;l(j,p+1)} is a (k, \alpha) set and \#\mathfrak{T}(j,p+1 ; l)=1 }.
If h_{f}<h_{p+1} and E_{f;l(j,p+1)} is a (k, \alpha)-set, and if we put

\Psi_{f;l}(\mu)= \sum \epsilon(j, u;l(u,p+1))\Phi_{j,u;l(u,p+1)}(\mu)*\nu_{p+1;l} (\mu\in L^{1}(G)) ,
h_{f}\leqq h_{f(}<h_{p+1}

(22)
we have from lemma 16, lemma 19 and (21) with k=p that the following
i), ii) and iii) hold for each \mu\in L^{1}(G) and r\in E_{p+1;l} .

i) If \#\mathfrak{T}(j,\cdot p+1 ; l)\geqq 2 and h_{p+1}\not\in \mathfrak{T}(j,p+1 ; l) then \Psi_{f;l}(\mu)=0 .
ii) If \#\mathfrak{T}(j,p+1 ; l)\geqq 2 and h_{p+1}\in \mathfrak{T}(j,p+1 ; l) , then

\Psi_{j;l}(\mu)\in L^{1}(G(h_{p+1})) (23)
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-\sim -\sim
iii) If \#\mathfrak{T}(j,p+1 ; l)=1 , then P_{h_{p+1}}(\Psi_{j;l}(\mu))(r)=\Phi_{f,p+1;l}(\mu)(r)

=\hat{\mu}(\alpha(\eta_{f}^{p+1}(r))) .

From (21) with k=p, (22) and (23) we get

0=P_{h_{p+1}}((h_{p+1} \Phi(\mu)-\sum_{-}\sum_{h_{j}h_{f^{<h}v+1}\leqq h_{2l}<h_{p+1}}\epsilon(j, u;l(u, p+1))

\Phi_{f,u;l(u,p+1)}(\mu))*\nu_{p+1;l})=P_{h_{p+1}}(\Phi_{p+1;l}(\mu))-\sum_{f\in A(p+1;l)}P_{h_{p+1}}(\Psi_{j;l}(\mu))

(\mu\in L^{1}(G)) (24)

Suppose first, E_{p+1;l} is a (k, \alpha) set or \alpha|E_{p+1;l} is trivial that is \Phi_{p+1;l}(\mu)\in

L^{1}(G(h_{p+1})) for each \mu\in L^{1}(G) . If we choose r_{0}\in E_{p+1;l} and \mu_{0}\in L^{1}(G) such
that \hat{\mu}_{0}(\alpha(\eta_{J}^{p+1}(r_{0})))=1(j\in A(p+1;l)), then we have from (24) that A(p+1;l)
=\phi, and definition 11 (a) holds. Next, suppose E_{p+1;l} is a non (k, \alpha) set
and that \alpha|E_{p+1;l} is non-trivial, then from lemma 16 and (21) (b) iii) with
k=p, (24) becomes

0= \overline{P_{h_{p+1}}(}\Phi_{p+1,l}\tilde{.(\mu}))(f)-\sum_{j\in A(p+1;l)}\overline{P_{h_{p+1}}(}.\tilde{\Psi_{j,l}.(\mu))}(f)

= \hat{\mu}(\alpha(f))-\sum_{f\in A(p+1;l)}\hat{\mu}(\alpha(\eta_{j}^{p+1}(f))) (f\in E_{p+1;l}, \mu\in L^{1}(G)) .
(25)

From (25), it follows easily that \# A(p+1;l)=1 and that (b) of definition 11
holds. Thus we have proved that \mathfrak{A}_{p+1} is a compatible system of \alpha|h_{p+1}\hat{S}-

sets. It is easy to define integers \{\epsilon(j, p+1 ; l)|h_{j}\leqq h_{p+1}, l=1, \cdots, n_{p+1}\} so
that b) and c) of (21) hold with k=p+1.

From above, we can conclude by induction that \mathfrak{A}=\mathfrak{A}_{m} is a compatible
system of \alpha-sets.

Conversely, let \mathfrak{A}=\{E_{i;l}|E_{i;l}\subset\Gamma_{h_{i}} , l=1, \cdots n_{i}i’ i=1, \cdots, m\} be a com-
patible system of \alpha-sets. If we put \epsilon(1,1;l)=1(l=1, \cdots, n_{1}), it is clear
that (21) b) holds with k=1 . Suppose that p<m and we have already
define \{\epsilon(j, i;l)|h_{j}\leqq h_{i}, i\leqq p, l=1, \cdots, n_{i}\} so that b) of (21) holds with k=p.
Since \mathfrak{A} is a compatible system of \alpha- sets , we can define a set of integers
\{\epsilon(j, p+1 ; l)|h_{f}\leqq h_{p+1}, l=1, \cdots, n_{p+1}\} , by definition 11, so that b) of (21)

holds with k=p+1. Thus we can define by induction a set integers
\{\epsilon(j, i;l)|h_{f}\leqq h_{i}, l=1, \cdots, n_{i}, i=1, \cdots, m\} so that b) of (21) holds with k=
1, \cdots , m. Therefore, if we put

\Phi(\mu)=\sum_{i=1}^{m}\sum_{h_{f}\leq h_{i}}\sum_{l=1}^{n_{i}}\epsilon(j, i;l)\Phi_{j,i;l}(\mu)
(\mu\in L^{1}(G)) .
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we get
\hat{\Phi(\grave{\mu}})|E_{i;l}=\hat{\mu}\circ\alpha|E_{i;l}

(1\leqq i\leqq m,l =1,\cdots ,n_{i}) (26)

It is easy to see from (26) that \Phi is a homomorphism of L^{1}(G) into \mathfrak{M}

with the dual map \alpha, and this completes the proof of theorem 17.
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