On homomorphisms of a group algebra into a convolution measure algebra

By Jyunji INOUE

(Received May 2, 1977)

Throughout this paper, G denotes a LCA group with the dual group \hat{G} . The group operation in G (resp. \hat{G}) is expressed under the multiplicative notation. M(G) denotes the convolution algebra of all the bounded regular complex Borel measures on G, and $L^1(G)$ denotes the group algebra of G, the convolution algebra of all the absolutely continuous members of M(G)with respect to the Haar measure of G. \mathfrak{M} denotes a commutative semisimple convolution measure algebla (cf. J. L. Taylor [6]).

In this paper, we consider the following problem: how can we determine all the homomorphisms of $L^1(G)$ into \mathfrak{M} ? If \mathfrak{M} is a measure algebra M(H) of some LCA group H, a complete answer to this problem is known (cf. P. J. Cohen [1], [2]). Using the Cohen's results and the Taylor's theory on convolution measure algebras, we will give, in theorem 2 and in theorem 17 below, an anologous answer to this problem in the general setting of \mathfrak{M} .

§1. On the range of the homomorphisms.

In this section, we consider the range of a homomorphism of $L^1(G)$ into \mathfrak{M} . For this purpose, we can assume without loss of generality that \mathfrak{M} contains an identity of norm 1. By Taylor's representation theorem on convolution measure algebras, there exists a compact commutative topological semi-group S, called the structure semi-group of \mathfrak{M} , and we can consider \mathfrak{M} a weak*-dense closed L-subalgebra of the measure algebra M(S) of S. Moreover the maximal ideal space of \mathfrak{M} can be identified with \hat{S} , the set of all the non-zero bounded continuous semi-characters on S, and the Gelfand transform of $\mu \in \mathfrak{M}$ is expressed by $\hat{\mu}(f) = \int_{S} f d\mu(f \in \hat{S})$.

 \hat{S} is a compact separately continuous topological semi-group with respect to the Gelfand topology and the pointwise multiplication. $\hat{S}^+ = \{f \in \hat{S} | f \ge 0\}$ is a closed subsemi-group of \hat{S} , and \hat{S}^+ becomes a partially ordered set with the natural order: $f \ge g$ if and only if $f(s) \ge g(s)$ ($s \in S$). Every closed subset $(\neq \phi)$ of \hat{S}^+ has a minimal element, and this fact will play an important role later. An element h of \hat{S}^+ is called a critical point if and only if h is an isolated point in $h\hat{S}^+ = \{hf | f \in \hat{S}^+\}$. If h is a critical point, $\Gamma_h = \{f \in \hat{S} | |f| = h\}$ becomes a *LCA* group with respect to the induced topology and the multiplication in Γ_h . The following theorem which we need in this paper is due to J. L. Taylor.

THEOREM 1 (Taylor). Let h be a critical point of \hat{S}^+ .

- (a) There exists a LCA group G(h) such that:
 - i) Γ_h is the dual group of G(h),
 - ii) the kernel K(h) of the compact subsemi-group $S_h = \{s \in S | h(s) = 1\}$ is the Bohr compactification of G(h).

(b) Let α be the canonical injection of G(h) into K(h), and let i_{α} be the isomorphic isometry given by $M(G(h)) \rightarrow M(K(h))$: $\mu \rightarrow \mu \circ \alpha^{-1}$. Then, if we identify μ with $i_{\alpha}(\mu)$ ($\mu \in M(G(h))$, we have

$$L^1(G(h)) \subset \mathfrak{M} \cap M(K(h)) \subset \operatorname{Rad} L^1(G(h)).$$

A commutative semi-simple convolution measure algebra \mathfrak{N} is called an almost group algebra if there exist a LCA group G' and a L-subalgebra $\mathfrak{N}' \subset M(G')$, with $L^1(G') \subset \mathfrak{N}' \subset \operatorname{Rad} L^1(G')$, such that \mathfrak{N}' is isomorphic to \mathfrak{N} as a measure algebra. By the above theorem, $\mathfrak{M} \cap M(K(h))$ is an almost group algebra for each critical point $h \in \hat{S}^+$. Converse of this result is also true, that is each subalgebra of \mathfrak{M} which is an almost group algebra is a subalgebra of $\mathfrak{M} \cap M(K(h))$ for some critical point $h \in \hat{S}^+$. The closed linear span of $\{L^1(G(h))|h:$ critical point of \hat{S}^+ is a subalgebra of \mathfrak{M} , which is called the spine of \mathfrak{M} . For the proof of above result, we can refer to [7].

In the rest of this paper, Z and C denote the set of all the rational integers and the complex number field, respectively. If $C \ni \alpha$, we express by $\bar{\alpha}$ the complex conjugate of α . If $\mu, \nu \in \mathfrak{M}, \mu^{\perp}\nu$ implies that μ and ν are mutually singular.

THEOREM 2. If Φ is a homomorphism of $L^1(G)$ into \mathfrak{M} , there exist a finite number of critical points h_1, \dots, h_m of \hat{S}^+ such that

For the proof of theorem 2, we prepare the following lemmas.

DEFINITION 1. Let 0 be the 0-homomorphism of $L^1(G)$ into C. We consider $\hat{G} \cup \{0\}$ the one point compactification of \hat{G} .

If Ψ is a homomorphism of $L^1(G)$ into \mathfrak{M} , we call the mapping

 $\hat{S} \longrightarrow \widehat{G} \cup \{0\} : f \longmapsto f \circ \Psi,$

the dual map of Ψ .

We denote by φ the dual map of the homomorphism Φ of theorem 2. Obviously φ is continuous, and if \uparrow express the Gelfand transform, we have

$$\hat{\mu}(\varphi(f)) = \widehat{\varPhi(\mu)}(f) \qquad \left(f \in \widehat{S}, \ \mu \in L^1(G)\right).$$

LEMMA 3. If $h \in \hat{S}^+$ is a critical point, the set $A = \{f \in \hat{S}^+ | f \ge h\}$ is open and closed in \hat{S}^+ .

PROOF. Let μ be a positive normalised measure in $L^1(G(h))$, then the Gelfand transform of μ restricted to \hat{S}^+ is the characteristic function of A. This shows that A is open and closed in \hat{S}^+ .

LEMMA 4. If $h \in \hat{S}^+$ and $\mu \in \mathfrak{M}$ satisfies $\hat{\mu}(f) = 0 (f \in \hat{S}, |f| \leq h)$, then we have $h\mu = 0$.

PROOF. Since \mathfrak{M} is semi-simple, the relation

$$\widehat{h\mu}(f) = \int_{S} fhd\mu = \hat{\mu}(hf) = 0 \qquad (f \in \hat{S}),$$

implies $h\mu = 0$.

LEMMA 5. For each $\mu \in L^1(G)$, $\Phi(\mu)$ is a symmetric measure in \mathfrak{M} .

PROOF. For each $\mu \in L^1(G)$, we define $\tilde{\mu}$ by $\tilde{\mu}(E) = \overline{\mu(E^{-1})}$ (E: Borel set of G). Then the relation

$$\begin{split} \widehat{\varPhi(\mu)} \ast \widehat{\varPhi(\widehat{\mu})}(f) &= \widehat{\varPhi(\mu \ast \widehat{\mu})}(f) = \widehat{\left(\mu \ast \widetilde{\mu}\right)} \left(\varphi(f)\right) \\ &= |\widehat{\mu}\left(\varphi(f)\right)|^2 = |\widehat{\varPhi(\mu)}(f)|^2 \qquad (f \in \widehat{S}) \,, \end{split}$$

shows that $\Phi(\mu)$ is symmetric in \mathfrak{M} .

LEMMA 6. If $r_1, \dots, r_N \in \hat{G}$, and if V is a compact neighberhood of the unit of \hat{G} , there exists $\mu \in L^1(G)$ such that

i) $\|\mu\| \leq \sqrt{N}$, ii) $\hat{\mu}(r) = \begin{cases} 1 : r \in \{r_1, \dots, r_N\} \\ 0 : r \notin \{r_1, \dots, r_N\} \cdot V. \end{cases}$

PROOF. Let ρ denote the Haar measure of \hat{G} . For each open set W in \hat{G} with $W = W^{-1}$ and $WW \subset V$, we can choose $\mu \in L^1(G)$ (cf. [5], 2.6.1.) such that

i)
$$\hat{\mu}(r) = \begin{cases} 1 : r \in \{r_1, \dots, r_N\} \\ 0 : r \notin \{r_1, \dots, r_N\} \cdot W \cdot W, \end{cases}$$

On homomorphisms of a group algebra into a convolution measure algebra

ii)
$$\|\mu\| \leq \left\{ \rho\left(\{r_1, \cdots, r_N\} \cdot W\right) / \rho(W) \right\}^{\frac{1}{2}} \leq \sqrt{N},$$

and μ satisfies the required properties i) and ii) of lemma 6.

Let n be a non negative integer, and we express the following set of assumptions by (*).

(*) i)
$$h_1, \dots, h_n \in \hat{S}^+$$
: critical points,

$$\begin{array}{ll} \text{ii)} & \varepsilon_1, \cdots, \varepsilon_n \in \mathbb{Z} \,, \\ \text{iii)} & Y = \left\{ f \in \hat{S} | \left(\varPhi(\mu) + \sum_{i=1}^n \varepsilon_i h_i \varPhi(\mu) \right) \widehat{(f)} \neq 0 \ \text{ for some } \mu \in L^1(G) \right\} \neq \phi \,. \\ \text{iv)} & h_i \hat{S}_{\bigcap} Y = \phi \ \text{and} \ h_i \varPhi(\mu) \in \sum_{j=1}^n \operatorname{Rad} \, L^1 \Big(G(h_j) \Big) \\ & \left(\mu \in L^1(G) \right) \quad \text{ for } i = 1, \cdots, n \,. \end{array}$$

- v) $|Y| = \{ |f| | f \in Y \}, \quad |Y|^-: \text{ closure of } |Y|,$
- vi) h: one of the minimal points of $|Y|^{-}$.

Remark 1. Under the assumption (*), $\Phi(\mu) + \sum_{i=1}^{n} \varepsilon_{i} h_{i} \Phi(\mu)$ is concentrated in $S \setminus \bigcup_{i=1}^{n} \{s \in S \mid |h_{i}(s)| = 1\}$ by lemma 4 and, $\|\Phi(\mu)\| \ge \|\Phi(\mu) + \sum_{i=1}^{n} \varepsilon_{i} h_{i} \Phi(\mu)\|$ $(\mu \in L^{1}(G)).$

LEMMA 7. Under the assumption (*), $h \in |Y|$ implies that h is a critical point.

PROOF. Obviously Y is open in \hat{S} . Since $h \in |Y|$, there exists $f \in Y$ such that |f| = h. Let $\mu \in L^1(G)$ be such that $(\varPhi(\mu) + \sum_{i=1}^n \varepsilon_i h_i \varPhi(\mu))(f) \neq 0$. Since $\varPhi(\mu)$ is symmetric by lemma 3, $\varPhi(\mu)$ is concentrated in $S \setminus \{s \in S \mid 0 < |f(s)| < 1\}$ (cf. [6]). Therefore the minimality of h in $|Y|^-$ implies $|f|^2 = |f|$, and thus

 $h\hat{S} \longrightarrow h\hat{S} : g | \longrightarrow \overline{f}g$

is a homeomorphism. So $\{h\} = \overline{f}(Y_{\cap}h\hat{S})_{\cap}h\hat{S}^{+}$ is open in $h\hat{S}^{+}$, and h is a critical point by definition.

LEMMA 8. Let the assumption (*) be satisfied, and let $(f_{\lambda})_{\lambda \in \Lambda} \subset Y$ be a net such that $\lim_{\lambda} |f_{\lambda}| = h$. Then for each $i (1 \leq i \leq n)$, we can choose $\lambda_i \in \Lambda$ such that $g \in Y$ and $|g| \leq |f_{\lambda}|$ for some $\lambda \geq \lambda_i$ imply either of the following a) or b).

- a) $h \geqq h_i$ and $|g| \geqq h_i$,
- b) $h \ge h_i$ and $|g| \ge h_i$.

PROOF. First we suppose that $h \ge h_i$. By lemma 3, $A = \{f \in \hat{S}^+ | f \ge h_i\}$ is open in \hat{S}^+ , and we can choose $\lambda_i \in \Lambda$ such that $|f_{\lambda}| \in A$ $(\lambda \ge \lambda_i)$. Hence if $|g| \le |f_{\lambda}|$ for some $\lambda \ge \lambda_i$, we get $|g| \ge h_i$.

Next we suppose $h \ge h_i$. By lemma 3, $A' = \{f \in \hat{S}^+ | f \ge h_i\}$ is open in \hat{S}^+ . If b) were not true, $\Lambda_1 = \{\lambda \in \Lambda | |g| \le |f_{\lambda}| \text{ for some } g \in Y \text{ with } |g| \notin A'\}$ is a cofinal subset of Λ . For each $\lambda \in \Lambda_1$, fix an element $g_{\lambda} \in Y$ such that $|g_{\lambda}| \le |f_{\lambda}|$ and $|g_{\lambda}| \notin A'$. Then $\{g_{\lambda}\}_{\lambda \in \Lambda_1}$ has a subnet $\{b_{\beta}\}_{\beta \in B}$ such that $\{|b_{\beta}|\}_{\beta \in B}$ converges to an element of \hat{S}^+ , say g^* . Hence we have

$$\int_{\mathcal{S}} g^* d\mu = \lim_{\beta} \int_{\mathcal{S}} |b_{\beta}| d\mu \leq \lim_{\lambda} \int_{\mathcal{S}} |f_{\lambda}| d\mu = \int_{\mathcal{S}} h d\mu \qquad (0 \leq \mu \in \mathfrak{M}) \qquad (1)$$

and (1) implies $g^* \leq h$. Since *h* is minimal in $|Y|^-$, we have $g^* = h \in A'$, and there exists $\beta_i \in B$ such that $|b_\beta| \in A'$ $(\beta \geq \beta_i)$. On the other hand, $|b_\beta| \notin A'$ $(\beta \in B)$ by definition, and this is a contradiction. This completes the proof of lemma 8.

LEMMA 9. Suppose the assumption (*) is satisfied, and let $(f_{\lambda})_{\lambda \in \Lambda}$ be a net in Y such that $\lim |f_{\lambda}| = h$. Then there exists $\lambda_0 \in \Lambda$ such that

$$\begin{pmatrix} \sum_{i=1}^{n} \varepsilon_{i} h_{i} \varPhi(\mu) \end{pmatrix} (f) = \begin{pmatrix} \sum_{i=1}^{n} \varepsilon_{i} h_{i} \varPhi(\mu) \end{pmatrix} (hf)$$

$$\begin{pmatrix} \mu \in L_{1}(G), \quad f \in Y \text{ with } |f_{\lambda}| \geq |f| \text{ for some } \lambda \geq \lambda_{0} \end{pmatrix}$$

$$(2)$$

PROOF. By lemma 8, there exists $\lambda_i \in \Lambda$ such that $g \in Y$ and $|f_{\lambda}| \ge |g|$ for some $\lambda \ge \lambda_i$ imply either of the following a) or b).

a) $h \geqq h_i$ and $|g| \geqq h_i$,

b) $h \ge h_i$ and $|g| \ge h_i$.

It is easy to see from (3) that (2) holds for $\lambda_0 = \sup \{\lambda_1, \dots, \lambda_n\}$, and lemma 9 is proved.

LEMMA 10. Under the assumption (*), h is a critical point.

PROOF. To prove lemma 10. it is enough to show $h \in |Y|$ by lemma 7. So by assuming $h \notin |Y|$, we will reduce to a contradiction.

Let $(f_{\lambda})_{\lambda \in A}$ be a net in Y such that $\lim_{\lambda} |f_{\lambda}| = h$. Here we can assume $|f_{\lambda}|^2 = |f_{\lambda}| \quad (\lambda \in A)$. To prove this, we put $|f_{\lambda}|^{\infty} = \lim_{r \to \infty} |f|^r$ and $g_{\lambda} = |f_{\lambda}|^{\infty} f_{\lambda}$ $(\lambda \in A)$. Then $|g_{\lambda}|^2 = |g_{\lambda}|$ is obvious, and $g_{\lambda} \in Y$ follows from lemma 5. Choose a subnet $\{b_{\beta}\}_{\beta \in B}$ of $\{g_{\lambda}\}_{\lambda \in A}$ and $g^* \in |Y|^-$ such that $\lim_{\beta} |b_{\beta}| = g^*$. Then the relation

$$\int_{\mathcal{S}} g^* d\mu = \lim_{\beta} \int_{\mathcal{S}} |b_{\beta}| d\mu \leq \lim_{\lambda} \int_{\mathcal{S}} |f_{\lambda}| d\mu = \int_{\mathcal{S}} h d\mu \qquad (0 \leq \mu \in \mathfrak{M}),$$

implies $h \ge g^*$. Since h is minimal in $|Y|^-$, we have $h = g^*$ and we can take $\{b_{\beta}\}_{\beta \in B}$ for $\{f_{\lambda}\}_{\lambda \in A}$.

We choose $\lambda_0 \in \Lambda$ so that (2) of lemma 9 holds, and put $g_1 = f_{\lambda_0}$. Suppose that g_1, \dots, g_k are already chosen in Y, which satisfy

i)
$$|g_i| = |g_i|^2$$
 $(i = 1, \dots, k)$,
ii) $\left(\sum_{j=1}^n \varepsilon_j h_j \varPhi(\mu)\right)(f) = \left(\sum_{j=1}^n \varepsilon_j h_j \varPhi(\mu)\right)(hf)$
 $\left(\mu \in L^1(G), \quad f \in Y \text{ with } |g_i| \ge |f| \text{ for some } i \ (1 \le i \le k)\right).$
 (4)

To choose g_{k+1} in Y, we show that either of the following a) or b) holds. a) There exists $i \ (1 \le i \le k)$ and $g \in Y$ such that

- i) $|g_i|$ is minimal in $\{|g_1|, \dots, |g_k|\},\$
- ii) $|g|^2 = |g| \le |g_i|$,
- iii) $\varphi(g_i) \neq \varphi(g_i|g|)$.
- b) There exists $\lambda_k \in \Lambda$ such that
 - i) $\lambda_k \geq \lambda_0$
 - ii) if $|g_i|$ is minimal in $\{|g_1|, \dots, |g_k|\}$, we have $(f_{\lambda_k}g_i\hat{S}) \cap Y = \phi$.

To prove this, we suppose that both a) and b) are not true. Since b) is not true, there exists, for each $(\Lambda \ni) \lambda \ge \lambda_0$, $i = i(\lambda) \in \{1, \dots, k\}$ such that $|g_i|$ is minimal in $\{|g_1|, \dots, |g_k|\}$ and $(g_i f_\lambda \hat{S}) \cap Y \neq \phi$. Choose an element of $(g_i f_\lambda \hat{S}) \cap Y \ni g$ such that $|g|^2 = |g|$, then we have $\varphi(g_i) = \varphi(g_i|g|)$ since a) is not true. Putting $g_\lambda = g_i |g|$ ($\lambda \in \Lambda, \lambda \ge \lambda_0$), we get a net $\{g_\lambda\}_{\lambda \ge \lambda_0}$. If we choose a subnet $\{b_\beta\}_{\beta \in B}$ of $\{g_\lambda\}_{\lambda \ge \lambda_0}$ and $g^* \in |Y|^-$ such that $\{|b_\beta|\}_{\beta \in B}$ converges to g^* , then we have

$$\int_{\mathcal{S}} g^* d\mu = \lim_{\beta} \int_{\mathcal{S}} |b_{\beta}| d\mu \leq \lim_{\lambda} \int_{\mathcal{S}} |f_{\lambda}| d\mu = \int_{\mathcal{S}} h d\mu \qquad (0 \leq \mu \in \mathfrak{M}) \qquad (5)$$

(5) shows $g^* \leq h$, and we have $g^* = h$ by the minimality of h. Further, by taking to a subnet of $\{b_{\beta}\}$ again if necessary, we can find i_0 $(1 \leq i_0 \leq k)$ such that

$$\begin{split} |g_{i_0}| & \text{is minimal in } \left\{ |g_1|, \cdots, |g_k| \right\}, \\ \varphi(g_{i_0}) = \varphi(b_{\beta}), \qquad b_{\beta} = g_{i_0} |b_{\beta}| \qquad (\beta \in B), \end{split}$$

and thus we have, for each $\mu \in L^1(G)$,

$$\widehat{\Phi(\mu)}(g_{i_0}) = \lim_{\beta} \widehat{\Phi(\mu)}(b_{\beta}) = \lim_{\beta} \widehat{\Phi(\mu)}(g_{i_0}|b_{\beta}|) = \widehat{\Phi(\mu)}(g_{i_0}h) \quad (6)$$

On the other hand, since $g_{i_0} \in Y$ and $g_{i_0}h \notin Y$, we have from (4)

$$\begin{split} 0 &= \left(\varPhi(\mu) + \sum_{i=1}^{n} \varepsilon_{i} h_{i} \varPhi(\mu) \right) \widehat{(g_{i_{0}})} - \left(\varPhi(\mu) + \sum_{i=1}^{n} \varepsilon_{i} h_{i} \varPhi(\mu) \right) \widehat{(g_{i_{0}} h)} \\ &= \widehat{\varPhi(\mu)} (g_{i_{0}}) - \widehat{\varPhi(\mu)} (g_{i_{0}} h) \quad \text{for some } \mu \in L^{1}(G) , \end{split}$$

and this contradict to (6). Therefore either of a) or b) must hold.

If a) holds for $g \in Y$, we put $g_{k+1}=g$. If a) dose not hold, then b) must hold for some $\lambda_k \in \Lambda$, and we put $g_{k+1}=f_{\lambda_k}$. It is easy to see that g_1, \dots, g_{k+1} satisfy (4) and thus we can construct a sequence $\{g_i\}_{i=1}^{\infty}$ inductively.

Now let N be an integer which satisfies $\sqrt{N} > ||\Phi|| = \sup_{\substack{0 \neq \mu \in \mathcal{I}^1(G) \\ i = 1}} ||\Phi(\mu)|| / ||\mu||$. By taking to a subsequence if necessary, we can suppose that $\{g_i\}_{i=1}^{\infty}$ satisfies either I or II below.

I.
$$|g_1| > |g_2| > \cdots; \varphi(g_k) \neq \varphi(|g_{k+1}|g_k)$$
 $(k = 1, 2, \cdots),$

II.
$$(g_i g_j \hat{S}) \cap Y = \phi$$
 $(i \neq j; i, j = 1, 2, \cdots).$

Choose elements $g_{n_1}, \dots, g_{n_{N+1}}$ from $\{g_i\}_{i=1}^{\infty}$ which satisfy I' or II' below according as $\{g_i\}_{i=1}^{\infty}$ satisfies I or II.

- $\begin{array}{ll} \text{I'.} & \text{i} & |g_{n_1}| > |g_{n_2}| > \cdots > |g_{n_{N+1}}|, \\ & \text{ii} & \left\{ \varphi(g_{n_i}), \ \varphi(g_{n_i}|g_{n_i+1}|) \right| i = 1, \ \cdots, \ N+1 \right\} = A \cup B, \ A \cap B = \phi \,. \\ \end{array}$
 - iii) A dose not contain both $\varphi(g_{n_i})$ and $\varphi(g_{n_i}|g_{n_i+1}|)$ for each $i(1 \le i \le N+1)$, and the same is true for B.

II'. i)
$$(g_{n_i}g_{n_j}\hat{S}) \cap Y = \phi$$
 $(i \neq j, i, j = 1, \dots, N+1),$

- ii) $\{\varphi(g_{n_i}), \varphi(g_{n_i}h) | i = 1, \dots, N+1\} = A \cup B, A \cap B = \phi,$
- iii) A dose not contain both $\varphi(g_{n_i})$ and $\varphi(g_{n_i}h)$ for each $i(1 \le i \le N+1)$, and the same is true for B.

Such a choice of $g_{n_1}, \dots, g_{n_{N+1}}$ in the case II is possible by (4) and the fact $g_{n_i}h \notin Y$.

In either cases of I' and II' above, there exists by lemma 6 an element $\mu \in L^1(G)$ such that $\|\mu\| \leq \sqrt{N}$ and $\hat{\mu}|A$ (the restriction of $\hat{\mu}$ to A)=1, $\hat{\mu}|B=0$.

In the case I', $\| \boldsymbol{\varphi}(\boldsymbol{\mu}) \| \geq N$ is obvious. In the case II', $\| \boldsymbol{\varphi}(\boldsymbol{\mu}) \| \geq \| \boldsymbol{\varphi}(\boldsymbol{\mu}) + \sum_{i=1}^{n} \varepsilon_{i} h_{i} \boldsymbol{\varphi}(\boldsymbol{\mu}) \| \geq N+1$ follows from remark 1, (4) and lemma 4. Thus, in both cases, we have $\| \boldsymbol{\varphi} \| \geq \| \boldsymbol{\varphi}(\boldsymbol{\mu}) \| / \| \boldsymbol{\mu} \| \geq \sqrt{N}$, which contradict to the choice of N. The proof of lemma 10 is now complete.

PROOF OF THEOREM 2. Let N be an integer such that $\sqrt{N} > ||\Phi||$. In the first, we show that there exists a finite number of critical points $h_1, \dots, h_m \in \hat{S}^+$ such that

$$\varPhi \left(L^1(G) \right) \subset \sum_{i=1}^m \operatorname{Rad} L^1 \left(G(h_i) \right)$$
(7)

Let $Y_1 = \{f \in \hat{S} | \Phi(\mu)(f) \neq 0 \text{ for some } \mu \in L^1(G)\}$. If $Y_1 = \phi$, we have $\Phi = 0$ and theorem 2 is trivial. If $Y_1 \neq \phi$, there exists a minimal element h of $|Y_1|^-$, and since the assumption (*) is trivially satisfied with n=0 for $Y = Y_1$ and h, h is a critical point by lemma 10. We put $h_1 = h$ and $Y_2 =$ $\{f \in \hat{S} | (\varPhi(\mu) - h_1 \varPhi(\mu))(f) \neq 0 \text{ for some } \mu \in L^1(G) \}.$ If $Y_2 = \phi$, we have $\varPhi(\mu) \in \Phi(\mu)$ Rad $L^1(G(h_1))$ ($\mu \in L^1(G)$), and we get (7). If $Y_2 \neq \phi$, and if h is a minimal point of $|Y_2|^-$, (*) is satisfied with n=1 for h_1 , $\varepsilon_1^{(2)}=-1$, $Y=Y_2$ and h, and h is a critical point by lemma 10 again. We put $h_2 = h$ and $Y_3 = \{f \in \hat{S} | f \in \hat{S}\}$ $(\varPhi(\mu)-h_1\varPhi(\mu)-h_2\varPhi(\mu)+h_1h_2\varPhi(\mu))(f)\neq 0$ for some $\mu \in L^1(G)$. If $Y_3=\phi$, we have $\Phi(\mu) \in \operatorname{Rad} L^1(G(h_1)) + \operatorname{Rad} L^1(G(h_2))$ ($\mu \in L^1(G)$) and we have (7) again. If $Y_3 \neq \phi$ and h is a minimal point of $|Y|^-$, (*) is satisfied with n=2 for $h_1, h_2, \epsilon_1^{(3)} = a, \epsilon_2^{(3)} = -1, Y = Y_3$ and h, where a = 0 or -1 according as $h_1h_2 = h_1$ or $h_1h_2 < h_1$. Suppose this process continues to the k-th step and that (*) is satisfied with n = k-1 for h_1, \dots, h_{k-1} , $\varepsilon_i = \varepsilon_i^{(k)}$ $(i = 1, \dots, k-1)$, $Y = Y_k$ and h, where $Y_k = \{f \in \widehat{S} | (\varPhi(\mu) + \sum_{i=1}^{k-1} \varepsilon_i^{(k)} h_i \varPhi(\mu))(f) \neq 0$ for some $\mu \in \mathbb{R}$ $L^{1}(G)$ }, then h is a critical point by lemma 10. We put $h_k = h$, and choose integers $\varepsilon_1^{(k+1)}, \dots, \varepsilon_k^{(k+1)}$ such that $Y_{k+1} \cap h_i \hat{S} = \phi$ $(i=1, \dots, k)$, where $Y_{k+1} = \{f \in \hat{S} | (\varPhi(\mu) + \sum_{i=1}^{k} \varepsilon_i^{(k+1)} h_i \varPhi(\mu))(f) \neq 0 \text{ for some } \mu \in \mathcal{I}\}$ $L^{1}(G)$. Such a choice of $\varepsilon_{1}^{(k+1)}, \dots, \varepsilon_{k}^{(k+1)}$ is possible by theorem 1. If $Y_{k+1} = \phi, \text{ we have } \Phi(\mu) = -\sum_{i=1}^{k} \varepsilon_i^{(k+1)} h_i \Phi(\mu) \in \sum_{i=1}^{k} \operatorname{Rad} L^1(G(h_i)) \quad (\mu \in L^1(G)), \text{ and}$ the process ends here. If $Y_{k+1} \neq \phi$ and h is a minimal point of $|Y_{k+1}|^-$, it is easy to see that (*) is satisfied with n = k for $h_1, \dots, h_k, \varepsilon_1^{(k+1)}, \dots, \varepsilon_k^{(k+1)}$,

Suppose that this process continues infinitely. Then we have the infinite sequences $\{h_k\}_{k=1}^{\infty}$, $\{\varepsilon_1^{(k)}, \dots, \varepsilon_{k-1}^{(k)}\}_{k=2}^{\infty}$ and $\{Y_k\}_{k=1}^{\infty}$, where $h_{k-1}, \varepsilon_1^{(k)}, \dots, \varepsilon_{k-1}^{(k)}$ and Y_k are given at the k-th step of the above process. Let $f_i \in \hat{S}$ be such that $|f_i| = h_i$ $(i=1, 2, \dots)$, and put

 $Y = Y_{k+1}$ and h, and we go on the same way as before.

$$A_n = \left\{ r \in \widehat{G} | \sum_{\substack{1 \le k \le n \\ \varphi(A_k f_n) = r}} \varepsilon_k^{(n)} \neq 0 \right\} \qquad (n = 1, 2, \cdots),$$

where $\varepsilon_n^{(n)} = 1$ for each *n*. Since $Y_n \neq \phi$, we have $A_n \neq \phi$ $(n=1, 2, \cdots)$.

CASE I. Assume that $\bigcup_{n=1}^{\infty} A_n$ is an infinite set. Then there exists an increasing sequence of positive integers n_1, \dots, n_N such that

$$A_{n_1} \subsetneqq A_{n_1} \cup A_{n_2} \gneqq \qquad \clubsuit A_{n_1} \cup \cdots \cup A_{n_N}.$$

Choose $r_i \in (A_{n_1} \cup \cdots \cup A_{n_i}) \setminus (A_{n_1} \cup \cdots \cup A_{n_{i-1}})$ $(i=1, 2, \dots, N)$, and define a function F of $\bigcup_{i=1}^{N} A_{n_i} \cup \{0\}$ into $\{0, 1\}$ such that

i)
$$F(r) = 0$$
 $\left(r \in \{r_1, \dots, r_N\}\right)$,
ii) $\left|\sum_{i=1}^{n_k} \varepsilon_i^{(n_k)} F\left(\varphi(h_i f_{n_k})\right)\right| \ge 1$ $(k = 1, \dots, N)$.

From the choice of r_i , such function F can be defined inductively on $\bigcup_{i=1}^{n} A_{n_i}$. from k=1 to N. By lemma 4, we can find $\mu_1 \in L^1(G)$ such that $\|\mu_1\| \leq \sqrt{N}$ and $\hat{\mu}_1 | \bigcup_{i=1}^{N} A_{n_i} = F$. Therefore we get

$$\begin{split} \left| \left(\boldsymbol{\varPhi}(\boldsymbol{\mu}_{1}) + \sum_{i=1}^{n_{k}-1} \varepsilon_{i}^{(n_{k})} h_{i} \boldsymbol{\varPhi}(\boldsymbol{\mu}) \right) \widehat{(f_{n_{k}})} \right| &= \left| \sum_{i=1}^{n_{k}} \varepsilon_{i}^{(n_{k})} \hat{\mu}_{1} \Big(\boldsymbol{\varphi}(f_{n_{k}} h_{i}) \Big) \right| \\ &= \left| \sum_{i=1}^{n_{k}} \varepsilon_{i}^{(n_{k})} F \Big(\boldsymbol{\varphi}(f_{n_{k}} h_{i}) \Big) \right| \ge 1 \qquad (k = 1, \dots, N) \end{split}$$

For each $\nu \in \mathfrak{M}$ and $i(1 \leq i < \infty)$, we decompose ν as

$$\boldsymbol{\nu} = (\boldsymbol{\nu})_i + (\boldsymbol{\nu})'_i : (\boldsymbol{\nu})_i \in M(K(h_i)), \qquad (\boldsymbol{\nu})'_i \in \left(\mathfrak{M} \cap M(K(h_i))\right)^{\perp} \qquad (9)$$

Then (8) with the notation of (9) becomes

$$\left\| \left(\boldsymbol{\Phi}(\mu_{1}) \right)_{n_{k}} \right\| = \left\| \left(\boldsymbol{\Phi}(\mu_{1}) + \sum_{i=1}^{n_{k}-1} \varepsilon_{i}^{(n_{k})} h_{i} \boldsymbol{\Phi}(\mu_{1}) \right)_{n_{k}} \right\| \ge 1 \quad (k = 1, \dots, N),$$

and thus $\| \Phi(\mu_1) \| \ge \sum_{k=1}^{N} \| (\Phi(\mu_1))_{n_k} \| \ge N$. From this we have $\| \Phi \| \ge \| \Phi(\mu_1) \| / \| \mu_1 \| \ge \sqrt{N}$, whic contradicts to the choice of N.

CASE II. Assume next $\bigcup_{k=1}^{\infty} A_k$ is a finite set. Then there exist a strictly increasing sequence n_1, \dots, n_N of positive integers and $r_1, \dots, r_l \in \hat{G}$ such that $A_{n_1} = \dots = A_{n_N} = \{r_1, \dots, r_l\}$. Let $\mu_2 \in L^1(G)$ be such that $\|\mu_2\| \leq 1$, $\hat{\mu}_2(r_1) = 1$ and $\hat{\mu}_2(r_2) = \dots = \hat{\mu}_2(r_l) = 0$. In the same way as the Case I, we have for this μ_2 , On homomorphisms of a group algebra into a convolution measure algebra

$$\left\|\left(\boldsymbol{\Phi}(\boldsymbol{\mu}_2)\right)_{n_k}\right\| = \left\|\left(\boldsymbol{\Phi}(\boldsymbol{\mu}_2) + \sum_{i=1}^{n_k-1} \varepsilon_i^{(n_k)} h_i \boldsymbol{\Phi}(\boldsymbol{\mu}_2)\right)_{n_k}\right\| \ge 1 \qquad (k = 1, \dots, N),$$

and we have $\| \Phi(\mu_2) \| \ge N$. Hence we have $\| \Phi \| \ge \| \Phi(\mu_2) \| / \| \mu_2 \| \ge N$, which again contradicts to the choice of N. This proves (7).

To complete the proof of theorem 2, suppose that theorem 2 is false. Then there exist $k(1 \le k \le m)$ and $\nu_1 \in L^1(G)$ such that

$$\begin{split} \left(\boldsymbol{\varPhi}(\boldsymbol{\nu}_{1}) \right)_{k} \in \operatorname{Rad} L^{1} \left(G(h_{k}) \right) \setminus L^{1} \left(G(h_{k}) \right), \\ \left(\boldsymbol{\varPhi}(\boldsymbol{\nu}_{1}) \right)_{i} \in L^{1} \left(G(h_{i}) \right) \qquad (h_{i} < h_{k}). \end{split}$$
 (10)

If $h_i < h_k$ and if δ_{e_k} denotes the unit mass at the unit e_k of the group $K(h_k)$, $L^1(G(h_i)) \rightarrow M(K(h_k)) : \mu \mapsto \mu * \delta_{e_k}$ and $L^1(G) \rightarrow M(K(h_k) : \nu \rightarrow (h_k(\Phi(\nu))) * \delta_{e_k}$ are homomorphisms, and hence both $\mu * \delta_{e_k}$ and $(h_k(\Phi(\nu))) * \delta_{e_k}$ belong to the spine of $M(K(h_k))$ (cf. [4]). Therefore

$$\left(\boldsymbol{\varPhi}(\boldsymbol{\nu}_{1})\right)_{k} = \left(\boldsymbol{\varPhi}(\boldsymbol{\nu}_{1})\right)_{k} \ast \boldsymbol{\delta}_{e_{k}} = \left(h_{k} \boldsymbol{\varPhi}(\boldsymbol{\nu}_{1})\right) \ast \boldsymbol{\delta}_{e_{k}} - \sum_{h_{i} < h_{k}} \left(\boldsymbol{\varPhi}(\boldsymbol{\nu}_{1})\right)_{i} \ast \boldsymbol{\delta}_{e_{k}}$$

belongs to the spine of $M(G(h_k))$, which contradict to (10). This completes the proof of theorem 2.

REMARK 2. In the proof of theorem 2, the only properties which we required to $L^1(G)$ were that $L^1(G)$ is a commutative symmetric Banach algebra which satisfies lemma 6. In other words, theorem 2 remains true if we replace $L^1(G)$ with a commutative symmetric Banach algebra A which satisfies the following property (**).

(**). There exists c>0 such that if r_1, \dots, r_N are a finite mimber of elements of the maximal ideal space Δ_A of A, and if W is a compact subset of Δ_A which contains $\{r_1, \dots, r_N\}$ in the interior, then there exists $a \in A$ which satisfies

$$\|a\| \leq c\sqrt{N}, \qquad \hat{a}(r) = \begin{cases} 1 : r \in \{r_1, \dots, r_N\} \\ 0 : r \notin W. \end{cases}$$

COROLLARY 11. Let A be a commutative symmetric Banach algebra which satisfies (**). If Φ is a homomorphism of A into \mathfrak{M} , there exist a finite number of critical points $h_1, \dots, h_m \in \hat{S}^+$ such that $\Phi(A) \subset \sum_{i=1}^m L^1(G(h_i))$.

COROLLARY 12. Let \mathfrak{M} be a commutative semi-simple symmetric convolution measure algebra which satisfies (**). Then there exist a finite number of critical points $h_1, \dots, h_m \in \hat{S}^+$ such that $\mathfrak{M} = \sum_{i=1}^m L^1(G(h_i))$.

PROOF. Let Φ be an identity map of \mathfrak{M} into \mathfrak{M} . Then by corollary

11, there exist a finite number of critical points $h_1, \dots, h_m \in \hat{S}^+$ such that

$$\mathfrak{M} = \mathbf{\Phi}(A) \subset \sum_{i=1}^m L^1 \left(G(h_i) \right) \subset \mathfrak{M} \, .$$

This completes the proof.

COROLLARY 13. Let A be a commutative symmetric Banach algebra which satisfies (**), and let S be a commutative discrete semi-group such that \hat{S} , the set of all the bounded semi-characters, separates points of S. Then if Φ is a homomorphism of A into M(S), there exist subgroups G_1, \dots, G_m of S such that $\Phi(A) \subset M(G_1 \cup \dots \cup G_m)$.

PROOF. Since \hat{S} separates points of S, M(S) is semi-simple (cf. [3]). The structure semi-group of M(S) is the Bohr compactification \bar{S} of S, and the Taylor's representation of M(S) is given by

$$i_{\alpha} : M(S) \longrightarrow M(\bar{S}) : \mu \longmapsto \mu \circ \alpha^{-1}$$
 (11)

where α is the canonical injection of S into \overline{S} (cf. [7] § 4. 1). By corollary 11, there exist a finite number of critical points $h_1, \dots, h_m \in \widehat{\overline{S}}^+$ such that

$$i_{a}(\varPhi(A)) \subset \sum_{i=1}^{m} L^{1}(G(h_{i})) \subset \sum_{i=1}^{m} M(K(h_{i}))$$
(12)

By (11) and (12), we have $\Phi(A) \subset M(\alpha^{-1}(K(h_1)) \cup \cdots \cup \alpha^{-1}(K(h_m)))$, and $\alpha^{-1}(K(h_i))$ $(i=1, \dots, m)$ is a subgroup of S. This completes the proof.

§2. A characterization of the dual maps.

At the point of view of theorem 2, we restrict ourselves to the case:

$$\hat{S}^+ = \{h_1, \cdots, h_m\}, \qquad \mathfrak{M} = \sum_{i=1}^m L^1(G(h_i)) \text{ and } \hat{S} = \bigcup_{i=1}^m \Gamma_{h_i}.$$

We can suppose without loss of generality that h_i is maximal in $\{h_1, \dots, h_i\}$ $(i=1, \dots, m)$.

Let \hat{H} be a *LCA* group. A subset *E* of \hat{H} is called an open coset if *E* is a coset of some open subgroup of \hat{H} . The cost ring of \hat{H} means the ring generated by all the open cosets of \hat{H} . A map α of an open coset *K* of \hat{H} into \hat{G} is called affine if α satisfies

$$\alpha(rr'r''^{-1}) = \alpha(r) \alpha(r') \alpha(r'')^{-1} \qquad (r, r', r'' \in K).$$

DEFINITION 2. Let α be a map of \hat{H} into $\hat{G} \cup \{0\}$. Suppose that:

(1) $\alpha^{-1}(\hat{G})$ is a finite disjoint union of elements E_1, \dots, E_n of the coset ring of \hat{H} ,

(2) for each $l(1 \le l \le n)$, there exist an open coset K_i and a map α_i of K_i into \hat{G} such that $E_i \subset K_i$ and α_i is continuous affine with $\alpha_i | E_i = \alpha | E_i$. Then such α is called a piecewise affine map.

DEFINITION 3. Let X be a topological space and let α be a map of X into $\hat{G} \cup \{0\}$. If $\alpha(X) \subset \hat{G}$, we call α a k-map if the inverse image of a compact set is also compact. If $\alpha(X) = \{0\}$, α will be called a trivial map.

DEFINITION 4. Let Y be a subset of a set X, and let α be a map of Y into \hat{G} . A trivial extension α^* of α to X is the map of X into $\hat{G} \cup \{0\}$ such that

$$\alpha^*(x) = \begin{cases} \alpha(x) : x \in Y, \\ 0 : x \notin Y, \end{cases}$$

Let H be the dual group of \hat{H} . We consider \hat{H} an open subset of the maximal ideal space $\mathcal{A}_{\mathcal{M}(H)}$ of the measure algebra $\mathcal{M}(H)$. If $\mathfrak{M} = \mathcal{M}(H)$, the following theorem determines all the homomorphisms of $L^1(G)$ into \mathfrak{M} by characterizing the dual maps restricted to \hat{H} .

THEOREM 14 (Cohen). Let α be a map of \hat{H} into $\hat{G} \cup \{0\}$.

(a). α is the restriction to \hat{H} of the dual map of a homomorphism of $L^1(G)$ into M(H) if and only if α is piecewise affine.

(b). α is the dual map of a homomorphism of $L^1(G)$ into $L^1(H)$ if and only if α is piecewise affine and $\alpha | \alpha^{-1}(\widehat{G})$ is a k-map.

DEFINITION 5. Let $J(\Gamma_{h_i})$ denote the coset ring of $\Gamma_{h_i}(1 \leq i \leq m)$. Suppose $J(\Gamma_{h_i}) \ni E$ has a representation of the form

$$E = r_0 H_0 \bigvee_{j=1}^n r_j H_j \tag{13}$$

with i) $\{r_0, \dots, r_n\} \subset \Gamma_{h_i}$, ii) H_0, \dots, H_n is a set of open subgroups of Γ_{h_i} , iii) $H_0/H_j \cap H_0$ is an infinite group $(j=1,\dots,n)$.

Such E will be called a canonical element of $J(\Gamma_{h_i})$.

LEMMA 15. Every non-void element of $J(\Gamma_{h_i})$ $(1 \leq i \leq m)$ can be represented as a finite disjoint union of canonical elements of $J(\Gamma_{h_i})$.

PROOF, Let *E* be a non-void element of $J(\Gamma_{h_i})$ and let χ_E be the characteristic function of *E*. It is easy to see from the definition of the coset ring that χ_E has a representation of the form

$$\chi_E = \sum_{j=1}^n a_j \chi_{r_j H_j} \tag{14}$$

with i) $a_j \in \mathbb{Z}$ and $r_j \in \Gamma_{h_i}$, ii) H_j is an open subgroup of Γ_{h_i} , iii) if $H_j = H_{j'}$, then we have $r_j r_{j'}^{-1} \notin H_j$.

Further, by dividing $r_j H_j (1 \le j \le n)$ into the cosets of a subgroup of H_j if necessary, we can assume without loss of generality that $\mathfrak{H} = \{r_i H_i | i = 1, \dots, n\}$ satisfies the following: iv) $r_j H_{j \cap} r_{j'} H_{j'}$ is a finite desjoint union of elements in \mathfrak{H} , and if $H_j \oplus H_{j'}$ we have $\#(H_j/H_{j \cap} H_{j'}) = \infty$, for $1 \le j$, $j' \le n$. By rearranging the sequence $r_1 H_1, \dots, r_n H_n$ if necessary, we can suppose H_n is maximal in $\{H_1, \dots, H_n\}$. Then $r_n H_n \oplus \bigcap_{j=1}^{n-1} r_j H_j$ is obvious, and from (14) we have $a_n = 0$ or $a_n = 1$. If $a_n = 0$, the representation

$$\chi_E = \sum_{j=1}^{n-1} a_j \chi_{r_j H_j} \tag{15}$$

satisfies i)~iv) above. If $a_n=1$, $F=r_nH_n\setminus (\bigcup_{j=1}^{n-1}r_jH_j)$ is a canonical element of $J(\Gamma_{h_i})$ and

$$\chi_{E,F} = \chi_E - \chi_F = \sum_{j=1}^{n-1} a'_j \chi_{r_j H_j} \quad \text{for some } a'_j \in \mathbb{Z}$$
(16)

If $n-1 \neq 0$, we repeat, using (15) or (16), the same process as before, and n times repetition of this process will give the conclusion of lemma 15.

DEFINITION 6. For each $\nu \in M(G(h_i))$ $(1 \leq i \leq m)$, we decompose ν as

$$u = \nu' + \nu'', \qquad \nu' \in L^1(G(h_i)), \qquad \nu'' \in L^1(G(h_i))^{\perp},$$

and define the projection P_{h_i} by

$$P_{\mathbf{h}_{i}} : M(G(h_{i})) \longrightarrow L^{1}(G(h_{i}))^{\perp} : \nu \longmapsto \nu''.$$

LEMMA 16. Let $E \in J(\Gamma_{h_i})$ $(1 \leq i \leq m)$ be canonical, and let K be an open coset of Γ_{h_i} which contains E. Suppose that α is a continuous afflue map of K into \hat{G} and that Ψ is a homomorphism of $L^1(G)$ into $M(G(h_i))$ such that the dual map ψ of Ψ satisfies

$$\psi(r) = \begin{cases} 0 : r \in \Gamma_{h_i}, \quad r \notin E, \\ \alpha(r) : r \in E. \end{cases}$$

Then, if $\psi | E$ is not a k-map, we have

$$\widehat{P_{h_i}(\Psi(\mu))}(r) = \widehat{\Psi(\mu)}(r) \qquad \left(r \in E, \ \mu \in L^1(G)\right).$$

PROOF. Let ν be the idempotent of $M(G(h_i))$ such that the Fourier-Stieltjes transform of ν is χ_E . Since E is canonical, we can represent ν in the form

$$u = r_0 \rho_{H_0^{\perp}} + \sum_{j=1}^n a_j r_j \rho_{H_j^{\perp}},$$

with i) $\{r_0, \dots, r_n\} \in \Gamma_{h_i}$, ii) $a_j \in \mathbb{Z}$ and H_j is an open subgroup of Γ_{h_i} , iii) $\rho_{H_j^{\perp}}$ is the normalized Haar measure of the annihilator H_j^{\perp} of H_j in $G(h_i)$, iv) $r_0H_0 \supset r_jH_j$ and H_0/H_j is an infinite group, v) $r_jH_{j\cap}E = \phi$ $(j=1, \dots, n)$.

Let Ψ' be a homomorphism of $L^1(G)$ into $M(G(h_i))$ such that the dual map ψ' of Ψ' satisfies

$$\psi'(r) = \begin{cases} 0 : r \in \Gamma_{h_i}, \quad r \notin r_0 H_0, \\ \alpha(r) : r \in r_0 H_0, \end{cases}$$

then we have $\Psi'(\mu)*\nu = \Psi(\mu)$ $(\mu \in L^1(G))$. Since $\psi'|E$ is not a k-map, we have $P_{\lambda_i}(\Psi'(\mu)*r_0\rho_{H_0^{\perp}}) = \Psi'(\mu)$ and $P_{\lambda_i}(\Psi'(\mu)*r_j\rho_{H_j^{\perp}})$ is either $\Psi'(\mu)*r_j\rho_{H_j^{\perp}}$ or $0(1 \leq j \leq n)$ (cf. [4]). Therefore we get from v) above

$$\widehat{P_{h_i}(\Psi(\mu))}(r) = \widehat{P_{h_i}(\Psi'(\mu) \ast \nu)}(r)$$

$$= \widehat{P_{h_i}(\Psi'(\mu) \ast r_0 \rho_{H_j^{\perp}})}(r) + \sum_{j=1}^n a_j \widehat{P_{h_i}(r_j \rho_{H_j^{\perp}} \ast \Psi'(\mu))}(r)$$

$$= \widehat{\Psi'(\mu)}(r) = \widehat{\Psi(\mu)}(r) \qquad \left(r \in E, \ \mu \in L^1(G)\right) \qquad (17)$$

This completes the proof.

DEFINITION 7. Let α be a map of $\hat{S} = \bigcup_{i=1}^{m} \Gamma_{h_i}$ into $\hat{G} \cup \{0\}$. We call a non-void subset E of \hat{S} a α -admissible set (in abbr. α -set) if E is a canonical element of the coset ring of some Γ_{h_i} and that either $\alpha | E$ is trivial or there exist an open coset K of Γ_{h_i} and a continuous affine map α' of K into \hat{G} such that $\alpha | E = \alpha' E$. E is called a (k, α) -set if E is a α -set and that $\alpha | E$ is a non-trivial k-map.

DEFINITION 8. If $h_j < h_i$, we denote by η_j^i the continuous homomorphism

 $\Gamma_{h_i} \longrightarrow \Gamma_{h_j} : f | \longrightarrow f h_j.$

DEFINITION 9. Let α be a map of \hat{S} into $\hat{G} \cup \{0\}$, and let

$$\mathfrak{A} = \left\{ E_{i;l} | E_{i;l} \subset \Gamma_{h_i}, \ l = 1, \cdots, n_i, \ i = 1, \cdots, m \right\}$$

be a collection of subsets of \hat{S} . A will be called a finite disjoint system of α -sets if A satisfies the following conditions.

- i) $E_{i;l}$ is a α -set $(l = 1, \dots, n_i, i = 1, \dots, m),$
- ii) $E_{i;\iota} \cap E_{i';\iota'} = \phi$ $(i \neq i' \text{ ar } l \neq l'),$
- iii) $\hat{S} = \bigcup_{i=1}^{m} \bigcup_{l=1}^{n_i} E_{i;l}$

iv) For each *i*, *j* and *l* with $h_j < h_i$ and $1 \le l \le n_i$, we have $\eta_j^i(E_{i;l}) \subset E_{j;l(j,i)}$ for some $l(j,i) \in \{1, \dots, n_j\}$.

DEFINITION 10. Let α be a map of \hat{S} into $\hat{G} \cup \{0\}$, and let

 $\mathfrak{A} = \left\{ E_{i;l} | E_{i;l} \subset \Gamma_{h_i}, \ l = 1, \dots, n_i, \ i = 1, \dots, m \right\}$

be a finite desjoint system of α -sets. For each *i*, *j* and *l* with $h_j < h_i$ and $1 \le l \le n_i$, we put

$$\mathfrak{T}(j, i; l) = \left\{ h_k | h_j \leq h_k \leq h_i \text{ and } \alpha \circ \eta_j^k | E_{k; l(k,i)} \text{ is a non-trivial } k\text{-map} \right\}$$

DEFINITION 11. Let α be a map of \hat{S} into $\hat{G} \cup \{0\}$, and suppose that

 $\mathfrak{A} = \left\{ E_{i;l} | E_{i;l} \subset \Gamma_{h_i}, \ l = 1, \cdots, n_i, \ i = 1, \cdots, m \right\}$

be a finite disjoint system of α -sets. Suppose moreover \mathfrak{A} satisfies the following conditions.

(a) If $E_{i;l}$ is a (k, α) -set or $\alpha | E_{i;l}$ is trivial, and if $h_j < h_i$ such that $E_{j;l(j,i)}$ is a (k, α) -set we have $*\mathfrak{T}(j, i; l) \ge 2$ (*A denotes the cardinal number of A).

(b) If $E_{i;i}$ is not a (k, α) -set and that $\alpha | E_{i;i}$ is non-trivial, then there exists one and only one j such that $h_j < h_i$ and $E_{j;i(j,i)}$ is a (k, α) -set with $*\mathfrak{T}(j, i; l) = 1$. Moreover in this case, we have $\alpha | E_{i;i} = \alpha \circ \eta_j^i | E_{i;i}$.

We call such a system \mathfrak{A} a compatible system of α -sets.

DEFINITION 12. Let α be a map of \hat{S} into $\hat{G} \cup \{0\}$, and suppose that

$$\mathfrak{A} = \left\{ E_{i;i} | E_{i;i} \subset \Gamma_{h_i}, \ l = 1, \cdots, n_i, \ i = 1, \cdots, m \right\}$$

is a finite disjoint system of α -sets. If $E_{i;i} \in \mathfrak{A}$ and $h_j < h_i$, we denote by $\Phi_{i;i}$ (resp. $\Phi_{j,i;i}$) the homomorphism of $L^1(G)$ into $M(G(h_i))$ such that the trivial extension of $\alpha | E_{i,i}$ (resp. $\alpha \circ \eta_j^i | E_{i,i}$) to Γ_{h_i} is the restriction to Γ_{h_i} of the dual map of $\Phi_{i;i}$ (resp. $\Phi_{j,i;i}$). $\nu_{i,i}$ is the idempoint of $M(G(h_i))$ such that the Fourier-Stieltjes transform of $\nu_{i;i}$ is the characteristic function of $E_{i;i}$. With these notations we have

$$\boldsymbol{\varPhi}_{\boldsymbol{j};\,\boldsymbol{\iota}(\boldsymbol{j},\boldsymbol{i})}(\boldsymbol{\mu}) \ast \boldsymbol{\nu}_{\boldsymbol{i};\,\boldsymbol{\iota}} = \boldsymbol{\varPhi}_{\boldsymbol{j},\,\boldsymbol{i};\,\boldsymbol{\iota}}(\boldsymbol{\mu}) \qquad \left(\boldsymbol{\mu} \in L^1(G)\right).$$

THEOREM 17. A map α of \hat{S} into $\hat{G} \cup \{0\}$ is the dual map of a homomorphism Φ of $L^1(G)$ into \mathfrak{M} if and only if there exists a compatible system of α -sets.

LEMMA 18. If α is the dual map of a homomorphism Φ of $L^1(G)$ into \mathfrak{M} , there exists a finite disjoint system of α -sets.

On homomorphisms of a group algebra into a convolution measure algebra 93

PROOF. Let $\Phi_i(1 \leq i \leq m)$ be the homomorphism of $L^1(G)$ into $M(G(h_i))$ defined by $L^1(G) \to M(G(h_i)) : \mu \mapsto (h_i \Phi(\mu)) * \delta_{e_i}$, where δ_{e_i} is the unit mass at the unit e_i of $K(h_i)$. Then the restriction to Γ_{h_i} of the dual map of Φ_i is equal to $\alpha | \Gamma_{h_i}$, and by theorem 14 a) and lemma 15, there exist a finite disjoint system of $\alpha | \Gamma_{h_i}$ -sets $\mathfrak{A}^{(i)} = \{E_{i;i} | E_{i;i} \subset \Gamma_{h_i}, l=1, \cdots, n_i\}$ $(i=1, \cdots, m)$. If $h_j < h_i$ and $E \in J(\Gamma_{h_j})$, $(\eta_j^i)^{-1}(E)$ is an element of $J(\Gamma_{h_i})$. So, dividing elements of $\mathfrak{A}^{(i)}$ $(i=1, \cdots, m)$ if necessary, we can suppose without loss of genefality that $\mathfrak{A} = \bigcup_{i=1}^m \mathfrak{A}^{(i)}$ satisfies the condition iv) of definition 9. This completes the proof.

LEMMA 19. Let α be the dual map of a homomorphism Φ of $L^1(G)$ into \mathfrak{M} , and suppose

$$\mathfrak{A} = \left\{ E_{i;\,l} | E_{i;\,l} \subset \Gamma_{h_i}, \ l = 1, \cdots, n_i, \ i = 1, \cdots, m \right\}$$

is a finite disjoint system of α -sets. If $h_j < h_i$ and $1 \leq l \leq n_i$ such that $E_{j;l(j,i)}$ is a (k, α) -set, then $\mathfrak{T}(j, i; l)$ has an unique maximal element.

PROOF. If $h_u, h_v \in \mathfrak{T}(j, i; l)$, there exists $h_w \in \hat{S}^+$ such that (cf. [7])

$$L^{1}(G(h_{u}))*L^{1}(G(h_{v})) \subset L^{1}(G(h_{w}))$$

$$(18)$$

By definition 12, we have for each $\mu \in L^1(G)$,

By (18) and (19), we have

By theorem 14 b), (20) shows that $\alpha \circ \eta_j^w | E_{w;l(w,i)}$ is a k-map. Since $\mathfrak{T}(j, i; l)$ is a finite set, this completes the proof of lemma 19.

PROOF OF THEOREM 17. Suppose that α is the dual map of a homomorphism Φ of $L^1(G)$ into \mathfrak{M} . By lemma 18, there exists a finite disjoint system of α -sets

$$\mathfrak{A} = \left\{ E_{i;l} | E_{i;l} \subset \Gamma_{h_i}, \ l = 1, \cdots, n_i, \ i = 1, \cdots, m \right\}$$

If m=1, \mathfrak{A} is a compatible system of α -sets by theorem 14 b). If m>1, $\{E_{1;1}, \dots, E_{1;n_1}\}$ is a compatible system of $\alpha | \Gamma_{n_1}$ -sets by theorem 14 b) again. If we put

$$\varepsilon(1, 1; l) = 1 \qquad (l = 1, \dots, n_1),$$

$$\mathfrak{A}_i = \left\{ E_{j;l} | h_j \leq h_i, \ 1 \leq l \leq n_j \right\} \qquad (i = 1, \dots, m),$$

it is clear that the following (21) holds with k=1.

a) \mathfrak{A}_i is a compatible system of $\alpha | h_i \hat{S}$ -sets $(i=1, \dots, k)$.

b) $\{\varepsilon(j, i; l) | h_j \leq h_i, i \leq k, l=1, \dots, n_i\}$ is a set of integers which satisfies the following conditions.

i) If $i \leq k$ and $1 \leq l \leq n_i$, then we have

 $\varepsilon(i, i; l) = \begin{cases} 1 : \alpha | E_{i;i} \text{ is either trivial or } k \text{-map} \\ 0 : \text{ otherwise}. \end{cases}$

- ii) If $h_j < h_i$ and $1 \le l \le n_i$, and if $E_{j;l(j,i)}$ is not a (k, α) set or $\alpha \circ \eta_j^i | E_{i,l}$ is not a k-map, then $\varepsilon(j, i; l) = 0$. (21)
- iii) If $h_j < h_i$ and $1 \le l \le n_i$, and if $E_{j;l(j,i)}$ is a (k, α) -set and that $\alpha \circ \eta_j^i | E_{i;l}$ is a k-map, then we have $\sum_{h_u \in \mathfrak{L}(j,i;l)} \varepsilon(j, u; l(u, i)) = 0.$

c) If
$$i \leq k$$
, we have

$$h_i \varPhi(\mu) = \sum_{\substack{h_j \leq h_i \ h_j \leq h_u \leq h_i}} \sum_{l=1}^{n_u} \varepsilon(j, u; l) \varPhi_{j, u; l}(\mu) \qquad \left(\mu \in L^1(G)\right).$$

We suppose that (21) holds with k=p(<m), and we will show that (21) also holds with k=p+1 by defining an appropriate set of integers

$$\{\varepsilon(j, p+1; l) | h_j \leq h_{p+1}, 1 \leq l \leq n_{p+1} \}.$$

To prove (21) a) with k = p+1, fix an integer $1 \le l \le n_{p+1}$ arbitrary, and put

$$\begin{split} A(p+1\,;\,l) &= \{j | h_j < h_{p+1}, \ E_{j;\,l(j,\,p+1)} \text{ is a } (k,\,\alpha) \text{-set and } \#\mathfrak{T}(j,\,p+1\,;\,l) = 1\}.\\ \text{If } h_j < h_{p+1} \text{ and } E_{j;\,l(j,\,p+1)} \text{ is a } (k,\,\alpha) \text{-set, and if we put} \end{split}$$

$$\Psi_{j;l}(\mu) = \sum_{\substack{h_j \le h_u < h_{p+1}}} \varepsilon\left(j, u; l(u, p+1)\right) \Phi_{j,u;l(u,p+1)}(\mu) * \nu_{p+1;l} \qquad \left(\mu \in L^1(G)\right),$$
(22)

we have from lemma 16, lemma 19 and (21) with k=p that the following i), ii) and iii) hold for each $\mu \in L^1(G)$ and $r \in E_{p+1;i}$.

- i) If $\#\mathfrak{T}(j,p+1;l) \ge 2$ and $h_{p+1} \notin \mathfrak{T}(j,p+1;l)$ then $\Psi_{j;l}(\mu) = 0$.
- ii) If $\mathfrak{T}(j, p+1; l) \ge 2$ and $h_{p+1} \in \mathfrak{T}(j, p+1; l)$, then $\Psi_{j;l}(\mu) \in L^1(G(h_{p+1}))$ (23)

iii) If
$$\mathfrak{T}(j, p+1; l) = 1$$
, then $\widehat{P_{h_{p+1}}}(\Psi_{j;l}(\mu))(r) = \widehat{\Phi}_{j,p+1;l}(\mu)(r)$
= $\hat{\mu}(\alpha(\eta_j^{p+1}(r))).$

From (21) with k=p, (22) and (23) we get

$$0 = P_{h_{p+1}} \Big(\Big(h_{p+1} \varPhi(\mu) - \sum_{h_j < h_{p+1}} \sum_{h_j \le h_u < h_{p+1}} \varepsilon \Big(j, u ; l(u, p+1) \Big) \\ \varPhi_{j,u;l(u,p+1)}(\mu) \Big) * \nu_{p+1;l} \Big) = P_{h_{p+1}} \Big(\varPhi_{p+1;l}(\mu) \Big) - \sum_{j \in A(p+1;l)} P_{h_{p+1}} \Big(\varPsi_{j;l}(\mu) \Big) \\ \Big(\mu \in L^1(G) \Big)$$
(24)

Suppose first, $E_{p+1;l}$ is a (k, α) -set or $\alpha | E_{p+1;l}$ is trivial that is $\Phi_{p+1;l}(\mu) \in L^1(G(h_{p+1}))$ for each $\mu \in L^1(G)$. If we choose $r_0 \in E_{p+1;l}$ and $\mu_0 \in L^1(G)$ such that $\hat{\mu}_0(\alpha(\eta_j^{p+1}(r_0)))=1$ $(j \in A(p+1;l))$, then we have from (24) that $A(p+1;l) = \phi$, and definition 11 (a) holds. Next, suppose $E_{p+1;l}$ is a non (k, α) -set and that $\alpha | E_{p+1;l}$ is non-trivial, then from lemma 16 and (21) (b) iii) with k=p, (24) becomes

$$\widehat{\boldsymbol{O}} = \widehat{\boldsymbol{P}_{\boldsymbol{h}_{p+1}}(\boldsymbol{\varPsi}_{p+1;l}(\boldsymbol{\mu}))}(f) - \sum_{j \in A(p+1;l)} \widehat{\boldsymbol{P}_{\boldsymbol{h}_{p+1}}(\boldsymbol{\varPsi}_{j;l}(\boldsymbol{\mu}))}(f) \\
= \widehat{\boldsymbol{\mu}}(\alpha(f)) - \sum_{j \in A(p+1;l)} \widehat{\boldsymbol{\mu}}(\alpha(\eta_{j}^{p+1}(f))) \qquad \left(f \in E_{p+1;l}, \ \boldsymbol{\mu} \in L^{1}(G)\right). \tag{25}$$

From (25), it follows easily that *A(p+1; l)=1 and that (b) of definition 11 holds. Thus we have proved that \mathfrak{A}_{p+1} is a compatible system of $\alpha | h_{p+1} \hat{S}$ -sets. It is easy to define integers $\{\varepsilon(j, p+1; l) | h_j \leq h_{p+1}, l=1, \dots, n_{p+1}\}$ so that b) and c) of (21) hold with k=p+1.

From above, we can conclude by induction that $\mathfrak{A} = \mathfrak{A}_m$ is a compatible system of α -sets.

Conversely, let $\mathfrak{A} = \{E_{i;i} | E_{i;i} \subset \Gamma_{h_i}, l=1, \dots, n_i, i=1, \dots, m\}$ be a compatible system of α -sets. If we put $\varepsilon(1, 1; l) = 1$ $(l=1, \dots, n_1)$, it is clear that (21) b) holds with k=1. Suppose that p < m and we have already defined $\{\varepsilon(j, i; l) | h_j \leq h_i, i \leq p, l=1, \dots, n_i\}$ so that b) of (21) holds with k=p. Since \mathfrak{A} is a compatible system of α -sets, we can define a set of integers $\{\varepsilon(j, p+1; l) | h_j \leq h_{p+1}, l=1, \dots, n_{p+1}\}$, by definition 11, so that b) of (21) holds with k=p+1. Thus we can define by induction a set integers $\{\varepsilon(j, i; l) | h_j \leq h_i, l=1, \dots, n_i, i=1, \dots, m\}$ so that b) of (21) holds with k=p+1.

$$\varPhi(\mu) = \sum_{i=1}^{m} \sum_{h_j \leq h_i} \sum_{l=1}^{n_i} \varepsilon(j, i; l) \varPhi_{j,i;l}(\mu) \qquad \left(\mu \in L^1(G)\right),$$

we get

 \sim

$$\widehat{\Phi}(\widehat{\mu})|E_{i;i} = \widehat{\mu} \circ \alpha |E_{i;i} \qquad (1 \le i \le m, \ l = 1, \dots, n_i)$$
(26)

It is easy to see from (26) that Φ is a homomorphism of $L^1(G)$ into \mathfrak{M} with the dual map α , and this completes the proof of theorem 17.

References

- P. J. COHEN: On a conjecture of Littlewood and idempotent measures, Amer. J. Math. 82 (1960), 191-212.
- [2] P. J. COHEN: On homomorphisms of group algebras, Amer. J. Math. 82 (1960), 213-226.
- [3] E. HEWITT and H. S. ZUCKERMAN: The l¹-algebra of a commutative semigroup, Trans. Amer. Math. Soc., 83 (1956), 70-97.
- [4] J. INOUE: On the range of a homomorphism of a group algebra into a measure algebra, Proc. Amer. Math. Soc., 43 (1974), 94-98.
- [5] W. RUDIN: Fourier analysis on groups, Interscience Pubrishers Inc., New York, 1962.
- [6] J. L. TAYLOR: The structure of convolution measure algebras, Trans. Amer. Math. Soc., 119 (1965), 150-166.
- [7] J. L. TAYLOR: Measure algebras, CBMS Conference report No. 16, A. M.S. 1973.

Department of mathematics, Nagoya Institute of Technology, Gokiso, Showa, Nagoya, Japan.