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Convolutions of measures on some thin sets

By Enji SATO
(Received November 13, 1976)

1. Introduction.

Let G be a LCA group with dual \acute{J},\wedge, and E a compact subset of G.
Following Rudin [4], we say that E is a Kronecker set if, to each f\in C(E)

with |f|=1 and \epsilon>0, there exists \gamma\in\hat{G} such that ||f-\gamma||_{E}<\epsilon . Let also
T=\{|z|=1\} be the circle group. Then in [2; Lemma 6. 10], T. W. K\"orner

proved that there exist two Kronecker sets K_{1} and K_{2}\subset T, both home-
omorphic to D_{2}=\{0,1\}^{\infty}, and two nonzero nonnegative Borel measures \mu_{1}

on K_{1} and \mu_{2} on K_{2} , such that K_{1}+K_{2}=T, and \mu_{1}*\mu_{2}\in C^{\infty}(T).
In this paper, we prove analogs to the above result for general LCA

groups. I thank Professor S. Saeki for his useful advices.

2. Notations.

Throughout this paper, G is used to denote a nondiscrete LCA group.
We shall respectively denote by A(G)=(L^{1}(^{\hat{\bigcap_{-T}}}’))^{\wedge} and C_{c}(G), the Fourier
algebra of G, and the set of all continuous functions with compact support.
Also we shall respectively denote by M(G), M_{c}(G), and M_{0}(G), the measure
algebra of all bounded regular measures on G, the set of all continuous
measures in M(G), and the set of those measures \mu\in M(G) whose Fourier
Stieltjes transforms vanish at infinity. For \mu\in M(G), ||\mu|| will denote the
total variation norm. The symbols C_{c}^{+}(G), M^{+}(G), and M_{c}^{+}(G), will desig-
nate the set of all nonnegative functions in C_{c}(G), the set of all nonnega-
tive measures in M(G), and the set of all nonnegative measures in M_{c}(G),
respectively. For \mu, \nu\in M(G), we write \mu 1\nu if \mu and \nu are mutually singu-
lar. We set M_{0}^{\perp}(G)= {\mu\in M(G)|\mu is singular with each \nu\in M_{0}(G)}. For the
other notation, we refer to Rudin [4].

DEFINITION 1. Let 0 be the unit of G. q(G)= \sup\{s|every neighbor-
hood 0\in G contains an element of order \geq s}.

DEFINITION 2. Let q\geq 2 be an integer, and E a totally disconnected
compact subset of G. We say that E is a K_{q} set if, to each f\in C(E) with
f^{q}=1 , there exists \gamma\in\hat{G} such that f=\gamma on E.
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3. Statements of the results.

THEOREM A. Let G be a metrizable LCA group with q(G)=\infty . Let
also E\subset G be a compact set, and N\geq 2 an integer. Then there exist disjoint
Kronecker sets K_{1}, \cdots , K_{N} , all homeomorphic to D_{2}=\{0, 1\}_{:}^{\infty} and nonzero
measures \mu_{1}\in M_{c}^{+}(K_{1}), \cdots , \mu_{N}\in M_{c}^{+}(K_{N}), such that

(i) the union of any N-1 sets of the K_{f} ’s is a Kronecker set,
(ii) \mu_{1}*\cdots*\mu_{N} is absolutely continuous with respect to Haar measure on

G, and its Radon-Nikodym derivative is in A(G) and positive on E.
THEOREM B. Let G be a nondiscrete metrizable LCA group with q=

q(G)<\infty , and N\geq 2 an integer. Then there exists an open neighborhood
U of 0 such that for each compact set E\subset U with O\not\subset E, the conclusion of
Theorem A is satisfied with K_{q} set in place of Kronecker set.

REMARK. In the above result, if N\neq 2 or q\neq 2 , the condition o_{f_{\iota}^{b}}E is
unnecessary.

COROLLARY 1. Let G be a nondiscrete LCA group. Then there exist
nonzero measures \mu_{1} , \mu_{2}\in M_{c}^{+}(G)\cap M_{0}^{\perp}(G) such that

(i) ||\mu_{i}||=\varlimsup|\hat{\mu}_{i}(\gamma)| (i=1,2),

(ii) \mu_{1}*\mu_{2}\in A(G)\cap C_{c}^{+}(G)\gammaarrow\infty.
COROLLARY 2 ([1]). Let G be a nondiscrete LCA group. Then M_{0}^{\underline{1}}(G)

is not an algebra.

4. Some lemmas for the proof of Theorem A.

Lemma 1. Let f, g be in A(G)\cap C_{c}^{+}(G) with ||f||_{L^{1}(G)}=||g||_{L^{1}(G)}=1 , and
q(G)=\infty . Let also 0<\eta<1 be given. Then there exists \nu\in M^{+}(G) with
||\nu||=1 , such that

(i) supp\nu\subset int suppf),
(ii) supp \nu is a finite Kronecker set,
(iii) ||f*g-\nu*g||_{A(G)}<n .
PROOF. Let \eta’>0 be given. Since f, g are in C_{c}^{+}(G), there exists

\{V_{i}\} a finite partition of supp f, such that
(4. 1. 1) int V_{i}\cap int suppf) \neq\phi ,

(4. 1. 2) |f(x)-f(y)|<\eta’, |g(x)-g(y)|<\eta’ , for any z\in G, x, y\in z+V_{i} .
Then there exists \{y_{i}\} a finite Kronecker set such that y_{i}\in V_{i}\cap int suppf).
Put

\nu’=\sum_{i}(\int_{r_{i}}f(y_{i})dy)\delta_{y_{i}} .
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From (4. 1. 2), we see that
(4. 1. 3) |||\nu’||-1|

=| \sum_{i}\int_{r_{i}}f(y_{i})dy-\sum_{i}\int f(y)\chi_{\gamma_{i}}(y)dy|

\leq\eta’\cdot m (suppf),

where m denotes Haar measure of G, and from (4. 1. 2), (4. 1. 3) that for
each x\in G

(4. 1. 4) |f*g(x)-\nu’*g(x)|

\leq\sum_{i}\{\int_{r_{i}}|g(x-y)||f(y)-f(y_{t})|dy

+ \int_{r_{i}}|g(x-y)-g(x-y_{i})||f(y_{i})|dy\}

\leq\eta’||g||_{L^{1}(G)}+\eta’ .( 1+\eta’\cdot m (suppf)) \tau

Putting \nu=\frac{\nu’}{||\nu||}, , we have by (4. 1. 3)

(4. 1. 5) ||\nu-\nu’||\leq|1-||\nu’|||

\leq\eta’\cdot m (suppf).

Also by (4. 1. 4) and (4. 1. 5), we have
(4. 1. 6) |f*g(x)-\nu*g(x)|

\leq|f*g(x)-\nu’*g(x)|+|\nu’*g(x)-\nu*g(x)|

\leq\eta’||g||_{L^{1}(G)}+\eta’ .( 1+\eta’\cdot m (suppf))+(\eta’\cdot m (suppf))\cdot||g||_{\infty} .
Now we can complete the proof as follows. First choose F a compact

subset of \hat{G} such that

(4. 1. 7) \int_{\hat{F}^{C}}|\hat{g}(\gamma)|d\gamma<\frac{\eta}{4}

By (4. 1. 1), (4. 1. 2) and (4. 1. 6), there exists \nu , satisfying (i) ond (ii), such
that

(4. 1. 8) ||f*g- \nu*g||_{\infty}<[m(suppf+suppg)]^{-1}\cdot[\hat{m}(fl)]^{-1}\cdot\frac{\eta}{2} ,

where \hat{m} denotes Haar measure of \hat{G}. Then by (4. 1. 7) and (4. 1. 8), we
have

||f*g- \nu*g||_{A(G)}\leq\int_{\hat{F}}|\hat{f}(\gamma)\hat{g}(\gamma)-\hat{\nu}(\gamma)|d\gamma

+ \int_{\hat{F}^{c}}|\hat{f}(\gamma)g(\gamma)-\hat{\nu}(\gamma)\hat{g}(\gamma)|d\gamma
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||f^{*}g- \nu_{*}g||_{A(G)}\leq[\hat{m}(F)]\cdot\int|f*g(x)-\nu*g(x)|dx

+2 \int_{\grave{F}^{c}}|\hat{g}(\gamma)|d\gamma

\leq\eta .
LEMMA 2. Let E be a compact subset of G, \epsilon a positive number, and

let f_{1} , f_{2} , f_{3} in A(G)\cap C_{c}^{+}(G) satisfy

||f_{1}||_{L^{1}(G)}=||f_{2}||_{L^{1}(G)}=||f_{3}||_{L^{1}(G)}=1 and
int (supp f_{1}) + int (supp f_{2}) + int (supp f_{3}) \supset E .

Then there exist \nu_{1} , \nu_{2} in M^{+}(G) with ||\nu_{1}||=||\nu_{2}||=1 , N\geq 2 an integer, and
\{a_{1i}, \cdots, a_{Ni}\}\subset int (supp f_{i} ) (i=1,2), such that

(i) \bigcup_{f=1}^{N}(a_{f1}+a_{j2}+int (supp f_{2}))\supset E ,

(ii) supp \nu_{i}=\{a_{1i}, \cdots, a_{Ni}\}(i=1,2), supp \nu_{1}\cap supp\nu_{2}=\phi, and (supp \nu_{1} ) \cup

(supp \nu_{2}) is a Kronecker set,
(iii) ||f_{1}*f_{2}*f_{3}-\nu_{1}*\nu_{2}*f_{3}||_{A(G)}<\epsilon .
PROOF. Since E is a compact set, it follows from the hypothesis that

there exist N’\geq 2 an integer, and \{a_{1i}, \cdots, a_{N’i}\}\subset int (supp f_{i} ) (i=1,2), such
that

(4. 2. 1) N \bigcup_{j=1}(a_{f1}+a_{f2}+int (supp f_{3}))\supset E , and

(4. 2. 2) \{a_{11^{ }},\cdots, a_{N’1} ; a_{12}, \cdots, a_{N’2}\} is Kronecker set.

Then by Lemma 1, we have \nu_{1}\in M^{+}(G), ||\nu_{1}||=1 , and Card (supp \nu_{1}) \geq N’ ,

such that
(4. 2. 3) Supp \nu_{1}\cup\{a_{12}, \cdots, a_{N’2}\} is a finite Kronecker set,

(4. 2. 4) int (supp f_{1} ) \supset supp\nu_{1}\supset\{a_{11}, \cdots, a_{N’1}\} , and

(4. 2. 5) ||fi*f_{2}*f_{3}- \nu_{1}*f_{2}*f_{3}||_{A(G)}<\frac{\epsilon}{2}

In the same way, we have \nu^{2}\in M^{+}(G), ||\nu_{2}||=1 such that

(4. 2. 6) (supp \nu_{1}) \cup(supp\nu_{2}) is a finite Kronecker set,

and (supp \nu_{1}) \cap(supp\nu_{2})=\phi ,

(4. 2. 7) int (supp f_{2}) \supset supp\nu_{2}\supset\{a_{12}, \cdots, a_{N’2}\} ,

Card (supp \nu_{2}) \geq Card(supp\nu_{1}), and

(4. 2. 8) ||f_{2}*f_{3}- \nu_{2}*f_{3}||_{A(G)}<\frac{\epsilon}{2} .



Convolutions of measures on some thin sets 53

Without loss of generality, we may assume Card (supp \nu_{1} ) = Card (supp \nu_{2})
(if necessary, replace \nu_{1} by an appropriate \nu_{1}’ ).

Put N=Card (supp \nu_{1} ) = Card (supp \nu_{2}). We have (i), (ii) in Lemma 2 by
(4. 2. 1) and (4. 2. 7). By (4. 2. 5) and (4. 2. 8), we have

||f_{1}*f_{2}*f_{3}-\nu_{1}*\nu_{2}*f_{3}||_{A(G)}

\leq||f_{1}*f_{2}*f_{3}-\nu_{1}*f_{2}*f_{3}||_{A(G)}

+||\nu_{1}*f_{2}*f_{3}-\nu_{1}*\nu_{2}*f_{3}||_{A(G)}

\leq\frac{\epsilon}{3}+||f_{2}*f_{3}-\nu_{2}*f_{3}||_{A(G)}

<\epsilon .
which establishes part (iii).

Lemma 3. Under the notation in Lemma 2, let \eta_{1} and \eta_{2} be positive
numbers. Thm there exist W a compact neighborhood of 0 and \hat{K} a finite
subset of \acute{LJ}\wedge, such that

(i) diam (W)<\eta_{1} ,
(ii) \{a_{fi}+W\}_{f=1,\cdots,N,i=1,2}. are disjoint sets, a_{fi}+W\subset int (supp f_{i} ) (j=1, \cdots ,

N;i=1,2), and \bigcup_{j=1}^{N}(x_{f1}+x_{f2}+int (supp f_{3}))\supset E for any x_{si}\in a_{si}+W(s=1, \cdots ,

N;i=1,2),
(iii) given \alpha_{fs} reals (j=1, \cdots, N;s=1,2), there exists \gamma\in\hat{K} satisfyng

|\gamma(x)- exp (i\alpha_{fs})|<\eta_{2} for x\in a_{js}+W (j=1, \cdots, N;s=1,2) .
PROOF. By (i) in Lemma 2, and [5; Lemma 2], we have W_{1} a com-

pact neighborhood of 0 satisfying (i) and (ii). On the other hand, by (ii)
in Lemma 2, there exists \hat{K}\subset\hat{G} a finite set, such that for any \alpha_{fs} reals
(j=1, \cdots, N;s=1,2), we can take T\in\hat{\mathcal{K}} satisfying

(*) |\gamma(a_{fs})- exp (i \alpha_{fs})|<\frac{\eta_{2}}{2} (j=1, \cdots, N;s=1,2) .

After all, by (^{*}), it is sufficient to choose W\subset W_{1} a compact neighbor-
hood of 0 such that

| \gamma(x)-\gamma(a_{fs})|<\frac{\eta_{2}}{2}

for any \gamma\in\acute{\grave{K}} and x\in a_{js}+W (j=1, \cdots, N;s=1,2) .
Lemma 4. Under the notation in Lemma 3, there exist f_{1}’, f_{2}’\in A(G)\cap

C_{c}^{+}(G) with ||f_{1}’||_{L^{1}(G)}=||f_{2}’||_{L^{1}(G)}=1 , such that
(i) int (supp f_{1}’ ) + int (supp f_{2}’ ) + int (supp f_{3}) \supset E ,

(ii) supp f_{i}’ \subset\bigcup_{f=1}^{N}(a_{fi}+W) (i=1,2) ,
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(iii) ||f_{1}*f_{2}*f_{3}-f_{1}’*f_{2}’*f_{3}||_{A(G)}<2\epsilon .

PROOF. First, let F be a compact subset of \hat{G} such that

(4. 4. 1) \int_{\hat{F}^{c}}\hat{f}_{3}(\gamma)|d\gamma<\frac{\epsilon}{8}

Next, for W in Lemma 3, there exists h\in A(G)\cap C_{c}^{+}(G) with supp h\subset W

and ||h||_{L^{1}(G)}=1 , such that

(4. 4. 2) \int_{\hat{F}}|\hat{f}_{3}(\gamma)-\hat{h}(\gamma)\hat{f}_{3}(\gamma)|d\gamma<\frac{\epsilon}{4} .

Put f_{1}’=\nu_{1}*h, f_{2}’=\nu_{2}*h where \nu_{1} , \nu_{2} are as in Lemma 2. Then, we have

||f_{i}’||_{L^{1}(G)}=1 , f_{i}’\in A(G)\cap C_{c}^{+}(G) , and

supp f_{i} \subset\bigcup_{f=1}^{N}(a_{fi}+W) (i=1,2) .

So we have (i) and (ii) immediately. Also by Lemma 2, we have

||fi*f_{2}*f_{3}-fi’*f_{2}’*f_{3}||_{A(G)}

\leq||fi*f_{2}*f_{3}-\nu_{1}*\nu_{2}*f_{3}||_{A(G)}

+||\nu_{1}*\nu_{2}*f_{3}-fi’*f_{2}’*f_{3}||_{A(G)}

\leq\epsilon+2||f_{3}-h*f_{3}||_{A(G)}
\{

By (4. 4. 1) and (4. 4. 2), we have

||f_{3}-h*f_{3}||_{A(G)}< \frac{\epsilon}{4}+\frac{\epsilon}{4}=\frac{\epsilon}{2}

5. The proofs of Theorem A and Theorem B.

Tne proof of Theorem A. We prove Theorem A only for N=3, since
the proof for the general case is similar.

First, choose g_{1} , g_{2} , g_{3}\in A(G)\cap C_{c}^{+}(G) with ||g_{1}||_{L^{1}(G)}=||g_{2}||_{L^{1}(G)}=||g_{3}||_{L^{1}(G)}

=1, such that

int (supp g_{1} ) + int (supp g_{2}) + int (supp g_{3}) \supset E ,

and
g_{1}*g_{2}*g_{3}\geq\delta>0 on E .

Next, suppose that for some r\geq 0, we constructed

g_{3r+1} , g_{3r+2}, g_{3r+3}\in A(G)\cap C_{c}^{+}(G)

with ||g_{3r+1}||_{L^{1}(G)}=||g_{3r+2}||_{L^{1}(G)}=||g_{3r+3}||_{L^{1}(G)}=1 , such that
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int (supp g_{3r+1} ) + int (supp g_{3r+2}) + int (supp g_{3r+3} ) \supset E .
and

g_{3r+1}*g_{3r+2}*g_{3r+3}\geq\delta(1-10^{-1}-\cdots-10^{-r}) on E .

We now describe the construction in the (r+1)^{th} step. We use Lem-
mas 2 and 3 for f_{i}=g_{3r+i}(i=1,2,3), and positive numbers \epsilon, \eta_{1} , \eta_{2} which
tend to 0 rapidly depending on r. Then we get g_{3r\cdot+1}’=f_{1}’, g_{3r+2}’=f_{2}’, g_{3r+3}

=f_{3} as in Lemma 4. Again putting f_{1}=g_{3r+2}’ , f_{2}=g_{3r+3} , f_{3}=g_{3,+1}’ , we get
similarly g_{3r+1}’ , g_{3r+3}’ , g_{3r+1}’ in place of f_{1}’, f_{2}’, f_{3} as in Lemma 4. In the third
step, putting f_{1}=g_{3r+3}’ , f_{2}=g_{3r+1}’ , f_{3}=g_{3r+2}’ , we get g_{3r+3}’ , g_{3r+1}’ , g_{3r+2}’ in place
of f_{1}’, f_{2}’, f_{3}’ as in Lemma 4.

Put g_{3(r+1)+i}=g_{3r+i}’ (i=1,2, 3).
We can demand that
(5. 1. 1) g_{3(r+1)+i}\in A(G)\cap C_{c}^{+}(G), ||g_{3(r+1)+i}||_{L^{1}(G)}=1 (i=1,2, 3) ,

(5. 1. 2) int (supp g_{3(r+1)+1}+int (supp g_{3(r+1)+2}) + int (supp g_{3(r+1)+3}) \supset E ,

and

(5. 1. 3) ||g_{3r+1}*g_{3r+2}*g_{3r+3}-g_{3(r+1)+1}*g_{3(r+1)+2^{*g_{3(r+1)+3}||_{A(G)}\leq\frac{\delta}{10^{r+1}}}}

From (5. 1. 3), we have
g_{3(r+1)+1}*g_{3(r+1)+2}*g_{3(r+1)+3}\geq\delta(1-10^{-1}-\cdots-10^{-(r+1)}) on E .

This completes our inductive construction.
Now let

L_{3r+i} be supp g_{3r+i} (i=1,2,3) ,

and

K_{i}= \bigcap_{r=0}^{\infty}L_{3r+i} (i=1,2, 3) .

Then if we carefully choose \{g_{3r+i}\}_{r\geq 0} , i=1,2,3 recalling the proofs of
Lemma 3 and Lemma 4, we can demand that the K_{i}’s (i=1,2, 3) are dis-
joint Kronecker sets, homeomorphic to Cantor set such that the union of
any two sets in K_{1} , K_{2} , K_{3} is a Kronecker set and K_{1}+K_{2}+K_{3}\supset E. (cf
[4; 5. 2. 4] )

By (5. 1. 1), we can find an increasing sequence \{r_{n}\} of natural numbers
such that \{g_{3r_{n}+i}\}_{n\geq 1} has a limit \mu_{i} in the weak* topology of M(G) for i=
1,2,3.
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Then it is easy to see that \mu_{i}\in M_{c}^{+}(K_{i}) and ||\mu_{i}||=1(i=1,2,3).
On the other hand, by (5. 1. 3), ( g_{3r+1}*g_{3r+2}*g_{3r+3}\}_{r\geq 0} is a Cauchy sequence

in A(G).
Putting g the limit of g_{3r+1}*g_{3r+2}*g_{3r+3} as r tends to \infty , we have

g\in A(G)\cap C_{c}^{+}(G), g \geq\frac{\delta}{100}>0 on E ,

and
d(\mu_{1}*\mu_{2}*\mu_{3})=gdmr

We get the desired result.
The proof of Theorem B. If we use the next Lemma 5, Theorem B

can be proved in the same way as Theorem A. Because we can use as

\eta_{2}=0, \alpha_{fs}\in\{\frac{2\pi}{q}, \frac{4\pi}{q}, \cdots , \frac{2q\pi}{q}\} in Lemma 3.

Lemma 5 ([3; chap XIII 3. 7]). Let G be a nondiscrete LCA group,
and q=q(G)<\infty . Then there exists U an open neighborhood of 0, such that
for any k\geq 1 integer and V_{1} , \cdots , V_{k}\subset U disjoint, nonmpty open sets, there
exist x_{i}\in V_{i} , all with order q, such that \{x_{1^{ }},\cdots, x_{k}\} is an independent set.

6. The proofs of Corollaries.

Since Corollary 2 is clear from Corollary 1, it is sufficient to show
Corollary 1.

The proof of Corollary 1. Since G is a nondiscrete LCA group, \acute{G}

is a noncompact set. Thus there exists Y an open subgroup of G, which
is \sigma-compact, but is not compact. Put H=Y^{\perp} .

We have that G/H is a nondiscrete, metrizable group, and

(6. 1) H is a compact group.

By Theorem A and Theorem B, there exist \nu_{i} nonzero measures in
M^{+}(G/H), such that
(6. 2) supp \nu_{i} is a compact subset of some K_{q}-set (i=1,2) ,

and
(6. 3) \nu_{1}*\nu_{2}\in A(G/H) .

Then From [4; 5. 5. 3] and [4; 5. 6. 10], it is easy to see
(6. 4) \nu_{i}\in M_{0}^{\perp}(G/H) (i=1,2) .
By (6. 2), recalling \nu_{i}\geq 0(i=1,2), we get

(6. 5) ||\nu_{i}||=\varlimsup_{\gammaarrow\infty}|\hat{\nu}_{i}(\gamma)| (i=1,2) .
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Let m_{H} be the normalized Haar measure on H. We define \mu_{i}\in M^{+}(G)

by setting

(6. 6) \int_{G}f(x)d\mu_{i}=\int_{G/H}\int_{H}f(x+y)dm_{H}(y)d\nu_{i} (i=1,2)

for f\in C_{0}(G), where C_{0}(G) is the completion of C_{e}(G) in the supremum norm.
By (6. 1) and (6. 6), supp \mu_{t} is compact (i=1,2). Then for any bounded
continuous function f, we have (6. 6). In particular for \gamma\in\hat{G}, we get

(6. 7) \hat{\mu}_{i}(\gamma)=\{\begin{array}{l}\hat{\nu}_{i}(\gamma) for0 for\end{array} \gamma\not\subset_{arrow}^{-}Y\gamma\in Y

We claim that \mu_{1} and \mu_{2} have the required properties. Recalling the
choice of Y, (6. 3), (6. 5), and (6. 6), we get

||\mu_{i}||=\varlimsup_{\gammaarrow\infty}|\hat{\mu}_{i}(\gamma)| , \mu_{i}\in M_{c}^{+}(G) (i=1,2) ,

and
\mu_{1}*\mu_{2}\in A(G) .

To complete the proof, it is sufficient to show \mu_{1}\in M_{0}^{\perp}(G). Suppose that
\mu_{1} is not in M_{0}^{i}(G). Then there exists \mu’ a nonzero nonnegative measure
in M_{0}(G) such that \mu’ is absolutely continuous with respect to \mu_{1} . Hence
putting \mu=\mu’*m_{H}, we get that \mu is absolutely continuous with respect to
\mu_{1} . We define \nu\in M(G/H) by

\int_{G}f(x)d\mu=\int_{G/H}\int_{H}f(x+y)dm_{H}(y)d\nu for f\in C_{0}(G) .

Then \mu being absolutely continuous with respect to \mu_{1} and \mu\in M_{0}(G),

we get that \nu is absolutely continuous with respect to \nu_{1} , and nonzero
measure in M_{0}(G/H) . This contradicts (6. 4).
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