Hokkaido Mathematical Journal Vol. 7 (1978) p. 49-57

Convolutions of measures on some thin sets

By Enji Sato

(Received November 13, 1976)

1. Introduction.

Let G be a LCA group with dual \hat{G} , and E a compact subset of G. Following Rudin [4], we say that E is a Kronecker set if, to each $f \in C(E)$ with |f|=1 and $\varepsilon > 0$, there exists $\tilde{\tau} \in \hat{G}$ such that $||f-\tilde{\tau}||_E < \varepsilon$. Let also $T=\{|z|=1\}$ be the circle group. Then in [2; Lemma 6.10], T. W. Körner proved that there exist two Kronecker sets K_1 and $K_2 \subset T$, both homeomorphic to $D_2 = \{0, 1\}^{\infty}$, and two nonzero nonnegative Borel measures μ_1 on K_1 and μ_2 on K_2 , such that $K_1 + K_2 = T$, and $\mu_1 * \mu_2 \in C^{\infty}(T)$.

In this paper, we prove analogs to the above result for general LCA groups. I thank Professor S. Saeki for his useful advices.

2. Notations.

Throughout this paper, G is used to denote a nondiscrete LCA group. We shall respectively denote by $A(G) = (L^1(\widehat{G}))^{\uparrow}$ and $C_c(G)$, the Fourier algebra of G, and the set of all continuous functions with compact support. Also we shall respectively denote by M(G), $M_c(G)$, and $M_0(G)$, the measure algebra of all bounded regular measures on G, the set of all continuous measures in M(G), and the set of those measures $\mu \in M(G)$ whose Fourier-Stieltjes transforms vanish at infinity. For $\mu \in M(G)$, $\|\mu\|$ will denote the total variation norm. The symbols $C_c^+(G)$, $M^+(G)$, and $M_c^+(G)$, will designate the set of all nonnegative functions in $C_c(G)$, the set of all nonnegative measures in M(G), and the set of all nonnegative measures in $M_c(G)$, respectively. For μ , $\nu \in M(G)$, we write $\mu \perp \nu$ if μ and ν are mutually singular. We set $M_0^{\perp}(G) = \{\mu \in M(G) | \mu$ is singular with each $\nu \in M_0(G)\}$. For the other notation, we refer to Rudin [4].

DEFINITION 1. Let 0 be the unit of G. $q(G) = \sup \{s | \text{every neighborhood } 0 \in G \text{ contains an element of order } \geq s \}$.

DEFINITION 2. Let $q \ge 2$ be an integer, and E a totally disconnected compact subset of G. We say that E is a K_q -set if, to each $f \in C(E)$ with $f^q=1$, there exists $\gamma \in \hat{G}$ such that $f=\gamma$ on E.

3. Statements of the results.

THEOREM A. Let G be a metrizable LCA group with $q(G) = \infty$. Let also $E \subset G$ be a compact set, and $N \ge 2$ an integer. Then there exist disjoint Kronecker sets K_1, \dots, K_N , all homeomorphic to $D_2 = \{0, 1\}^{\infty}$, and nonzero measures $\mu_1 \in M_c^+(K_1), \dots, \mu_N \in M_c^+(K_N)$, such that

(i) the union of any N-1 sets of the K_j 's is a Kronecker set,

(ii) $\mu_1 * \cdots * \mu_N$ is absolutely continuous with respect to Haar measure on G, and its Radon-Nikodym derivative is in A(G) and positive on E.

THEOREM B. Let G be a nondiscrete metrizable LCA group with $q = q(G) < \infty$, and $N \ge 2$ an integer. Then there exists an open neighborhood U of 0 such that for each compact set $E \subset U$ with $0 \notin E$, the conclusion of Theorem A is satisfied with K_q -set in place of Kronecker set.

REMARK. In the above result, if $N \neq 2$ or $q \neq 2$, the condition $0 \notin E$ is unnecessary.

COROLLARY 1. Let G be a nondiscrete LCA group. Then there exist nonzero measures μ_1 , $\mu_2 \in M_c^+(G) \cap M_0^{\perp}(G)$ such that

(i) $\|\mu_i\| = \overline{\lim} |\hat{\mu}_i(\tilde{r})|$ (*i*=1, 2),

(ii) $\mu_1 * \mu_2 \in A(G) \cap C_c^+(G).$

COROLLARY 2 ([1]). Let G be a nondiscrete LCA group. Then $M_0^{\perp}(G)$ is not an algebra.

4. Some lemmas for the proof of Theorem A.

LEMMA 1. Let f, g be in $A(G) \cap C_c^+(G)$ with $||f||_{L^1(G)} = ||g||_{L^1(G)} = 1$, and $q(G) = \infty$. Let also $0 < \eta < 1$ be given. Then there exists $\nu \in M^+(G)$ with $||\nu|| = 1$, such that

- (i) $\operatorname{supp} \nu \subset \operatorname{int} (\operatorname{supp} f),$
- (ii) supp v is a finite Kronecker set,
- (iii) $||f*g-\nu*g||_{A(G)} < \eta$.

PROOF. Let $\eta' > 0$ be given. Since f, g are in $C_{\epsilon}^+(G)$, there exists $\{V_i\}$ a finite partition of supp f, such that

(4.1.1)
$$\operatorname{int} V_i \cap \operatorname{int} (\operatorname{supp} f) \neq \phi,$$

 $(4. 1. 2) \qquad |f(x) - f(y)| < \eta', \ |g(x) - g(y)| < \eta', \ \text{for any } z \in G, \ x, \ y \in z + V_i \,.$

Then there exists $\{y_i\}$ a finite Kronecker set such that $y_i \in V_i \cap int(supp f)$. Put

$$u' = \sum_{i} \left(\int_{\mathcal{V}_{i}} f(y_{i}) \, dy \right) \delta_{y_{i}}.$$

From (4. 1. 2), we see that

(4.1.3)
$$| \|\nu'\| - 1 |$$

= $|\sum_{i} \int_{\nu_{i}} f(y_{i}) dy - \sum_{i} \int f(y) \chi_{\nu_{i}}(y) dy |$
 $\leq \eta' \cdot m (\operatorname{supp} f),$

where *m* denotes Haar measure of *G*, and from (4.1.2), (4.1.3) that for each $x \in G$

$$\begin{array}{ll} (4.\ 1.\ 4) & |f \ast g(x) - \nu' \ast g(x)| \\ & \leq \sum_{i} \left\{ \int_{\mathcal{V}_{i}} |g(x - y)| \, |f(y) - f(y_{i})| dy \\ & + \int_{\mathcal{V}_{i}} |g(x - y) - g(x - y_{i})| \, |f(y_{i})| dy \right\} \\ & \leq \eta' \|g\|_{L^{1}(G)} + \eta' \cdot \left(1 + \eta' \cdot m \left(\operatorname{supp} f \right) \right). \end{array}$$

Putting $\nu = \frac{\nu'}{\|\nu'\|}$, we have by (4.1.3) (4.1.5) $\|\nu - \nu'\| \le |1 - \|\nu'\|| \le \eta' \cdot m (\operatorname{supp} f).$

Also by (4.1.4) and (4.1.5), we have

$$\begin{aligned} (4.\ 1.\ 6) & |f \ast g(x) - \nu \ast g(x)| \\ & \leq |f \ast g(x) - \nu' \ast g(x)| + |\nu' \ast g(x) - \nu \ast g(x)| \\ & \leq \eta' \|g\|_{L^1(G)} + \eta' \cdot \left(1 + \eta' \cdot m \,(\operatorname{supp} f)\right) + \left(\eta' \cdot m \,(\operatorname{supp} f)\right) \cdot \|g\|_{\infty} \,. \end{aligned}$$

Now we can complete the proof as follows. First choose \hat{F} a compact subset of \hat{G} such that

(4.1.7)
$$\int_{\hat{F}^{\sigma}} |\hat{g}(\tilde{r})| d\tilde{r} < \frac{\eta}{4} .$$

By (4.1.1), (4.1.2) and (4.1.6), there exists ν , satisfying (i) ond (ii), such that

(4.1.8)
$$||f*g-\nu*g||_{\infty} < [m(\operatorname{supp} f + \operatorname{supp} g)]^{-1} \cdot [\hat{m}(\hat{F})]^{-1} \cdot \frac{\eta}{2},$$

where \hat{m} denotes Haar measure of \hat{G} . Then by (4.1.7) and (4.1.8), we have

$$\begin{split} \|f \ast g - \nu \ast g\|_{A(G)} &\leq \int_{\hat{F}} |\hat{f}(\tilde{r}) \, \hat{g}(\tilde{r}) - \hat{\nu}(\tilde{r})| d\tilde{r} \\ &+ \int_{\hat{F}^c} |\hat{f}(\tilde{r}) \, g(\tilde{r}) - \hat{\nu}(\tilde{r}) \, \hat{g}(\tilde{r})| d\tilde{r} \end{split}$$

$$\begin{split} \|f^*g - \nu_*g\|_{\mathcal{A}(G)} \leq & \left[\widehat{m}(\widehat{F})\right] \cdot \int |f^*g(x) - \nu^*g(x)| dx \\ &+ 2 \int_{\widehat{F}^\sigma} |\widehat{g}(\widehat{r})| d\widehat{r} \\ \leq & \eta \,. \end{split}$$

LEMMA 2. Let E be a compact subset of G, ε a positive number, and let f_1 , f_2 , f_3 in $A(G) \cap C_c^+(G)$ satisfy

$$\|f_1\|_{L^1(G)} = \|f_2\|_{L^1(G)} = \|f_3\|_{L^1(G)} = 1 \text{ and}$$

int (supp f_1) + int (supp f_2) + int (supp f_3) $\supset E$.

Then there exist ν_1 , ν_2 in $M^+(G)$ with $\|\nu_1\| = \|\nu_2\| = 1$, $N \ge 2$ an integer, and $\{a_{1i}, \dots, a_{Ni}\} \subset \operatorname{int}(\operatorname{supp} f_i)$ (i=1, 2), such that

 $(\mathbf{i}) \quad \bigcup_{j=1}^{N} \left(a_{j1} + a_{j2} + \operatorname{int}(\operatorname{supp} f_2) \right) \supset E,$

(ii) $\operatorname{supp} \nu_i = \{a_{1i}, \dots, a_{Ni}\}\ (i=1, 2), \ \operatorname{supp} \nu_1 \cap \operatorname{supp} \nu_2 = \phi, \ and \ (\operatorname{supp} \nu_1) \cup (\operatorname{supp} \nu_2) \ is \ a \ Kronecker \ set,$

(iii) $||f_1*f_2*f_3-\nu_1*\nu_2*f_3||_{A(G)} < \varepsilon.$

PROOF. Since E is a compact set, it follows from the hypothesis that there exist $N' \ge 2$ an integer, and $\{a_{1i}, \dots, a_{N'i}\} \subset \operatorname{int}(\operatorname{supp} f_i)$ (i=1, 2), such that

(4.2.1)
$$\bigcup_{j=1}^{N'} \left(a_{j1} + a_{j2} + \operatorname{int}(\operatorname{supp} f_3) \right) \supset E, \text{ and}$$

(4. 2. 2)
$$\{a_{11}, \dots, a_{N'1}; a_{12}, \dots, a_{N'2}\}$$
 is Kronecker set.

Then by Lemma 1, we have $\nu_1 \in M^+(G)$, $\|\nu_1\| = 1$, and Card (supp $\nu_1 \ge N'$, such that

(4.2.3) Supp $\nu_1 \cup \{a_{12}, \dots, a_{N'2}\}$ is a finite Kronecker set,

$$(4. 2. 4) \quad \text{int} (\operatorname{supp} f_1) \supset \operatorname{supp} \nu_1 \supset \{a_{11}, \dots, a_{N'1}\}, \text{ and}$$

$$(4. 2. 5) ||f_1*f_2*f_3-\nu_1*f_2*f_3||_{\mathcal{A}(G)} < \frac{\varepsilon}{2}.$$

In the same way, we have $\nu^2 \in M^+(G)$, $\|\nu_2\| = 1$ such that

- (4. 2. 6) $(\operatorname{supp} \nu_1) \cup (\operatorname{supp} \nu_2)$ is a finite Kronecker set, and $(\operatorname{supp} \nu_1) \cap (\operatorname{supp} \nu_2) = \phi$,
- (4. 2. 7) $\text{int } (\operatorname{supp} f_2) \supset \operatorname{supp} \nu_2 \supset \{a_{12}, \dots, a_{N'2}\}, \\ \operatorname{Card} (\operatorname{supp} \nu_2) \geq \operatorname{Card} (\operatorname{supp} \nu_1), \text{ and}$

(4.2.8)
$$||f_2*f_3-\nu_2*f_3||_{A(G)} < \frac{\varepsilon}{2}$$

Without loss of generality, we may assume $\operatorname{Card}(\operatorname{supp} \nu_1) = \operatorname{Card}(\operatorname{supp} \nu_2)$ (if necessary, replace ν_1 by an appropriate ν'_1).

Put $N=Card (supp \nu_1)=Card (supp \nu_2)$. We have (i), (ii) in Lemma 2 by (4. 2. 1) and (4. 2. 7). By (4. 2. 5) and (4. 2. 8), we have

$$\begin{split} \|f_1 * f_2 * f_3 - \nu_1 * \nu_2 * f_3 \|_{\mathcal{A}(G)} \\ &\leq \|f_1 * f_2 * f_3 - \nu_1 * f_2 * f_3 \|_{\mathcal{A}(G)} \\ &+ \|\nu_1 * f_2 * f_3 - \nu_1 * \nu_2 * f_3 \|_{\mathcal{A}(G)} \\ &\leq \frac{\varepsilon}{3} + \|f_2 * f_3 - \nu_2 * f_3 \|_{\mathcal{A}(G)} \\ &< \varepsilon \,. \end{split}$$

which establishes part (iii).

LEMMA 3. Under the notation in Lemma 2, let η_1 and η_2 be positive numbers. Then there exist W a compact neighborhood of 0 and \hat{K} a finite subset of \hat{G} , such that

(i) $diam(W) < \eta_1$,

(ii) $\{a_{ji}+W\}_{j=1,\dots,N;\ i=1,2}$ are disjoint sets, $a_{ji}+W\subset int(supp f_i) \ (j=1, \dots, N;\ i=1, 2)$, and $\bigcup_{j=1}^{N} (x_{j1}+x_{j2}+int(supp f_3)) \supset E$ for any $x_{si}\in a_{si}+W$ $(s=1, \dots, N;\ i=1, 2)$,

(iii) given α_{js} reals $(j=1, \dots, N; s=1, 2)$, there exists $\tilde{\gamma} \in \hat{K}$ satisfying

 $|\gamma(x) - \exp(i\alpha_{js})| < \eta_2 \text{ for } x \in a_{js} + W \quad (j = 1, \dots, N; s = 1, 2).$

PROOF. By (i) in Lemma 2, and [5; Lemma 2], we have W_1 a compact neighborhood of 0 satisfying (i) and (ii). On the other hand, by (ii) in Lemma 2, there exists $\hat{K} \subset \hat{G}$ a finite set, such that for any α_{js} reals $(j=1, \dots, N; s=1, 2)$, we can take $\gamma \in \hat{K}$ satisfying

(*)
$$|\Upsilon(a_{js}) - \exp(i\alpha_{js})| < \frac{\eta_2}{2}$$
 $(j = 1, \dots, N; s = 1, 2).$

After all, by (*), it is sufficient to choose $W \subset W_1$ a compact neighborhood of 0 such that

$$\begin{split} |\varUpsilon(x) - \varUpsilon(a_{js})| &< \frac{\eta_2}{2} \\ \text{for any } \varUpsilon\in \widehat{K} \text{ and } x \in a_{js} + W \qquad (j = 1, \, \cdots, \, N; \; s = 1, \, 2) \end{split}$$

LEMMA 4. Under the notation in Lemma 3, there exist $f'_1, f'_2 \in A(G) \cap C^+_{\epsilon}(G)$ with $\|f'_1\|_{L^1(G)} = \|f'_2\|_{L^1(G)} = 1$, such that

(i) int $(\operatorname{supp} f'_1) + \operatorname{int} (\operatorname{supp} f'_2) + \operatorname{int} (\operatorname{supp} f_3) \supset E$, (ii) $\operatorname{supp} f'_i \subset \bigcup_{j=1}^N (a_{ji} + W)$ (i = 1, 2), E. Sato

(iii) $||f_1*f_2*f_3-f_1'*f_2'*f_3||_{A(G)} < 2\varepsilon$.

PROOF. First, let \hat{F} be a compact subset of \hat{G} such that

(4. 4. 1)
$$\int_{\hat{F}^{\sigma}} \hat{f}_{3}(\tilde{r}) |d\tilde{r}| < \frac{\varepsilon}{8} .$$

Next, for W in Lemma 3, there exists $h \in A(G) \cap C_c^+(G)$ with supp $h \subset W$ and $||h||_{L^1(G)} = 1$, such that

(4. 4. 2)
$$\int_{\vec{F}} |\hat{f}_3(\vec{r}) - \hat{h}(\vec{r}) \hat{f}_3(\vec{r})| d\vec{r} < \frac{\varepsilon}{4}.$$

Put $f'_1 = \nu_1 * h$, $f'_2 = \nu_2 * h$ where ν_1 , ν_2 are as in Lemma 2. Then, we have

$$\begin{split} \|f'_i\|_{L^1(G)} &= 1, \ f'_i \in A(G) \cap C^+_e(G), \ \text{and} \\ & \text{supp} \, f_i \subset \bigcup_{j=1}^N (a_{ji} + W) \qquad (i = 1, \, 2) \,. \end{split}$$

So we have (i) and (ii) immediately. Also by Lemma 2, we have

$$\begin{split} \|f_1 * f_2 * f_3 - f_1' * f_2' * f_3\|_{A(G)} \\ &\leq \|f_1 * f_2 * f_3 - \nu_1 * \nu_2 * f_3\|_{A(G)} \\ &+ \|\nu_1 * \nu_2 * f_3 - f_1' * f_2' * f_3\|_{A(G)} \\ &\leq \varepsilon + 2 \|f_3 - h * f_3\|_{A(G)} \,. \end{split}$$

By (4. 4. 1) and (4. 4. 2), we have

$$\|f_3 - h * f_3\|_{A(G)} < \frac{\varepsilon}{4} + \frac{\varepsilon}{4} = \frac{\varepsilon}{2}$$

5. The proofs of Theorem A and Theorem B.

The proof of Theorem A. We prove Theorem A only for N=3, since the proof for the general case is similar.

First, choose g_1 , g_2 , $g_3 \in A(G) \cap C_c^+(G)$ with $||g_1||_{L^1(G)} = ||g_2||_{L^1(G)} = ||g_3||_{L^1(G)}$ = 1, such that

$$\operatorname{int}(\operatorname{supp} g_1) + \operatorname{int}(\operatorname{supp} g_2) + \operatorname{int}(\operatorname{supp} g_3) \supset E$$
,

and

$$g_1 * g_2 * g_3 \ge \delta > 0$$
 on E .

Next, suppose that for some $r \ge 0$, we constructed

$$g_{3r+1}, g_{3r+2}, g_{3r+3} \in A(G) \cap C_c^+(G)$$

with $||g_{3r+1}||_{L^1(G)} = ||g_{3r+2}||_{L^1(G)} = ||g_{3r+3}||_{L^1(G)} = 1$, such that

$$\operatorname{int}(\operatorname{supp} g_{3r+1}) + \operatorname{int}(\operatorname{supp} g_{3r+2}) + \operatorname{int}(\operatorname{supp} g_{3r+3}) \supset E$$

and

$$g_{3r+1} * g_{3r+2} * g_{3r+3} \ge \delta(1 - 10^{-1} - \dots - 10^{-r})$$
 on E .

We now describe the construction in the $(r+1)^{\text{th}}$ step. We use Lemmas 2 and 3 for $f_i = g_{3r+i}$ (i=1, 2, 3), and positive numbers ε , η_1 , η_2 which tend to 0 rapidly depending on r. Then we get $g'_{3r+1}=f'_1$, $g'_{3r+2}=f'_2$, $g_{3r+3}=f_3$ as in Lemma 4. Again putting $f_1=g'_{3r+2}$, $f_2=g_{3r+3}$, $f_3=g'_{3r+1}$, we get similarly g''_{3r+1} , g'_{3r+3} , g'_{3r+1} in place of f'_1 , f'_2 , f_3 as in Lemma 4. In the third step, putting $f_1=g'_{3r+3}$, $f_2=g'_{3r+1}$, $f_3=g''_{3r+2}$, we get g''_{3r+3} , g''_{3r+2} in place of f'_1 , f'_2 , f'_3 as in Lemma 4.

Put
$$g_{3(r+1)+i} = g_{3r+i}''$$
 $(i = 1, 2, 3)$.

We can demand that

$$(5. 1. 1) g_{3(r+1)+i} \in A(G) \cap C_{c}^{+}(G), \|g_{3(r+1)+i}\|_{L^{1}(G)} = 1 (i = 1, 2, 3),$$

(5. 1. 2) $\operatorname{int}(\operatorname{supp} g_{3(r+1)+1} + \operatorname{int}(\operatorname{supp} g_{3(r+1)+2}) + \operatorname{int}(\operatorname{supp} g_{3(r+1)+3}) \supset E$,

and

(5. 1. 3)
$$\|g_{3r+1}*g_{3r+2}*g_{3r+3}-g_{3(r+1)+1}*g_{3(r+1)+2}*g_{3(r+1)+3}\|_{A(G)} \leq \frac{\delta}{10^{r+1}}.$$

From (5. 1. 3), we have

$$g_{3(r+1)+1} * g_{3(r+1)+2} * g_{3(r+1)+3} \ge \delta(1 - 10^{-1} - \dots - 10^{-(r+1)})$$
 on E .

This completes our inductive construction.

Now let

$$L_{3r+i}$$
 be supp g_{3r+i} $(i=1, 2, 3)$,

and

$$K_i = \bigcap_{r=0}^{\infty} L_{3r+i}$$
 $(i = 1, 2, 3).$

Then if we carefully choose $\{g_{3r+i}\}_{r\geq 0}$, i=1, 2, 3 recalling the proofs of Lemma 3 and Lemma 4, we can demand that the K_i 's (i=1, 2, 3) are disjoint Kronecker sets, homeomorphic to Cantor set such that the union of any two sets in K_1 , K_2 , K_3 is a Kronecker set and $K_1+K_2+K_3\supset E$. (cf [4; 5.2.4])

By (5.1.1), we can find an increasing sequence $\{r_n\}$ of natural numbers such that $\{g_{3r_n+i}\}_{n\geq 1}$ has a limit μ_i in the weak* topology of M(G) for i=1, 2, 3.

Then it is easy to see that $\mu_i \in M_c^+(K_i)$ and $\|\mu_i\| = 1$ (i=1, 2, 3).

On the other hand, by (5. 1. 3), $(g_{3r+1}*g_{3r+2}*g_{3r+3})_{r\geq 0}$ is a Cauchy sequence in A(G).

Putting g the limit of $g_{3r+1}*g_{3r+2}*g_{3r+3}$ as r tends to ∞ , we have

$$g \in A(G) \cap C_c^+(G)$$
, $g \ge \frac{\delta}{100} > 0$ on E ,

and

$$d(\mu_1 * \mu_2 * \mu_3) = gdm.$$

We get the desired result.

The proof of Theorem B. If we use the next Lemma 5, Theorem B can be proved in the same way as Theorem A. Because we can use as $\eta_2 = 0, \alpha_{js} \in \left\{\frac{2\pi}{q}, \frac{4\pi}{q}, \cdots, \frac{2q\pi}{q}\right\}$ in Lemma 3.

LEMMA 5 ([3; chap XIII 3.7]). Let G be a nondiscrete LCA group, and $q=q(G)<\infty$. Then there exists U an open neighborhood of 0, such that for any $k\geq 1$ integer and $V_1, \dots, V_k\subset U$ disjoint, nonempty open sets, there exist $x_i\in V_i$, all with order q, such that $\{x_1, \dots, x_k\}$ is an independent set.

6. The proofs of Corollaries.

Since Corollary 2 is clear from Corollary 1, it is sufficient to show Corollary 1.

The proof of Corollary 1. Since G is a nondiscrete LCA group, \hat{G} is a noncompact set. Thus there exists Y an open subgroup of G, which is σ -compact, but is not compact. Put $H=Y^{\perp}$.

We have that G/H is a nondiscrete, metrizable group, and

(6.1) H is a compact group.

By Theorem A and Theorem B, there exist ν_i nonzero measures in $M^+(G/H)$, such that

(6.2) supp ν_i is a compact subset of some K_q -set (i = 1, 2),

and

(6.3)
$$\nu_1 * \nu_2 \in A(G/H).$$

Then From [4; 5.5.3] and [4; 5.6.10], it is easy to see

(6.4)
$$\nu_i \in M_0^{\perp}(G/H)$$
 $(i=1,2)$

By (6.2), recalling $\nu_i \ge 0$ (i=1, 2), we get

(6.5) $\|\nu_i\| = \overline{\lim_{r \to \infty}} |\hat{\nu}_i(r)| \qquad (i = 1, 2).$

Let m_H be the normalized Haar measure on H. We define $\mu_i \in M^+(G)$ by setting

(6.6)
$$\int_{G} f(x) \, d\mu_i = \int_{G/H} \int_{H} f(x+y) \, dm_H(y) \, d\nu_i \qquad (i=1,2)$$

for $f \in C_0(G)$, where $C_0(G)$ is the completion of $C_c(G)$ in the supremum norm. By (6.1) and (6.2), supp μ_i is compact (i=1, 2). Then for any bounded continuous function f, we have (6.6). In particular for $\gamma \in \widehat{G}$, we get

(6.7)
$$\hat{\mu}_i(\tau) = \begin{cases} \hat{\nu}_i(\tau) & \text{for } \tau \in Y \\ 0 & \text{for } \tau \notin Y. \end{cases}$$

We claim that μ_1 and μ_2 have the required properties. Recalling the choice of Y, (6.3), (6.5), and (6.6), we get

$$\|\mu_i\| = \overline{\lim_{r \to \infty}} |\hat{\mu}_i(r)|, \ \mu_i \in M^+_c(G) \qquad (i = 1, 2),$$

and

 $\mu_1 * \mu_2 \in A(G).$

To complete the proof, it is sufficient to show $\mu_1 \in M_0^{\perp}(G)$. Suppose that μ_1 is not in $M_0^{\perp}(G)$. Then there exists μ' a nonzero nonnegative measure in $M_0(G)$ such that μ' is absolutely continuous with respect to μ_1 . Hence putting $\mu = \mu' * m_H$, we get that μ is absolutely continuous with respect to μ_1 . Hence μ_1 . We define $\nu \in M(G/H)$ by

$$\int_{G} f(x) d\mu = \int_{G/H} \int_{H} f(x+y) dm_{H}(y) d\nu \text{ for } f \in C_{0}(G).$$

Then μ being absolutely continuous with respect to μ_1 and $\mu \in M_0(G)$, we get that ν is absolutely continuous with respect to ν_1 , and nonzero measure in $M_0(G/H)$. This contradicts (6.4).

References

- [1] C. GRAHAM: $M_0(G)$ is not prime L-ideal of measures. Proc. Amer. Math. Soc. 27 (1971), 557-562.
- [2] T. W. KÖRNER: Pseudofunctions and Helson sets. Astérisque Math. France 5 (1973), 3-224.
- [3] L. A. LINDAHL and F. POULSEN: Thin sets in harmonic analysis. New York, Marcel Dekker (1971).
- [4] W. RUDIN: Fourier analysis on groups. New York 1962.
- [5] E. SATO: On the finite sum of Kronecker sets. Hokkaido Math. Jour. Vol. V (1976), 232-236.

Department of Mathematics Yamagata University Yamagata, Japan