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Higher order monodiffric difference equation
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1. Introduction. In [1] Berzsenyi has discussed the general solution
of the first order monodiffric difference equation. Let D be the first quad-
rant of the discrete plane, and suppose a\in D-\{0\} and q\in M(D), then the
general solution of the monodiffric equation f’(z)-af(z)=g(z) with initial
condition f(0)=c is given by the monodiffric function

f(z)=cE(z, a)+ \frac{1}{a}[g*E(z, a)] for every z\in D ,

where E(z, a) is the monodiffric exponential function (c. f. [2])

E(z, a)=(1+a)^{x}(1+ia)^{y} for z=x+iy
In the sequel, we use the notation e^{\prime\iota,z} instead of E(z, a).

In this paper, we extend Berzsenyi’s results to more general cases,
namely, the general solution of the n’th order monodiffric linear hom0-
geneous difference equation

F^{(n)}(z)+c_{n-1}F^{(n-1)}(z)+\cdots+c_{1}F’(z)+c_{0}F(z)=0 , (1. 1)

where the coefficients c_{i}(i=0,1, \cdots, n) are arbitrary constants.

2. Definition. Let D= {z|z=x+iy , x and y are integers} and f be
a complex-valued function defined on D. We define the monodiffric residue
of f at z to be the value Mf(z) given by

Mf(z)=(i-1)f(z)+f(z+i)-if(z+l). (1. 2)

We say that f is monodiffric at z if Mf(z)=0. And a function which is
monodiffric at every point in D is monodiffric on D. In this case, we
write f\in M(D). The monodiffric derivative f’ of f is defined by

f’(z)= \frac{1}{2}[(i-1)f(z)+f(z+1)-if(z+i)] .

We also use the symbol \frac{df}{dz} or D_{z} .

3. The monodiffric exponential function e^{\alpha,z}.
In [2], Isaacs has introduced the monodiffric exponential function e^{\alpha,z},

it has a form e^{a,x}=(1+a)^{x}(1+ia)^{y} for z=x+iy and a is a complex number.
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Before discussing the general solution of (1. 1), we study some properties
of e^{a,z}.

PROPOSITION 1. ( a) \frac{d^{n}}{dz^{n}}e^{a,z}=a^{n}e^{a.x}, where \frac{d^{n}}{dz^{n}} means n’th monodiffric
derivative

(b) \frac{d^{n}}{dz^{n}}e^{a,z}\in M(D) for n=0,1,2, \cdots

PROPOSITION 2. (a) \frac{d}{da}e^{a,z}=(1+a)^{x-1}(1+ia)^{y-1}\{z+ia(x+y)\}

for z=x+iy
(b) \frac{d}{da}e^{a,z}\in M(D)

where \frac{d}{da}e^{a,z}=\lim_{harrow 0}\frac{e^{(a+h),z}-e^{a,z}}{h} for fixed point z\in D.

PROOF. A proof of (a) of Proposition 1 and 2 is given by a straightfor-
ward calculation.
A proof of (b) of Proposition 1 was shown by Isaacs [3]. Now we prove
(b) of Proposition 2. Let f(z)= \frac{d}{da}e^{a,z} then

Mf(z)=(i-1)f(z)+f(z+i)-if(z+1)=i[f(z)-f(z+1)]+f(z+i)-f(z) .
Since

f(z)-f(z+1)=(1+a)^{x-1}(1+ia)^{y-1}\{-1-a(z+1+i)-a^{2}i(x+y+1)\} :

and

f(z+i)-f(z)=(1+a)^{x-1}(1+ia)^{y-1}\{i+a(zi+i-1)-a^{2}(x+y+1)\} ,

therefore we have Mf(z)=0.

PROPOSITION 3. \frac{d}{da}e^{a,z} is a solution of (D_{z}-a)^{2}F(z)=0, and is also a
solution of (D_{z}-a)^{m}F(z)=0 for any integer m\geqq 2.
PROOF. Since \frac{d}{da}e^{a,z}\in M(D), if we put F(z)= \frac{d}{da}e^{a,z} we have

(D_{z}-a)^{2}F(z)=F’(z)-2aF’(z)+a^{2}F(z)

=F(z+2)-2(1+a)F(z+1)+(1+a)^{2}F(z)

=(1+a)^{x+1}(1+ia)^{y-1}\{z+2+ia(x+y+2)-2

[z+1+ia(x+y+1)]+z+ia(x+y)\}

=0l
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And
(D_{z}-a)^{m}F(z)=(D_{z}-a)^{m-2}(D_{\approx}-a)^{2}F(z)=01

PROPOSITION 4. Let G(z)= \frac{d^{2}}{da^{2}}e^{a,z}, then we have

(a) G(z)=(1+a)^{x-2}(1+ia)^{y-2}

\{z^{2}+y-x+2iz(x+y-1)a-(x+y)(x+y-- 1) a^{2}\}

(b) G(z)\in M(D)

(c) (D_{z}-a)^{3}G(z)=0

(d) (D_{z}-a)^{m}G(z)=0 form m\geqq 31

PROOF. Differentiating \overline{d}\overline{a}de^{a,z} with respect to a directly we will get (a).

Now, we shall prove that

MG(z)=(i-1)G(z)+G(z+i)-iG(z+1)=0 .
Since

(i-1) G(z)=(1+a)^{x-2}\wedge(1+ia)^{y-2}

\{(i-1)(z^{2}+y-x)+2i(i-1)z(x+y-1)a-(i-1)(x+y)(x+y-1)a^{2}\} ,

G(z+i)=(1+a)^{x-2}(1+ia)^{y-1}

\{(z+i)^{2}+y+1-x+2i(z+i)(x+y)a-(x+y+1)(x+y)a^{2}\} ,

-iG(z+1)=(1+a)^{x-1}(1+ia)^{y-2}

\{(-i)[(z+1)^{2}+y-x-1]+2(z+1)(x+y)a+i(x+y+1)(x+y)a^{2}\},\cdot

we rewrite MG(z) into the form
MG(z)=(1+a)^{x-2}(1+ia)^{y-2}\{Ai+B\} , then we can obtain A=0 and B=0.

Thus we have proved (b). Now,

(D_{z}-a)^{3}G(z)=G(z+3)-3(1+a)G(z+2)+3(1+a)^{2}G(z+1)-(1+a)^{3}G(z)

=(1+a)^{x+1}(1+ia)^{y-2}\{Ca^{2}+Da+E\}

we can also show that C=0, D=0 and E=0 by a straightforward calcu-
lation, i. e. (c) is proved. A proof of (d) is similar to the proof of PrO-
position 3.

PROPOSITION 5. Let F(z)= \frac{d}{da}e^{a,z}, then

F^{(n)}(z)=a^{n-1}(1+a)^{x-1}(1+ia)^{y\sim 1}\{n+a[z+n(1+i)]+a^{2}(x+y+n)i\}

for n=0,1,2, \cdots , and F^{(0)}(z)\equiv F(z),
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where F^{(n)} means n’th monodiffric derivative of F.
PROOF. Since F(z)\in M(D), we have F^{(n)}(z)\in M(D) and

F^{(n+1)}(z)=F^{(n)}(z+1)-F^{(n)}(z)

=a^{n-1}(1+a)^{x}\cdot(1+ia)^{y-1}\{n+a[z+1+n(1+i)]+a^{2}(x+y+n+1)i\}

-a^{n-1}(1+a)^{x-1}(1+ia)^{y-1}\{n+a[z+n(1+i)]+a^{2}(x+y+n)i\}

=a^{n-1}(1+a)^{x-1}(1+ia)^{y-1}\{a(n+1)+a^{2}[z+(n+1)(1+i)]

+a^{3}(x+y+n+1)i\}t

By induction, Proposition 5 is proved.

4. Monodiffric homogeneous difference equations.

THEOREM 1. Let a_{1}, a_{2}, \cdots a_{n} be distinct roots of
a^{n}+c_{n-1}a^{n-1}+\cdots+c_{1}a+c_{0}=0 , (4. 1)

then the general solution to (1. 1) is

F(z)= \sum_{i=1}^{n}B_{i}e^{a_{i},z} ,

where the coefficients B_{i}(i=1,2, \cdots, n) are arbitrary constants.

PROOF. Let F(z)=e^{\prime\iota,z}, then from Proposition 1

(a^{n}+c_{n-1}a^{n-1}+\cdots+c_{1}a+c_{0})e^{a,oe}=0 .
Since e^{a,z}\neq 0, we must have

a^{n}+c_{n-1}a^{n-1}+\cdots+c_{1}a+c_{0}=0 . Since

a_{1}, a_{2}, \cdots , a_{n} are distinct roots of (4. 1), we obtain that e^{a_{l\prime}z}(i=1,2, \cdots, n) is
a solution of (1. 1). The general solution to (1. 1) is

F(z)= \sum_{i=1}^{n}B_{i}e^{a_{i},z}t

For any monodiffric function f(z), we can rewrite (D_{z}-a)^{n}f(z) into

the form \sum_{k=0}^{n}(-1)^{k}C_{k}^{n}f(z+n-k)(1+a)^{k} where C_{k}^{n}= \frac{n!}{(n-k)!k!} and from the
results of Proposition 3 and 4, we have the following Proposition (6) (a)
and (b) respectively.

PROPOSITION 6. (a) Monodiffric difference equation of the second order
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\sum_{k=0}^{2}(-1)^{k}C_{k}^{2}f(z+2-k)(1+a)^{k}=0 has monodiffric general solution of the

form f(z)=c_{0}e^{a,z}+c_{1} \frac{d}{da}e^{a,z} .

(b) Monodiff\dot{f}ric differmce equation of the third order
\sum_{k=0}^{3}(^{\llcorner}1)^{k}C_{k}^{3}f(z+3-k)(1+a)^{k}=0 has monodiffric general solution f(z)

=c_{0}e^{a,z}+c_{1} \frac{d}{da}e^{a,z}+c_{2}\frac{d^{2}}{da^{2}}e^{a,z},

where the coefficients c_{i} (i=0,1, 2) are arbitrary constants.
In general, we can extend to the n’th order monodiffric homogeneous

difference equation. Let E(a, z)=e^{a,z}, E^{(n)}(a, z)= \frac{d^{n}}{da^{n}}e^{a,z} for n\in N, by in-

duction we will obtain E^{(n)}(a, z)\in M(D). Suppose it is true for n=k, thus
ME^{(k)}(a, z)=0 for all z\in D, then

(i-1) E^{(k)}(a, z)+E^{(k)}(a, z+i)-iE^{(k)}(a, z+1)=0

(i-1) E^{(k)}(a+h, z)+E^{(k)}(a+h, z+i)-iE^{(k)}(a+h, z+1)=0 .

Subtracting the first from the second of above equalities and dividing by
h, we have

(i-1) \frac{E^{(k)}(a+h,z)-E^{(k)}(a,z)}{h}+\frac{E^{(k)}(a+h,z+i)-E^{(k)}(a,z+i)}{h}

-i \frac{E^{(k)}(a+h,z+1)-E^{(k)}(a,z+1)}{h}=0\tau

Tending h to 0, we see that

(i-1) E^{(k+1)}(a, z)+E^{(k+1)}(a, z+i)-iE^{(k+1)}(a, z+1)=0

ME^{(k+1)}(a, z)=0 for all z\in D .
Thus we obtain :

PROPOSITION 7. E^{(n)}(a, z) is a monodiffric function for n=0,1,2, \cdots .
PROPOSITION 8. (D_{z}-a)^{n}E^{(n-1)}(a, z)=0 for n=1,2, \cdots .
PROOF. It is true for n=1,2. By induction we suppose it is true for
n=k, i. e. (D_{z}-a)^{k}E^{(k-1)}(a, z)=0 .
Fixing z and differentiating with respect to a, we have

(D_{z}-a)^{k}E^{(k)}(a, z)=k(D_{z}-a)^{k-1}E^{(k-1)}(a, z) .
Applying D_{z}-a, we have

(D_{z}-a)^{k+1}E^{(k)}(a, z)=k(D_{z}-a)^{k}E^{(k-1)}(a, z)=0 . q. e. d.
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By the same idea, we get the following:

THEOREM 2. Monodiffric homogeneous difference equation of the n’th order
\sum_{k=0}^{\iota}’(-1)^{k}C_{k}^{n}f(z+n-k)(1+a)^{k}=0 has monodifffri^{\phi}c general solution f( \dot{z})=\sum_{k=0}^{n-1}

c_{k} \frac{d^{k}}{da^{k}}e^{a,z} where the coefficients c_{k}(k=0,1, \cdots, n -- 1) are arbitrary constants.

From Theorm 1 an\dot{d} Theorm 2, we can get the general case which
is stated as follows.
THEOREM 3. The general solution to the homogeneous monodiffric differ-
ence equation of the n’th order

F^{(n)}(z)+c_{n-1}F^{(n-1)}(z)+\cdots+c_{1}F’(z)+c_{0}F(z)=0

is

F(z)= \sum_{k=1}^{p}\sum_{j=0}^{m_{k}-1}B_{kf}\frac{d^{j}}{da_{k}^{f}}e^{a_{k},z} ,

where a_{1}, a_{2}, \cdots , a_{p} with multiplicities m_{1}, m_{2}, \cdots m_{p} respectively are the roots
of
a^{n}+c_{n-1}a^{n-1}+\cdots+c_{1}a+c_{0}=0 and the coefficients B_{kf} are arbitrary constants.
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