Higher order monodiffric difference equation

By Shih Tong Tu

(Received April 1, 1977)

1. Introduction. In [1] Berzsenyi has discussed the general solution of the first order monodiffric difference equation. Let D be the first quadrant of the discrete plane, and suppose $a \in D-\{0\}$ and $g \in M(D)$, then the general solution of the monodiffric equation $f^{\prime}(z)-a f(z)=g(z)$ with initial condition $f(0)=c$ is given by the monodiffric function

$$
f(z)=c E(z, a)+\frac{1}{a}[g * E(z, a)] \quad \text { for every } z \in D,
$$

where $E(z, a)$ is the monodiffric exponential function (c.f. [2])

$$
E(z, a)=(1+a)^{x}(1+i a)^{y} \quad \text { for } z=x+i y .
$$

In the sequel, we use the notation $e^{q, z}$ instead of $E(z, a)$.
In this paper, we extend Berzsenyi's results to more general cases, namely, the general solution of the n^{\prime} th order monodiffric linear homogeneous difference equation

$$
\begin{equation*}
F^{(n)}(z)+c_{n-1} F^{(n-1)}(z)+\cdots+c_{1} F^{\prime}(z)+c_{0} F(z)=0, \tag{1.1}
\end{equation*}
$$

where the coefficients $c_{i}(i=0,1, \cdots, n)$ are arbitrary constants.
2. Definition. Let $D=\{z \mid z=x+i y, x$ and y are integers $\}$ and f be a complex-valued function defined on D. We define the monodiffric residue of f at z to be the value $M f(z)$ given by

$$
\begin{equation*}
M f(z)=(i-1) f(z)+f(z+i)-i f(z+1) . \tag{1.2}
\end{equation*}
$$

We say that f is monodiffric at z if $M f(z)=0$. And a function which is monodiffric at every point in D is monodiffric on D. In this case, we write $f \in M(D)$. The monodiffric derivative f^{\prime} of f is defined by

$$
f^{\prime}(z)=\frac{1}{2}[(i-1) f(z)+f(z+1)-i f(z+i)] .
$$

We also use the symbol $\frac{d f}{d z}$ or D_{z}.

3. The monodiffric exponential function $e^{a, z}$.

In [2], Isaacs has introduced the monodiffric exponential function $e^{a, z}$, it has a form $e^{a, z}=(1+a)^{x}(1+i a)^{y}$ for $z=x+i y$ and a is a complex number.

Before discussing the general solution of (1.1), we study some properties of $e^{a, z}$.
PRoposition 1. (a) $\frac{d^{n}}{d z^{n}} e^{a, z}=a^{n} e^{a, z}$, where $\frac{d^{n}}{d z^{n}}$ means n^{\prime} th monodiffric derivative
(b) $\frac{d^{n}}{d z^{n}} e^{a, z} \in M(D) \quad$ for $n=0,1,2, \cdots$

PROPOSITION 2. (a) $\frac{d}{d a} e^{a, z}=(1+a)^{x-1}(1+i a)^{y-1}\{z+i a(x+y)\}$ for $z=x+i y$
(b) $\frac{d}{d a} e^{a, z} \in M(D)$
where $\frac{d}{d a} e^{a, z}=\lim _{h \rightarrow 0} \frac{e^{(a+h), z}-e^{a, z}}{h}$ for fixed point $z \in D$.
Proof. A proof of (a) of Proposition 1 and 2 is given by a straightforward calculation.
A proof of (b) of Proposition 1 was shown by Isaacs [3]. Now we prove (b) of Proposition 2, Let $f(z)=\frac{d}{d a} e^{a, z}$ then

$$
M f(z)=(i-1) f(z)+f(z+i)-i f(z+1)=i[f(z)-f(z+1)]+f(z+i)-f(z)
$$

Since

$$
f(z)-f(z+1)=(1+a)^{x-1}(1+i a)^{y-1}\left\{-1-a(z+1+i)-a^{2} i(x+y+1)\right\}
$$

and

$$
f(z+i)-f(z)=(1+a)^{x-1}(1+i a)^{y-1}\left\{i+a(z i+i-1)-a^{2}(x+y+1)\right\}
$$

therefore we have $M f(z)=0$.
Proposition 3. $\frac{d}{d a} e^{a, z}$ is a solution of $\left(D_{z}-a\right)^{2} F(z)=0$, and is also a solution of $\left(D_{z}-a\right)^{m} F(z)=0$ for any integer $m \geqq 2$.
PROOF. Since $\frac{d}{d a} e^{a, z} \in M(D)$, if we put $F(z)=\frac{d}{d a} e^{a, z}$ we have

$$
\begin{aligned}
\left(D_{z}-a\right)^{2} F(z)= & F^{\prime \prime}(z)-2 a F^{\prime}(z)+a^{2} F(z) \\
= & F(z+2)-2(1+a) F(z+1)+(1+a)^{2} F(z) \\
= & (1+a)^{x+1}(1+i a)^{y-1}\{z+2+i a(x+y+2)-2 \\
& \quad[z+1+i a(x+y+1)]+z+i a(x+y)\} \\
= & 0 .
\end{aligned}
$$

And

$$
\left(D_{z}-a\right)^{m} F(z)=\left(D_{z}-a\right)^{m-2}\left(D_{z}-a\right)^{2} F(z)=0
$$

Proposition 4. Let $G(z)=\frac{d^{2}}{d a^{2}} e^{a, z}$, then we have
(a) $G(z)=(1+a)^{x-2}(1+i a)^{y-2}$

$$
\left\{z^{2}+y-x+2 i z(x+y-1) a-(x+y)(x+y-1) a^{2}\right\}
$$

(b) $G(z) \in M(D)$
(c) $\left(D_{z}-a\right)^{3} G(z)=0$
(d) $\left(D_{z}-a\right)^{m} G(z)=0 \quad$ for $m \geqq 3$.

Proof. Differentiating $\frac{d}{d a} e^{a, z}$ with respect to a directly we will get (a). Now, we shall prove that

$$
M G(z)=(i-1) G(z)+G(z+i)-i G(z+1)=0
$$

Since

$$
\begin{aligned}
& (i-1) G(z)=(1+a)^{x-2}(1+i a)^{y-2} \\
& \quad\left\{(i-1)\left(z^{2}+y-x\right)+2 i(i-1) z(x+y-1) a-(i-1)(x+y)(x+y-1) a^{2}\right\} \\
& G(z+i)=(1+a)^{x-2}(1+i a)^{y-1} \\
& \quad \quad\left\{(z+i)^{2}+y+1-x+2 i(z+i)(x+y) a-(x+y+1)(x+y) a^{2}\right\} \\
& -i G(z+1)=(1+a)^{x-1}(1+i a)^{y-2} \\
& \quad\left\{(-i)\left[(z+1)^{2}+y-x-1\right]+2(z+1)(x+y) a+i(x+y+1)(x+y) a^{2}\right\}
\end{aligned}
$$

we rewrite $M G(z)$ into the form
$M G(z)=(1+a)^{x-2}(1+i a)^{y-2}\{A i+B\}$, then we can obtain $A=0$ and $B=0$. Thus we have proved (b). Now,

$$
\begin{aligned}
\left(D_{z}-a\right)^{3} G(z) & =G(z+3)-3(1+a) G(z+2)+3(1+a)^{2} G(z+1)-(1+a)^{3} G(z) \\
& =(1+a)^{x+1}(1+i a)^{y-2}\left\{C a^{2}+D a+E\right\}
\end{aligned}
$$

we can also show that $C=0, D=0$ and $E=0$ by a straightforward calculation, i. e. (c) is proved. A proof of (d) is similar to the proof of Proposition 3.

Proposition 5. Let $F(z)=\frac{d}{d a} e^{a, z}$, then

$$
F^{(n)}(z)=a^{n-1}(1+a)^{x-1}(1+i a)^{y-1}\left\{n+a[z+n(1+i)]+a^{2}(x+y+n) i\right\}
$$

for $n=0,1,2, \cdots$, and $F^{(0)}(z) \equiv F(z)$,
where $F^{(n)}$ means n^{\prime} th monodiffric derivative of F.
Proof. Since $F(z) \in M(D)$, we have $F^{(n)}(z) \in M(D)$ and

$$
\begin{aligned}
F^{(n+1)}(z)= & F^{(n)}(z+1)-F^{(n)}(z) \\
= & a^{n-1}(1+a)^{x} \cdot(1+i a)^{y-1}\left\{n+a[z+1+n(1+i)]+a^{2}(x+y+n+1) i\right\} \\
& \quad-a^{n-1}(1+a)^{x-1}(1+i a)^{y-1}\left\{n+a[z+n(1+i)]+a^{2}(x+y+n) i\right\} \\
= & a^{n-1}(1+a)^{x-1}(1+i a)^{y-1}\left\{a(n+1)+a^{2}[z+(n+1)(1+i)]\right. \\
& \left.\quad+a^{3}(x+y+n+1) i\right\} .
\end{aligned}
$$

By induction, Proposition 5 is proved.

4. Monodiffric homogeneous difference equations.

Theorem 1. Let $a_{1}, a_{2}, \cdots a_{n}$ be distinct roots of

$$
\begin{equation*}
a^{n}+c_{n-1} a^{n-1}+\cdots+c_{1} a+c_{0}=0 \tag{4.1}
\end{equation*}
$$

then the general solution to (1.1) is

$$
F(z)=\sum_{i=1}^{n} B_{i} e^{\pi_{i}, z}
$$

where the coefficients $B_{i}(i=1,2, \cdots, n)$ are arbitrary constants.
Proof. Let $F(z)=e^{\tau, z}$, then from Proposition 1

$$
\left(a^{n}+c_{n-1} a^{n-1}+\cdots+c_{1} a+c_{0}\right) e^{a, z}=0
$$

Since $e^{\pi, z} \neq 0$, we must have

$$
a^{n}+c_{n-1} a^{n-1}+\cdots+c_{1} a+c_{0}=0 . \quad \text { Since }
$$

$a_{1}, a_{2}, \cdots, a_{n}$ are distinct roots of (4.1), we obtain that $e^{a_{i}, z}(i=1,2, \cdots, n)$ is a solution of (1.1). The general solution to (1.1) is

$$
F(z)=\sum_{i=1}^{n} B_{i} e^{a_{i}, z}
$$

For any monodiffric function $f(z)$, we can rewrite $\left(D_{z}-a\right)^{n} f(z)$ into the form $\sum_{k=0}^{n}(-1)^{k} C_{k}^{n} f(z+n-k)(1+a)^{k}$ where $C_{k}^{n}=\frac{n!}{(n-k)!k!}$ and from the results of Proposition 3 and 4, we have the following Proposition (6) (a) and (b) respectively.

Proposition 6. (a) Monodiffric difference equation of the second order
$\sum_{k=0}^{2}(-1)^{k} C_{k}^{2} f(z+2-k)(1+a)^{k}=0$ has monodiffric general solution of the form $f(z)=c_{0} e^{a, z}+c_{1} \frac{d}{d a} e^{a, z}$.
(b) Monodiffric difference equation of the third order $\sum_{k=0}^{3}(-1)^{k} C_{k}^{3} f(z+3-k)(1+a)^{k}=0$ has monodiffric general solution $f(z)$ $=c_{0} e^{a, z}+c_{1} \frac{d}{d a} e^{a, z}+c_{2} \frac{d^{2}}{d a^{2}} e^{a, z}$,
where the coefficients $c_{i}(i=0,1,2)$ are arbitrary constants.
In general, we can extend to the n^{\prime} th order monodiffric homogeneous difference equation. Let $E(a, z)=e^{a, z}, E^{(n)}(a, z)=\frac{d^{n}}{d a^{n}} e^{a, z}$ for $n \in N$, by induction we will obtain $E^{(n)}(a, z) \in M(D)$. Suppose it is true for $n=k$, thus $M E^{(k)}(a, z)=0$ for all $z \in D$, then

$$
\begin{aligned}
& (i-1) E^{(k)}(a, z)+E^{(k)}(a, z+i)-i E^{(k)}(a, z+1)=0 \\
& (i-1) E^{(k)}(a+h, z)+E^{(k)}(a+h, z+i)-i E^{(k)}(a+h, z+1)=0 .
\end{aligned}
$$

Subtracting the first from the second of above equalities and dividing by h, we have

$$
\begin{aligned}
& (i-1) \frac{E^{(k)}(a+h, z)-E^{(k)}(a, z)}{h}+\frac{E^{(k)}(a+h, z+i)-E^{(k)}(a, z+i)}{h} \\
& \quad-i \frac{E^{(k)}(a+h, z+1)-E^{(k)}(a, z+1)}{h}=0
\end{aligned}
$$

Tending h to 0 , we see that

$$
\begin{aligned}
& (i-1) E^{(k+1)}(a, z)+E^{(k+1)}(a, z+i)-i E^{(k+1)}(a, z+1)=0 \\
& M E^{(k+1)}(a, z)=0 \quad \text { for all } z \in D .
\end{aligned}
$$

Thus we obtain:
Proposition 7. $E^{(n)}(a, z)$ is a monodiffric function for $n=0,1,2, \cdots$.
PRoposition 8. $\quad\left(D_{z}-a\right)^{n} E^{(n-1)}(a, z)=0 \quad$ for $n=1,2, \cdots$.
Proof. It is true for $n=1,2$. By induction we suppose it is true for $n=k$, i. e. $\left(D_{z}-a\right)^{k} E^{(k-1)}(a, z)=0$.
Fixing z and differentiating with respect to a, we have

$$
\left(D_{z}-a\right)^{k} E^{(k)}(a, z)=k\left(D_{z}-a\right)^{k-1} E^{(k-1)}(a, z)
$$

Applying $D_{z}-a$, we have

$$
\left(D_{z}-a\right)^{k+1} E^{(k)}(a, z)=k\left(D_{z}-a\right)^{k} E^{(k-1)}(a, z)=0 . \quad \text { q. e.d. }
$$

By the same idea, we get the following :
Theorem 2. Monodiffric homogeneous difference equation of the n^{\prime} th order $\sum_{k=0}^{n}(-1)^{k} C_{k}^{n} f(z+n-k)(1+a)^{k}=0$ has monodiffric general solution $f(\dot{z})=\sum_{k=0}^{n-1}$ $c_{k} \frac{d^{k}}{d a^{k}} e^{a, z}$ where the coefficients $c_{k}(k=0,1, \cdots, n-1)$ are arbitrary constants.

From Theorem 1 and Theorem 2, we can get the general case which is stated as follows.
THEOREM 3. The general solution to the homogeneous monodiffric difference equation of the n^{\prime} th order

$$
F^{(n)}(z)+c_{n-1} F^{(n-1)}(z)+\cdots+c_{1} F^{\prime}(z)+c_{0} F(z)=0
$$

is

$$
F(z)=\sum_{k=1}^{p} \sum_{j=0}^{m_{k}-1} B_{k j} \frac{d^{j}}{d a_{k}^{j}} e^{\boldsymbol{x}_{k}, z}
$$

where $a_{1}, a_{2}, \cdots, a_{p}$ with multiplicities $m_{1}, m_{2}, \cdots m_{p}$ respectively are the roots of
$a^{n}+c_{n-1} a^{n-1}+\cdots+c_{1} a+c_{0}=0$ and the coefficients $B_{k j}$ are arbitrary constants.

References

[1] G. Berzsenyi: Convolution product of monodiffric functions, J. Math. Anal. 37 (1972), 271-287.
[2] R. P. Isaacs: Monodiffric functions, Nat. Bur. Standards, Appl. Math. Ser 18 (1952), 257-266.
[3] R. P. Isaacs: A finite difference function theory, Universidad Nacional Tucuman Revista 2 (1941), 177-201.

Department of Mathematics
Chung Yuan Christian College of Science
and Engineering
Chung Li, Taiwan, China

