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0. Introduction.

The Banach algebras A^{p}(G) of functions with Fourier transforms in
L^{p}(\hat{G}) have been thoroughly studied since they were introduced about ten
years ago by R. Larsen et al.. An excellent survey can be found in [7].
Recently L. Y. H. Yap [11] has proposed a generalization of the A^{p}(G)

algebras, namely, the algebras A(p, q)(G) of integrable functions such that
the Fourier transforms belong to the Lorentz space L(p, q)(\hat{G}). The A(p, q)
algebras do not seem to behave markedly different from the A^{p}(G) algebras,
but we shall provide proofs for the following, certainly not surprising, facts:
The A(p, q)(G) algebras are distinct for any admissible pair (p, q), and there
exist singular measures with Fourier transforms in L(2, q) for all q>2 .
This will generalize the corresponding results for the A^{p}(G) algebras, see
[8] and [10], and will answer a question by H. C. Lai [5].

1. Preliminaries.

Let G be a locally compact Abelian group with dual group \hat{G} . The
spaces of p-integrable functions on G are denoted by L^{p}(G), 1\leq p\leq\infty , and
M(G) denotes the Banach space of bounded regular Borel measures. The
spaces of continuous functions with compact support and continuous func-
tions vanishing at infinity are denoted by C^{c}(G) and C^{o}(G), respectively.
The pseudomeasures are denoted P(G)(P(G)\cong L^{\infty}(\hat{G})). For a measurable
function f on a measure space (X, m), let \lambda_{f} : [0, \infty)arrow[0, \infty] be the distri-
bution function of f, that is

\lambda_{f}(x)=m(t;|f(t)|>x) .
The nonincreasing rearrangement of f is defined by

f^{*}(t)= \inf\{x>0 ; \lambda_{f}(x)\leq t\}(

(with the convention inf \emptyset=\infty ).
The Lorentz space L(p, q)(X) consists of all functions f such that ||f||_{(p,q)}^{*}

<\infty where
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(1. 1) ||f||_{(p,q)}^{*}=

.
( \frac{q}{p}\int_{0}^{\infty}(t^{\frac{1}{p}}f^{*}(t))^{q}\frac{dt}{t})^{\frac{1}{q}}

: 0<p, q<\infty

\sup_{t>0}t^{\frac{1}{p}}f^{*}(t) , 0<p\leq\infty , q=\infty

We note that if 1\leq p\leq\infty , ||f||_{(p,p)}^{*}=||f||_{L^{p}(X)} . Moreover, if 1<p<\infty and
1\leq q\leq\infty , then L(p, q) can be equipped with a norm ||||_{(p,q)} equivalent to
||||_{(p,q)}^{*} which makes L(p, q) into a Banach space ( ||||_{(p,q)}^{*} is not generally
a norm, but is easier to handle). We refer to Hunt [2] for further pr0-

perties of L(p, q) spaces. It will be convenient to introduce an ordering
for the pairs (p, q):(p_{1}, q_{1})<(p_{2}, q_{2}) if i) p_{1}<p_{2} or ii) p_{1}=p_{2} and q_{1}<q_{2} . Fol-
lowing Yap [11], we now define

A(p, q)=\{f\in L^{1}(G);\hat{f}\in L(p, q)(\hat{G})\}

and
B(p, q)=L^{1}(G)\cap L(p, q)(G) .

A Segal algebra S on a nondiscrete locally compact Abelian group is
a dense subalgebra of L^{1}(G) which is a Banach algebra under some norm
||||_{S} such that

i) if f\in S, then f_{x}\in S for all x\in G where f_{x}(t)=f(t-x).
ii) ||f||_{L^{1}(G)}\leq||f||_{S} for all f\in S.
iii) ||f_{x}||_{S}=||f||_{S} for all f\in S, x\in G .
iv) ||f_{x}-f_{y}||0\tilde{xarrow y} for all f\in S.

PROPOSITION 1. 1 For 1<p<\infty and 1\leq q<\infty

i) A(p, q) is a Segal algebra with respect to the norm
||f||_{A(p,q)}=||f||_{L^{1}(G)}+||\hat{f}||_{L(p,q)(\hat{G})}(

ii) B(p, q) is a Segal algebra with respect to some norm which is
equivalent to

||f||_{B(p,q)}=||f||_{L^{1}(G)}+||f||_{L(p,q)(G\rangle} .
A complete proof can be found in [11].

2. Proper Inclusions of A(p, q) and B(p, q) Algebras.

Inclusions of A(p, q) and B(p, q) algebras are easily established. How-
ever, as in the case of the A^{p}-algebras [10], proper inclusions require some
arguments. The following technical lemma establishes a sequence of func-
tions analogous to the well known de la Vallee-Poussin kernel on a general
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nondiscrete locally compact Abelian group. Tewari and Gupta’s result
A_{\#}^{p\subset _{-}}A^{q} if q>p will be an immediate consequence of Lemma 2. 1 and this
simplifies to some extent their proof [10].

Lemma 2. 1: Let G be a nondiscrete locally campact Abelian group. Then
there exists a sequence \{f_{i}\}_{1}^{\infty}\subset L^{1}(G) such that supp \hat{f}_{i}\subset K_{i}’ and \hat{f}_{i}(\xi)=1

for \xi\in K_{i} where K_{i} and K_{i}’ are compact sets in \hat{G} and
i) \lim m(K_{i})=\infty

ii) \vec{m}(K_{i}’)\leq C_{1}m(K_{i})i\infty i=1,2, \cdots

iii) 0\leq\hat{f}_{i}\leq 1\backslash

, i=1,2, \cdots

iv) \sup_{t}||f_{i}||_{L^{1}(G)}\leq C_{2} .

PROOF : The general structure theorem asserts that G is topologically
isomorphic to R^{n}\cross G_{o} where G_{o} contains an open compact subgroup J.
Since G is nondiscrete, either n>0 or J is infinite. On R^{1} we prove the
lemma by means of functions from the de la Vallee-Poussin kernel \{V_{\alpha}\}_{\alpha>0}.
Indeed, ||V_{a}||_{L^{1}(R)}\leq 3 for all \alpha and

\hat{V}_{\alpha}(\xi)=

\lrcorner 1 if |\xi|\leq\alpha

2\alpha-|\xi| if \alpha<|\xi|<2\alpha

- 0 if |\xi|\geq 2\alpha

On R^{n},n\geq 1 , the result follows with C_{1}=2^{n} and C_{2}=3 if we choose

(2. 1) f_{i}(x_{1^{ }}, \cdots, x_{n})=\prod_{k=1}^{n}V_{i}(x_{k}) ,

(2. 2) K_{i}= \prod_{k=1}^{n}[-i, i],\cdot K_{i}’= \prod_{k=1}^{n}[-2i, 2i] .

Let J^{\perp} be the annihilator group of J in \hat{G}_{o} and let \chi_{J} be the characteristic
function of J. Since J^{1}\simeq\hat{G_{o}/}\overline{J} and J is open, J^{\perp} is compact. Furthermore,
\hat{X}_{\overline{\Gamma}}-m(J)\chi_{J^{\perp}} . So, if G\simeq R^{n}\cross G_{o} with n\geq 1 , we let

f_{i}(x, y)= \prod_{k=1}^{n}V_{i}(x_{k})\cdot\frac{\chi_{J}(y)}{m(J)} , x\in R^{n} , y\in G_{o} .

K_{i}= \prod_{k=1}^{n} [-i, ^{i}]\cross J^{\perp}

K_{i}’= \prod_{k=1}^{n}[-2i, 2i]\cross J^{\perp}

i=1,2, \cdots .
If n=0 we first observe that it is enough to establish the lemma on J.
Consider this for the moment as done. Extend the functions \{f_{i}\}_{1}^{\infty}\subset L^{1}(J)
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to G by defining \tilde{f}_{i}(x)=f_{i}(x) if x\in J,\tilde{f}_{i}(x)=0 if x\not\in J. Then

\hat{f}_{i}(\xi)=\{

1 if \xi+J^{\perp}\in K_{i}(\subset\hat{J})

0 if \xi+J^{\perp}\in K_{i}’(\subset\hat{J}) .
But K_{i} and K_{i}’ are finite sets and m(J^{\perp})<\infty , and the lemma follows.

Let us turn to J and suppose first that J is totally disconnected. Then
J has a neighbourhood basis at the identity consisting of open and compact
subgroups. As J is not discrete, we are able to find a sequence \{U_{i}\}_{1}^{\infty} of
open and compact subgroups such that m(U_{i})0\vec{i} . From the Parceval for-
mula we infer that m(U_{i}^{\perp})\infty\vec{i} and the lemma follows with f_{i}=m(U_{i})^{-1}\chi_{U_{i}}

and K_{i}=K_{i}’=U_{i}^{\perp} .
Finally, if J is not totally disconnected, J contains an element of infi-

nite order, say g ([9], p. 47). Let K_{i}=\{jg\}_{f=-i}^{i} . We now invoke Theorem
2. 6. 1 in [9] with V=C=K_{i} . It follows that there exists a f_{i} such that
0\leq f_{i}\leq 1,\hat{f}_{i}(\xi)=1 on K_{i} and 0 outside K_{i}’ , where K_{i}’=K_{i}+K_{i}+K_{i} . More-
order, ||f_{i}||_{L^{1}(G)}\leq\{m(K_{i}+K_{i})/m(K_{i})\}^{f}=\sqrt{2} . This finishes the proof.

THEOREM 2. 2: Let G be a nondiscrete locally compact Abelian group and
let 1<p_{1} , p_{2}<\infty , 1\leq q_{1} , q_{2}\leq\infty . Then

i) A(p_{1}, q_{1})\subset A(p_{2}, q_{2})

ii) B(p_{2}, q_{1})\subset B(p_{1}, q_{2})

if (p_{1}, q_{1})\leq(p_{2}, q_{2}). Furthermore, the inclusions are proper unless (p_{1}, q_{1})=

(p_{2}, q_{2}).

PROOF: Consider the B(p, q) algebras. If p_{1}=p_{2}=p, then B(p, q_{1})\subset B(p, q_{2})

if q_{1}<q_{2} as L(p, q_{1})\subset L(p, q_{2})[2] . Fix p_{1}<p_{2} and suppose that f\in B(p_{2}, q_{1}).
Since f\in B(p_{2}, \infty)\cap L^{1}(G), there exist constants M_{1} and M_{2} such that f^{*}(t)

<M_{1}t^{-1/p_{2}} and f^{*}(t)<M_{1}t^{-1} . Hence, assuming q_{2}<\infty ,

\int^{\infty\infty}(t^{\frac{1}{p_{1}}}f(t))^{q}\underline’\frac{dt}{t}\leq\int_{0}^{1}(tM_{1}(\frac{1}{p_{1}}-\frac{1}{p_{2}}))^{q_{2}}\frac{dt}{t}+\int_{1}^{\infty}(t^{\frac{1}{p_{1}}}\frac{M_{2}}{t})^{q_{2}}\frac{dt}{t}<\infty

,

which shows that f belongs to B(p_{1}, q_{2}). Also, this proves the inclusion if
q_{2}=\infty : B(p_{2}, q_{1})\subset B(p_{1}, q_{0})\subset B(p_{1}, \infty), q_{0}<\infty . It is evident from the similar
result for the L(p, q) spaces that B(p, q)\neq B(p’, q’) if (p, q)\neq(p’, q’) : All we
have to observe is that G was assumed to be nondiscrete, and therefore
it is possible to find a countable family of pairwise disjoint measurable
subsets with finite measure which is contained in a fixed compact set of G.
As every function in L(p, q) with compact support is integrable, we may
then proceed as in [12].
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We turn to the A(p, q) algebras. Arguing as above, A(p, q_{1})\subset A(p, q_{2})

if q_{1}>q_{2} . Let p_{1}<p_{2} and fix f\in A(p_{1}, q_{1}). Since \hat{f} is bounded and belongs
to L(p_{1}, \infty)(\hat{G}), there are constants M_{1} and M_{2} such that \hat{f}^{*}(t)<M_{1} and
\hat{f}^{*}(t)<M_{2}t^{-1/p_{1}} . Thus, if q_{2}<\infty ,

\int_{0}^{\infty}t^{\frac{q_{2}}{p_{2}}}\hat{f}^{*}(t)^{q_{2}}d-1t\leq\int_{0}^{1}t^{\frac{q_{2}}{p_{2}}1}M_{1}^{q_{2}}dt+\int_{1}^{\infty}t^{(\frac{1}{p_{2}}\frac{1}{p_{1}})}M_{2}^{q_{2}}-q_{2}-1dt

<\infty’.
and f\in L(p_{2}, q_{2})(\hat{G}). The case q_{2}=\infty is handled as above.

Fix 1<p, q<\infty . By means of Lemma 2. 1 we shall construct an f
such that

f \in\bigcap_{r>q}A(p, r)\backslash A(p, q) .

If \{E_{i}\}_{1}^{\infty} is a pairwise disjoint family of measurable sets with finite measure
and \{c_{k}\}_{1}^{\infty} is a sequence of positive real numbers tending monotonically to

zero, the nonincreasing rearrangement of h= \sum_{i=1}^{\infty}c_{i}\chi_{E_{i}} is given by h^{*}(t)=c_{n}

if a_{k-1}\leq t<a_{k} , k=1,2, \cdots where a_{o}=0 and a_{k}= \sum_{i=1}^{k}m(E_{i}). Consequently,

||h||^{*}(\begin{array}{l}qp_{\prime}q\end{array}) = \sum_{k=1}^{\infty}c_{k}^{q}(a_{k}^{q/p}-a_{k-1}^{q/p}) .

See [2].

Start with f_{1} from Lemma 2. 1 and let c_{1}=m(K_{1})^{-} \frac{1}{p} . Going if neces-
sary to a subsequence which we again denote by \{f_{i}\}_{1}^{\infty},\cdot we inductively
choose c_{i} and f_{i} such that

(2. 3) ( \frac{c_{i}}{c_{i-1}})^{b}\leq\frac{1}{2} ,

(2. 4) c_{i}^{q}(a_{i}^{q/p}-a_{i1}^{q/p})= \frac{1}{i} , i=1,2, \cdots

where a_{o}=0 , a_{i}= \sum_{k=1}^{i}m(K_{k}).
(Recall that we may find f_{i} such that K_{i} has an arbitrary large measure).

Let \{\gamma_{i}\}_{1}^{\infty} be a sequence of characters such that \{K_{i}’-\gamma_{i}\}_{1}^{\infty} are pairwise
disjoint and let

f= \sum_{i=1}^{\infty}c_{i}\gamma_{i}f_{i}|

The series converges in L^{1}(G) since c_{i} \leq\frac{1}{2^{i/q}}c_{1} according to (2. 3). We

observe that
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\sum_{i=1}^{\infty}c_{i}\chi_{K_{i}}(\xi)\leq\hat{f}(\xi)\leq\sum_{i=1}^{\infty}c_{i}\chi_{K_{\acute{i}}}(\xi)

and hence,

( \sum_{i=1}^{\infty}c_{i}\chi_{K_{i}})^{*}\leq f^{*}\leq(\sum_{i=1}^{\infty}c_{i}\chi_{z_{\acute{\acute{l}}}})^{*}

For simplicity, let g= \sum_{i=1}^{\infty} ci \chi_{K_{i}} and b_{o}=0, b_{k}= \sum_{i=1}^{k}m(K_{i}’). From Lemma 2. 1

we conclude that b_{k}\leq C_{1}a_{k} . If t\in[b_{k-1}, b] , then

g^{*}( \frac{t}{C_{1}})\geq c_{k}=(\sum_{i=1}^{\infty}c_{i}\chi_{K_{\acute{i}}})^{*}(t) .

Now,

\int_{0}^{\infty}t^{\frac{r}{p}1}g^{*}(-\frac{t}{C_{1}})^{r}dt=C^{\frac{r}{1p}}\int^{\infty\infty}t^{\frac{r}{p}1}g^{*}(t)^{r}d-t

which shows that \hat{f} belongs to L(p, r) if and only if g\in L(p, r). g does
not belong to L(p, q) as

||g||_{(p,q)}^{*_{q}}= \sum_{i=1}^{\infty}c_{i}^{q}(a_{i}^{q/p}-a_{i-1}^{q/p})=\sum_{i=1}^{\infty}\frac{1}{i}=\infty .

By the Mean Value Theorem,

a_{i}^{r/p}-a_{i-1}^{r/p} \leq\frac{r}{q}(a_{i}^{q/p}-a_{i-1}^{q\prime p})\cdot a^{\frac{r}{ip}\frac{q}{p}}-’.

and thus,

(2. 5) ||g||_{(p,r)}^{*}r= \sum_{i=1}^{\infty}c_{i}^{r}(a_{i}^{r/p}-a_{i-1}^{r/p})

\leq\frac{r}{q}\sum_{i=1}^{\infty}c_{i}^{r-q}c_{i}^{q}(a_{i}^{q/p}-a_{i-1}^{q/p})a^{\frac{r}{ip}}-\frac{q}{p}

= \frac{r}{q}\sum_{i=1}^{\infty}\frac{1}{i}(c_{i}^{q}a_{i}^{q/p})^{\frac{r}{q}}-1

Since ( \frac{c_{i}}{c_{s}})^{q}\leq 2^{-(i-s)} by (2. 3), we may estimate c_{i}^{q}a_{i}^{q/p} as follows:

c_{i}^{q}a_{i}^{q/p}=c_{i}^{q} \sum_{s=1}^{i}(a_{s}^{q\prime p}-a_{s1}^{q\underline{/}p})

=c_{i}^{q} \sum_{s=1}^{i}\frac{1}{s}c_{s}^{-q}

\leq\sum_{s=1}^{i}\frac{1}{s}\frac{1}{2^{i-s}}
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\leq\sum_{s=1}^{[/\overline{i}]}\frac{1}{s}\frac{1}{2^{i-s}}+,\sum_{s=[_{\overline{i}}+1]}^{i}\frac{1}{s}\frac{1}{2^{i-s}}

\leq\frac{2}{2^{i-\ddagger\prime_{\overline{i}J}}}+\frac{2}{\sqrt{i}+1}

\leq\frac{4}{\sqrt i} .

This may be inserted in (2. 5), and the theorem follows.

3. Singular Measures with Fourier Transforms in L(Z, q), q>2.
In [1] Hewitt and Zuckerman construct singular measures with abs0-

lutely continuous convolution squares by generalizing to compact Abelian
groups the classical Riesz products. In this section we shall utilize their
technique to construct a singular measure \mu such that \hat{\mu}\in L(2, q)(\hat{G}) for all
q>2 . Of course, a measure \nu such that \hat{\nu}\in L(p, q)(\hat{G}) for (p, q)\leq(2.2) is
absolutely continuous (with respect to Haar measure). This will answer
a question by H. \dot{C}. Lai [5]. There is a very simple expression for the
L^{p}-norm of the Fourier transform of a Riesz product, but no simple formula
seems to be possible for the L(p, q)-norm. However, one can obtain precise
estimates for special kinds of products.

Let G be a compact Abelian group. A finite set of characters \{\gamma_{1}, \cdots ,
\gamma_{m}\} is said to be dissociate if it does not contain 1 and the equality

\gamma_{i^{1}}\gamma_{2^{2}}*.\gamma_{m^{m}}J\cdot.=1

where \epsilon_{i}\in\{-2, -1, 0, 1, 2\} implies

\gamma i^{1}=\gamma_{2^{2}}^{\epsilon}=\ldots=\mathcal{T}_{m}^{*}m=1

The order o(\gamma) of a character \gamma is the smallest number n such that \gamma^{n}=1 ,

and \infty if there is no such number. An infinite set of characters is said
to be dissociate if every finite subset is dissociate. If \{\gamma_{i}\}_{1}^{\infty} is a dissociate
set, then the Riesz product

\prod_{1=i}^{\infty}(1+\beta_{t}\gamma_{i}+\overline{\beta}_{i}\overline{T}_{i})

where | \beta_{i}|\leq\frac{1}{2} and real if o(\gamma_{i})=2, | \beta_{i}|\leq\frac{1}{2} otherwise, converges in the

weak-*topology to a positive measure \mu . \mu is singular if G is T or a 0-

dimensional metrizable group and \sum_{i=1}^{\infty}|\beta_{i}|^{2}=\infty[1] . The L^{2}(\hat{G})-norm of \hat{\mu} is

easily calculated
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||\hat{u}||_{L^{2}(\hat{G})}^{2}=\{

\prod_{i=1}^{\infty}(1+2|\beta_{1}|^{2}) if o(\gamma_{i})>2 , i=1,2, \cdots

\prod_{i=1}^{\infty}.(1+|2\beta_{i}|^{2}) if o(\gamma_{i})=2 , i=1,2, \cdots

Thus, \hat{\mu} belongs to L^{2}((\begin{array}{l}\wedge\neg J\end{array}) if and only if \sum_{i=1}^{\infty}|\beta_{i}|^{2}<\infty .
It was proved in [1] that if G is a 0-dimensional metrizable group,

then \acute{\iota J}\wedge contains countable dissociate sets where all characters have orders
either strictly greater than 2 or all equal to 2. On Z\simeq\hat{T}, \{3^{k}\}_{k=1}^{\infty} is a well
known dissociate set.

We start with a couple of lemmas. The first one was also noted when
G=T in [3].

LEMMA 3. 1. Let \{\gamma_{i}\}_{1}^{N} be a dissociate set and let \beta>0 . Defifine
R_{N}= \prod_{i=1}^{N}(1+\beta(\gamma_{i}+\overline{\gamma}_{i})) .

Then the polynomial R_{N} has 2^{s}(\begin{array}{l}Ns\end{array}) distinct terms with coefficient \beta^{s} if o(\gamma_{i})>2

for all i, and (\begin{array}{l}Ns\end{array}) distinct terms with coefficient (2\beta)^{s} if o(\gamma_{i})=2 for all i.
s=0,1, \cdots , N.
PROOF: If o(\gamma_{i})=2, i=1, \cdots , N, then \mathcal{T}_{i}=\overline{\gamma}_{i} and R_{N}= \prod_{i=1}^{N}(1+(2\beta)\gamma_{t}). Clearly,

the number of terms consisting of a product of exactly s characters from
\{\gamma_{i}\} is (\begin{array}{l}Ns\end{array}) . If o(\gamma_{i})>2 we proceed by induction. The assertion is obvi-
ously true for all N if s=0 or N. Suppose the formula holds with N=N_{o}.

R_{N_{O}+1}=(1+\beta(\gamma_{N_{O}+1}+\overline{\gamma}_{N_{O}+1}))R_{N_{o}} .
Now,

\# terms in R_{N_{O}+1} with coef. \beta^{s}

= ( \# terms in R_{N_{O}} with coef. \beta^{s})

+2( \# terms in R_{N_{O}} with coef. \beta^{s-1} )

= 2^{s} (\begin{array}{l}N_{o}s\end{array})+2\cdot 2^{s-1} (\begin{array}{l}N_{o}s-1\end{array})=2_{s}(\begin{array}{l}N_{o}+1s\end{array}) .

Define S_{-1}^{N}=0 , S_{k}^{N}= \sum_{s=0}^{k}2^{s}(\begin{array}{l}Ns\end{array}) , k=0,1, \cdots , N. Then

S_{k}^{N}=(1+2 (\begin{array}{l}N1\end{array})+\cdots+2^{k}(\begin{array}{l}Nk\end{array}))

<2(1+N+N^{2}+\cdots+N^{k})

\leq 4N^{k} if N\geq 3t
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LEMMA 3. 2: Let \{\gamma_{i}\}_{1}^{\infty} be an infifinite dissociate set such that o(\gamma_{i})>2, i=
1, 2,.. and let f be a trigonometric polynomial. Defifine R= \prod_{i=1}^{N}(1+\beta(\gamma_{i}+\overline{\gamma}_{i})) ,

\beta>0 . Fix \alpha>0 and let 2\beta^{2}N=\alpha. Then

\lim_{Narrow\infty}||\hat{fR}||_{(2.q)}^{*}q\leq e^{\alpha^{q/2}}||\hat{f}||_{(2,q)}^{*}q

when q\geq 2 .
PROOF: Let N>N_{o} where N_{o} is large enough to ensure that \beta_{0}=(\alpha/2N_{o})^{t}

is less than the modulus of the smallest nonzero coefficient in f. Suppose
supp \hat{f}^{*}=[0, a] . Since \beta<\beta_{0} it is easy by means of Lemma 3. 1 to write
down \hat{fR}^{*} explisitly :

\hat{fR}^{*}(t)=\{

\beta^{k}f^{*}(\frac{t-aS_{k-1}^{N}}{S_{k}^{N}-S_{k-1}^{N}}) if aS_{k-1}^{N}\leq t<aS_{k}^{N}

0 if t\geq 3^{N}a .
Thus,

|| \hat{fR}||_{(2,q)}^{*}q=\sum_{k=0}^{N}\frac{2}{q}\int_{as_{k-1}^{N}}^{as_{k}^{N}}t^{\frac{q}{2}-1}\beta^{kq}\hat{f}^{*}(\frac{t-aS_{k-1}^{N}}{S_{k}^{N}-S_{k-1}^{N}})^{q}dt

= \sum_{k=0}^{N}\frac{2}{q}\int_{0}^{a}(\tau(S_{k}^{N}-S_{k-1}^{N})+aS_{k-1}^{N})^{q}2-1\beta^{kq}\hat{f}^{*}(\tau)^{q}(S_{k}^{N}-S_{k-1}^{N})d\tau

= \frac{2}{q}\sum_{k=0}^{\infty}\int_{0}^{a}h_{N}(k, t)\hat{f}^{*}(t)^{q}dt

where

h_{N}(k, t)=\{

(t(S_{k}^{N}-S_{k-1}^{N})+aS_{k-1}^{N})^{\frac{q}{2}1}-\beta^{kq}(S_{k}^{N}-S_{k-1}^{N}) , k=1, \cdots , N ,

0 if k>N .

For fixed k, S_{k-1}^{N} \cdot(S_{k}^{N}-S_{k-1}^{N})^{-1}<k!\frac{4N^{k-1}}{(N-k+1)^{k}}=o(\frac{1}{N}) ,

and

\lim_{Narrow\infty}h_{N}(k, t)=t^{\frac{q}{2}1}-\lim_{Narrow\infty}\beta^{kq}2^{k^{\frac{q}{2}}} (\begin{array}{l}Nk\end{array})q2

=t^{2}q-1(\begin{array}{l}q\alpha^{2}\end{array})k_{\frac{1}{(k!)^{q/2}}} .

Moreover,
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h_{N}(k, t)\leq a^{\frac{q}{2}-1}(S_{k}^{N})^{\frac{q}{2}1}-\beta^{kq}2^{k}
(\begin{array}{l}Nk\end{array})

\leq(4a)^{\frac{q}{2}-1}N^{(\frac{q}{2}1)k}-\beta^{kq}2^{k}\frac{N^{k}}{k!}

.

=(4a)^{q}-2 \sim 1(\alpha^{\frac{q}{2}})^{k}\frac{1}{k!}

=H(k, \tau) .
But H\hat{f}^{*q} is Z^{+}\cross[0, a]-integrable and it follows from dominated conver-
gence that

\lim_{Narrow\infty}||\hat{fR}||_{(2,q)}^{*q}.=\frac{2}{q}\sum_{k=0}^{\infty}\int_{0}^{a}t^{\frac{q}{2}}-1(\alpha^{\frac{q}{2}})^{k}\frac{1}{(k!)^{q/2}}\hat{f}^{*}(t)^{q}dt

= \sum_{k=0}^{\infty}(\alpha^{\frac{q}{2}})^{k}\frac{1}{(k!)^{q/2}}||\hat{f}||_{(2,q)}^{*q}

\leq e^{\alpha^{q,2}}||\hat{f}||_{(2,q)}^{*q}’ .
If the set \{\gamma_{i}\}_{1}^{\infty} consists entirely of characters of order 2, Lemma 3. 2

needs to be slightly modified: The conclusion then holds with \alpha defined as
\alpha=(2\beta)^{2}N. If q=2, the inequality turns into an’ equality as is easily seen.

The proof of the following theorem is based on the development in [1].

THEOREM 3. 3: Let G be a nondiscrete locally compact Abelian group.
Then there exists a positive singular measure \mu\in M(G) such that

\hat{\mu}\in\bigcap_{q>2}L(2, q)(\hat{G}) .

PROOF: Assume first that G is either T or a 0-dimensional compact
metric group. Let \{\gamma_{i}\}_{1}^{\infty} be a countable dissociate set of characters which
we assume have orders greater than 2. The argument when o(\gamma_{i})=2 for
all i is quite analogous and is omitted. Let \{q_{s}\}_{1}^{\infty} be a sequence tending
monotonically to 2 from above. We construct \mu by a repeated use of
Lemma 3. 2, namely,

\mu=\prod_{s=1}^{\infty}R_{s}

where

R_{1}=(1+ \frac{1}{4}(\gamma_{1}+\overline{\gamma}_{1})) and R_{s}= \prod_{\kappa=1}^{N_{s}}(1+\beta_{s}(\gamma_{k}^{s}+\overline{\gamma}_{k}^{s})) s=2,3, \cdots

Here 2N_{s} \beta_{\epsilon}^{2}=\frac{1}{s} and \{\gamma_{n}^{s}\} consist of distinct elements from \{\gamma_{i}\}_{1}^{\infty} . Moreover,

N_{s} is chosen (inductively) large enough to ensure that
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(3. 1) ||( \prod_{r=1}^{s\hat{-1}}R_{r})R_{s}||_{(2,q_{i})}^{*q_{i}}\leq e^{2^{-\beta}}e^{(\frac{1}{s})^{\frac{qi}{2}}}||\hat{\prod_{r=1}^{s-1}R},.||_{(2,q_{i})}^{*q_{i}} for i=1,2, \cdots , s

and

(3. 2) (1+2 \beta_{s}^{2})^{N_{s}}\geq\exp(-2^{-s}+\frac{1}{s}) .

Now,

||. \hat{u}||_{2}^{2}=\prod_{s=1}^{\infty}(1+2\beta_{s}^{2})^{N_{S}}

\geq\exp(\sum_{s=1}^{\infty}(-2^{-s}+\frac{1}{s}))

=\infty

Thus \mu is a positive singular (and continuous) measure [1, Th. 4. 4].
If we fix a q>2, there is a q_{i_{O}} such that q_{i_{O}}<q and we conclude from

(3. 1) that

||\hat{\mu}||^{*q}(\begin{array}{l}o2,q_{io}\end{array})

\leq||\hat{[mathring]_{\prod_{s=1}^{i}}R}_{s}||_{(2,qi_{0})}^{*q_{io}} . exp (1+ \sum_{s=i_{O}}^{\infty}(\frac{1}{s})^{qio^{\prime 2}})

<\infty t

Consequently, \hat{\mu}\in L(2, q_{i_{o}})(\hat{G})\subset L(2, q)(\hat{G}) .
The extension to arbitrary compact Abelian groups goes exactly as

the proof of Th. 5. 3 in [1] and is omitted.
We then turn to R^{n}, n\geq 1 . The construction in [1] Th. 5. 1 seems

to be less convenient, so we propose a somewhat simpler approach which
gives a measure with similar properties. Let \mu\in M(T^{n}) have the desired
properties and let \mu_{0} be the unbounded periodic extension of \mu to R^{n} di-
vided by (2\pi)^{n}. The distributional Fourier transform of \mu_{0} is \hat{\mu}_{o}=\sum_{i\epsilon z^{n}}\hat{\mu}(i)\delta_{i}

where \delta_{i} is the Dirac mesure at the point i. \mu is singular with respect
to the Haar measure since m( supp\mu_{0})=\sum_{i\in Z^{n}}m(Q+i)\cap supp\mu_{0})=0 where Q

is the cube \prod_{1}^{n} (-\pi, \pi). Let \phi be a function (for example made from the

Fejer kernel) such that \hat{\phi}(0)=1,0\leq\hat{\phi}\leq 1 , supp \hat{\phi}\subset\prod_{1}^{n}(_{-}\frac{1}{2}, \frac{1}{2}), \phi\geq 0, and
\sum_{i\in z^{n}}\sup_{t\epsilon Q+i}\phi(t)<\infty . A standard partition of unity argument shows that the
measure \tilde{\mu} defined by

\int_{R^{n}}fd\tilde{\mu}---\int_{R^{n}}f(t)\phi(t)d\mu_{0}(t)
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is bounded. Furthermore, \hat{\tilde{\mu}}(\xi)=\sum_{i\epsilon z^{n}}\hat{\mu}(i)\hat{\phi}(\xi-i).
Since supp \tilde{\mu}\subset supp\mu_{0},\tilde{\mu} is singular. Also, the shape of \hat{\phi} enables us to
conclude that

\acute{\grave{\tilde{\mu}}}^{*}(t)\leq(\sum_{i\epsilon z^{n}}\hat{\mu}(i)\chi_{E}(\xi-i))^{*}(t)

=\hat{\mu}^{*}(t) .

where E= \prod_{1}^{n}
.

[-^{\frac{1}{2}}, \frac{1}{2}]. Thus \tilde{\mu} has the desired properties.

If G contains an infinite compact open subgroup J, we argue as in
the proof of Th. 5. 4 in [1]: Start with a measure \mu_{0}\in M(J) fulfilling the
requirements in the theorem, and extend \mu_{0} to a bounded measure \mu on
G by

\int_{G}fd\mu=\int_{J}fd\mu_{0}

\mu is obviously positive and singular, and \hat{\mu}(\xi)=\hat{\mu}_{o}(\xi+J^{\perp}) . The distribution
function of \hat{\mu} is consequently

\lambda_{\beta}(t)=m\{\xi;\hat{\mu}(\xi)>t\}

=m(J^{\perp})\cdot\lambda_{\beta_{0}}(t) ,

and

\hat{\mu}^{*}(t)=\inf(y ; \lambda_{\beta}(y)\leq t)=\hat{\mu}_{o}^{*}(\frac{t}{m(J^{\perp})}) .

We thus conclude that
||\hat{\mu}||_{(2,q)}^{*q}=m(J^{\underline{\mathfrak{l}}})^{\frac{q}{p}}||\hat{\mu}_{o}||_{(2,q)}^{*q}<\infty

Finally, let G be an arbitrary locally compact group. G is topologically
isomorphic to R^{n}\cross G_{o} . If n=0 we are back to the situation above, so
assume that n\geq 1 . Let again \mu_{0}\in R^{n} be a singular measure as above and
let \lambda be the Haar measure on J extended to a bounded measure on J.
Set \mu=\mu_{0}\cross\lambda. As in the proof of Th. 5. 6 in [1] we see that \mu is singular.
\hat{\mu} has the form

\hat{\mu}(\xi, \eta)=\hat{\mu}_{o}(\xi)\chi_{J^{\perp}}(\eta) , \xi\in\hat{R}^{n} , \eta\in\hat{G}_{o}\tau

Thus,

\lambda_{\beta}(t)=m\{(\xi, \eta);\hat{\mu}_{o}(\xi)\chi_{J^{\perp}}(\eta)\geq t\}

=m(J^{\perp})\lambda_{p_{o}}(t)
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and

\hat{\mu}^{*}(t)=\hat{\mu}_{o}^{*}(\frac{t}{m(J^{\perp})}) .

But this proves that \hat{\mu}\in L(2, q)(\hat{G}) for all q>2 and finishes the proof.
REMARK 3. 4: The extension to R^{n} in the above proof seems to be sim-
pler than the one in Th. 5. 1 of [1]. It is easy to show that if \phi is con-
structed from the Fejer kernel, then supp (\mu*\mu)=R^{n} if supp \mu_{0}*\mu_{0}=T as
required in [1].

4. Multipliers of A(p, q) Algebras.

A multiplier of a commutative Banach algebra A is a bounded linear
operator T on A such that T(ab)=a(Tb) for all a, b\in A . The set of multi-
pliers is denoted by M(A) and is normed by the operator norm. If (A, V)
and (A, W) are Banach modules, then Hom_{A}(V, W) denotes the Banach
space of all continuous module homomorphisms. A Segal algebra S is
a L^{1}(G)-Banach module, and it is well known that Hom_{L^{1}(G)}(S, S)\cong M(S).
Furthermore, T\in M(S) if and only if T(f_{t})=(Tf)_{t} for all f\in S, t\in G where
f_{t}(x)=f(x-t)[6, 4] . Also, a multiplier may canonically be represented by
a pseudomeasure \sigma such that Tf=\sigma*f(\hat{Tf}(\xi)=\hat{\sigma}(\xi)\hat{f}(\xi), \xi\in\hat{C_{J}}). It is clear that
M(G) is contained in M(S) in the sense that convolution with a bounded
measure is a multiplier of S[6, 4] .
DEFINITION 4. 1: A Segal algebra S on a noncompact Abelian group G
satisfifies condition A if for every f\in S, compact set K\subset G, and \epsilon>0, there
exists a fifinite set \{x_{i}\}_{1}^{N}\subset G such that

i) (K+x_{i})\cap(K+x_{f})=\emptyset if i\neq j,\cdot

ii) || \frac{1}{N}\sum_{i=1}^{N}f_{x_{i}}||_{S}\leq||\frac{1}{N}\sum_{i=1}^{N}f_{x_{i}}||_{L^{1}(G)}+\epsilon .

Obviously, S satisfies A if i) and ii) can be obtained for a dense set
of elements in S.
Lemma 4. 2: If a Segal algebra S contains a Segal algebra S_{o} satisfying
A, thm

M(S)-\sim Hom_{L^{1}(G)}(S, L^{1}(G))\simeq M(G) .

PROOF: Since M(G) is contained in M(S) which in turn is contained in
Hom_{L^{1}(G)}(S, L^{1}(G)), it is sufficient to show that M(G)\simeq Hom_{(L^{1}G)}(S, L^{1}(G)).
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The Closed Graph Theorem shows that there is a constant C such that
||f||_{S}\leq C||f||_{S_{O}} for all f\in S_{o} . Fix a T\in Hom_{L^{l}(G)}(S, L^{1}(G)). For a given f\in S_{o\backslash }

let K and \{x_{i}\}_{1}^{N} be large enough to assure that

|| \frac{1}{N}\sum_{i=1}^{N}(Tf)_{x_{i}}||_{L^{1}(G)}\geq||Tf||_{L^{1}(G)}-\epsilon

and

|| \frac{1}{N}\sum_{i=1}^{N}f_{x_{i}}||S_{O} \leq|| \frac{1}{N}\sum_{i=1}^{N}f_{x_{i}}||_{L^{1}(G)}+\epsilon .

Thus,

||Tf||_{L^{1}(G)}- \epsilon\leq||\frac{1}{N}\sum_{i=1}^{N}(Tf)_{x_{i}}||_{L^{1}(G)}

\leq||T||||\frac{1}{N}\sum_{i=1}^{N}f_{x_{i}}||_{s}

\leq C||T||||\frac{1}{N}\sum_{i=1}^{N}f_{x_{i}}||_{S_{O}}

\leq C||T||(||\frac{1}{N}\sum_{i=1}^{N}f_{x_{i}}||_{L^{1}(G)}+\epsilon)

\leq C||T||(||f||_{L^{1}(G)}+\epsilon)

Consequently, ||Tf||_{L^{1}(G)}\leq C||T||||f||_{L^{1}(G)} for all f\in S_{o} . A routine argument
combined with Wendel’s theorem (M(L^{1}(G))\cong M(G)) now finishes the proof.

THEOREM 4. 3: Let G be a nondiscrete locally compact Abelian group and
let (1, \infty)<(p, q)<(\infty, 1) .

i) If G is not compact, then

M(A(p, q))\sim-M(G) .

ii) If G is compact, then

M\{A\{p,q))\sim-P(G) if (p, q)\leq(2,2)

M(G)\neq\subseteq M(A(p, q))\subsetneqq P(G) if (p, q)>(2,2) .

PROOF : The Segal algebra A^{1}=A(1,1)=\{f\in L^{1}(G) ; f\in L^{1}(G)\} is contained
in A(p, q) for all admissible pairs (p, q) (this was also noted in [5]). If G
is not compact, then A^{1} satisfies condition A and i) follows from Lemma
4. 2 [6, p. 204-207].

If G is compact and (p, q)\leq(2,2), then M(A(p, q))\simeq P(G) by a similar
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argument as in the proof of the corresponding result for the A^{p} algebras
[6, p. 207].

It is easily proved that M(A(p’, q’))\subset M(A(p, q)) if (p, q)<(p’, q’).
Hence, M(G)\overline{\sim}M\neq(A^{2p})=M(A(2p, 2p))\subset M(A(p, q)) [6, p. 208].

The second inclusion of ii) is proved if we establish that M(A(2, q))
\subset\Rightarrow P(G) when q>2 . When G is T or a 0-dimensional compact metric
group, the dissociate sets introduced in \S 3 are Sidon sets. We may then
argue as follows: Let E be the set of distinct characters from the dis-
sociate set used in the construction of \mu in Theorem 3. 3. The operator
T represented by \chi_{E} is not a multiplier on A(2, q) for any q>2 . Indeed,
\hat{\mu}\chi_{E}\not\in L^{2}(G) since

|| \hat{\mu}^{\chi_{E}}||_{2}^{2}=\sum_{s=1}^{\infty}2N_{s}\beta_{s}^{2}=\infty

(= \sum_{1}^{\infty}N_{s}(2\beta_{s})^{2}=\infty if o(\gamma_{i})=2 for all i). Therefore T(\mu)\not\in M(G) [6, p. 85].

If \{h_{\alpha}\} is a bounded approximate identity for L^{1}(G) such that \hat{h}_{\alpha}\in C^{t}(\hat{G}),
then ||h_{\alpha}*\mu||_{A(p,q)} is uniformly bounded in \alpha, but ||T(h_{\alpha}*\mu)||_{M(G)} cannot be
uniformly bounded due to the weak compactness of the unit ball in M(G).
On an arbitrary nondiscrete compact Abelian group we argue in a similar
way by using the construction in the proof of Th. 5. 3 in [1]. (We need
that a Sidon set in a subgroup H\subset\hat{G} is a Sidon set in \hat{G}, but this is
immediate by virtue of Th. 5. 7. 3 and 2. 7. 2 in [9].)

REMARK 4. 4: It is possible to give a characterization of M\{A\{p,q)) as
the dual space of a space of continuous functions using tensor products.
The general technique is presented in [4] and will not be considered here.

Following Lai [5], let

M(p, q)=\{\mu\in M(G);\hat{\mu}\in L(p, q)(\hat{G})\}

Most of the next theorem was proved in [5]. However, the proof may
be considerably simplified if one argues as in [8].

THEOREM 4. 5: Let G, p and q be as in Theorem 4. 3. Then

i) Hom_{L^{1}(G)}(L^{1}(G), A(p, q))\simeq A(p, q) if (p, q)\leq(2,2)

ii) Hom_{L^{1}(G)}(L^{1}(G), A(p, q))-\sim M(p, q)\supset\neq A(p, q) if (2, ^{2})<(p, q) .

PROOF: The proof would be a repetition of the similar argument for the
A^{p} algebras given in [8] and is omitted. Finally, Theorem 3. 3 provides
a proof of the strict inclusion in ii).
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