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Cluster sets on Riemann surfaces
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1. Introduction

In the theory of cluster sets of meromorphic functions defined in
a domain in the z-plane, the next Theorem A and Theorem B are well-
known. Let w=f(z) be a meromorphic function in a domain D in the
z-plane. Let b_{0} be a point of boundary B of D and let E be a subset of
B such that b_{0}\in E and b_{0}\in\overline{B-E} (the closure– is taken in the w-sphere). We
denote by C(f, b_{0}) the cluster set of f(z) at b_{0} and denote by C_{B-E}(f, b_{0})

the boundary cluster set of f(z) at b_{0} modulo E. When D is the unit disk
\{z;|z|<1\} , we denote by C_{R-E}(f, b_{0}) the radial boundary cluster set of f(z)
at b_{0} modulo E. Then there exists the next relation between the boundary
\partial C(f, b_{0}) of C(f, b_{0}) and C_{B-E}(f, b_{0}) (or C_{R-E}(f, b_{0})) (cf. E. F. Collingwood and
A. J. Lohwater [1] and K. Noshiro [7] ).

THEOREM A. (M. Tsuji [10]) If E is a compact set of capacity zero,
then \partial C(f, b_{0})\subset C_{B-E}(f, b_{0}), that is \Omega=C(f, b_{0})-C_{B-E}(f, b_{0}) is an open set.
And if \Omega\neq\phi, then every value of f2 is assumed infifinitely often by f(z) in
any neighborhood of b_{0} with the possible exception of a set of capacity zero.

THEOREM B. (M. Ohtsuka [8]) Let D be the unit disk. If E is a set
of linear measure zero, then \partial C(f, b_{0})\subset C_{R-E}(f, b_{0}), that is \Omega’=C(f, b_{0})-

C_{R-E}(f, b_{0}) is an open set. And if \Omega’\neq\phi, then every value of 12’ is assumed
by f(z) in any neighborhood of b_{0} with the possible exception of a set of
capacity zero.

In this paper we study these theorems for meromorphic functions
defined in an open Riemann surface. For this purpose, it is necessary to
consider appropriate compactifications of Riemann surfaces. Z. Kuramochi
[5] considered compactifications of Riemann surfaces with regular metrics
and extended Theorem A to the case of Riemann surfaces (Theorem 1 in
\S 2). Our results in this paper are Theorem 2, Theorem 3 and Theorem 5
in \S 2. Theorem 3 is an extention of Theorem B to the case of Riemann
surfaces. We apply Kuramochi’s method in [5] to prove these theorems.
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2. Definitions and theorems

2.1. Compactifications. Let R be an open Riemann surface. We
consider a metrizable compactification R^{*} of R such that R^{*}\succ R_{S}^{*} . Here
R_{S}^{*} is the Stoilow’s compactification of R and R^{*}\succ R_{S}^{*} means that there
exists a continuous mapping \pi of R^{*} onto R_{S}^{*} such that \pi|R is the identity
and \pi^{-1}(R)=R . We set \Delta=R^{*}-R . For any subset A of R^{*} we denote
by \overline{A}^{*} the closure of A in R^{*} and denote by Int*(A) the interior of A in
R^{*} . We shall use the following fact:

Lemma 1. Let G be a subregion of R such that the relative boundary
\partial G is compact in R. If R^{*}\succ R_{S}^{*} , then \overline{G}^{*}\cap\overline{R-G}^{*}\cap\Delta=\phi and so \overline{G}^{*}\cap\Delta\subset

Int* (\overline{G}^{*}).
PROOF. We set \Delta_{S}=R_{S}^{*}-R . Suppose \overline{G}^{s}\cap\overline{R-G}^{s}\cap\Delta_{S}\neq\phi, where the

closure -S is taken in R_{S}^{*} . Let e\in\overline{G}^{s}\cap\overline{R-G}^{s}\cap\Delta_{S} . We denote by \{G_{n}\}

a determinating sequence of e. Since G_{n}\cap G\neq\phi for every n, there exists
some n_{0} such that G_{n}\cap G=G_{n} for every n\geqq n_{0} . Then G_{n}\cap(R-G)=G_{n}\cap

G\cap(R-G)=\phi for every n\geqq n_{0}. This contr_{v}adicts e\in\overline{R-G}^{s} . Hence \overline{G}^{s}\cap

\overline{R-G}^{s}\cap\Delta_{S}=\phi. Since \pi(\overline{A}^{*})=\overline{A}^{s} for every subset A of R and \pi(\Delta)=\Delta_{S} , we
have \overline{G}^{*}\cap\overline{R-G}^{*}\cap\Delta=\emptyset. Next suppose b\in\overline{G}^{*}\cap\Delta . Since b\not\in\overline{R-G}^{*} , there
exists a neighborhood N(b) of b such that N(b)\cap R\subset G. Then N(b)\subset\overline{G}^{*} .
Hence we have \overline{G}^{*}\cap\Delta\subset Int^{*}(\overline{G}^{*}).

Z. Kuramochi [5] defined a regular metic on R^{*} . By Lemma 1, we
have the following: If R^{*}\succ R_{S}^{*} , then any metric which is induced by R^{*}

is a regular metric.
2.2. Boundary cluster set. Let w=f(z) be a meromorphic function

on R which maps into the w-sphere. We denote by d a metric induced
by R^{*} . Let b_{0} be a point of \Delta and let E be a subset of \Delta such that b_{0}\in E

and b_{0}\in\overline{\Delta-E}^{*} . We fix a decreasing sequence \{r_{n}\}_{n=1}^{\infty} of positive numbers
and we set

V_{n}=\{b\in R^{*}; d(b, b_{0})\leqq r_{n}\}

U_{n}=V_{n}\cap R and \Gamma_{n}=\partial U_{n} .
We shall define six kinds of cluster sets (1)-(6) by means of the sequence
{ r_{n}\rangle_{n=1}^{\infty} . But, except for (3), these cluster sets do not depend on the choice
of such a sequence. We define the cluster set C(f, b_{0}) of f(z) at b_{0} by

(1) C(f, b_{0})= \bigcap_{n=1}\overline{f(U_{n})}

and define the boundary cluster set C_{A-E}(f, b_{0}) of f(z) at b_{0} modulo E by
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(2) C_{\Delta-Fr}(f, b_{0})= \bigcap_{n=1}\overline{M_{n}^{(1)}},, where

M_{n}^{(1)}=\cup\{C(f, b);b\in V_{n}\cap\Delta-E\}

A subregion G of R is called an SO_{HB}-region if every HB function
on G with vanishing continuous boundary values on \partial G reduces to con-
stant zero.

THEOREM 1. (Z. Kuramochi [5]) Suppose that E has the following
properties: (i) Every subregion G of R such that \overline{G}^{*}\cap\Delta\subset E is an SO_{HB}-

region, (ii) \overline{\Gamma}_{n}^{*}\cap E=\phi for every n. Then
\Omega=C(f, b_{0})-C_{\Delta-E}(f, b_{0})

is an open set. And if \Omega\neq\phi, then every value of f2 is assumed infifinitely
often by f(z) in any neighborhood of b_{0} with the possible exception of a set

of capacity zero.
We fix an exhaustion \{R_{n}\} of R. For any subset F of R we set

H(f, F)= \bigcap_{n=1}\overline{f(F-R_{n})}. Then H(f, F) does not depend the choice of an

exhaustion. We define another boundary cluster set C_{\langle\Gamma_{n}\}}(f, b_{0}) of f(z) at
b_{0} by

\infty

(3) C_{\{\Gamma_{n}\}}(f, b_{0})= \bigcap_{n=1}\overline{N}_{n} , where N_{n}= \bigcup_{i=n}H(f, \Gamma_{i}) .

THEOREM 2. If E has the property (i) of Theorem 1, then

\Omega_{1}=C(f, b_{0})-C_{\Delta-E}(f,\cdot b_{0})-C_{\{\Gamma_{n}\}}(f, b_{0})

is an open set. And if S1_{1}\neq\phi, then every value of \Omega_{1} is assumed infifinitely
often by f(z) in any neighborhood of b_{0} zvith the possible exception of a
set of capacity zero.

In Theorem 2, if E has the property (ii) of Theorem 1 besides the pr0-

perty (i), then H(f, \Gamma_{m})\subset M_{n}^{(1)} for every m\geqq n and so C_{\{\Gamma_{n}|}(f, b_{0})\subset C_{\Delta-E}(f, b_{0}).
Hence we see that Theorem 2 implies Theorem 1.

2.3. Radial boundary cluster set. We suppose that R is a hyperbolic
Riemann surface. Let g(z, z_{0}) be the Green function of R with pole at
z_{0}\in R . We refer to Chapter III. 6 in L. Sario and M. Nakai [9] for the
definition and properties of Green lines. We consider Green lines issuing
from z_{0} . Then the set \mathscr{L} of all Green lines admits the Green measure
m. A Green line Z such that \inf_{z\in\searrow}g(z, z_{0})=0 is called a regular Green line.

Any regular Green line tends to the ideal boundary of R as g(z, z_{0})arrow 0.
We denote by \mathscr{L}_{r} the set of all regular Green lines. It is known that
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m(\mathscr{L}-\mathscr{L}_{r})=0 . For any subset F of R, we denote by \mathscr{L}(F) the set of
all regular Green lines\swarrow’ such that l\cap F is not relatively compact in R,
that is \inf_{z\in l\cap F}q(z, z_{0})=0 .

Let b_{0} be a point of \Delta and let \mathcal{E} be a subset of \mathscr{L}_{r} such that { \mathscr{S}\in \mathscr{L}_{r} ;
b_{0}\in\overline{\swarrow}^{*}\}\subset \mathcal{E} and \mathscr{L}(U_{n})-\mathcal{E}\neq\phi for every n. Then we define the radial
boundary cluster set C_{\mathscr{L}-8}(f, b_{0}) of f(z) at b_{0} modulo \mathcal{E} by

\langle 4) C_{\mathscr{L}-8},(f, b_{0})= \bigcap_{n=1}\overline{M_{n}^{(2)}} , where

M_{n}^{(2)}=\cup\{H(f, \swarrow\cap U_{n});\swarrow\in \mathscr{L}(U_{n})-\mathcal{E}\}

THEOREM 3. If m(\mathcal{E})=0, then

\Omega_{2}=C(f, b_{0})-C_{{?}-e}(f, b_{0})-C_{1\tau_{n}\}}(f, b_{0})

is an open set. And if \Omega_{2}\neq\phi, then every value of \Omega_{2} is assumed infifinitely
often f(z) in any neighborhood of b_{0} with the possible exception of a set of
capacity zero.

2.4. Fine boundary cluster set. We suppose that R is a hyperbolic
Riemann surface. Let R_{M}^{*^{1}} be the Martin compactification of R. We refer
to \S 13 and \S 14 in C. Constantinescu and A. Cornea [2] for the definition
and properties of R_{M}^{*_{\backslash }} . It is known that R_{M}^{*}\succ R_{s}^{*} and R_{M}^{*} is metrizable.
Let k_{b}(z) be the Martin function of R with pole at b\in R_{M}^{*} and let \Delta_{1} be
the set of all minimal boundary points of \Delta_{M}=R_{M}^{*}-R . For every b\in\Delta_{1} ,
we denote by \mathfrak{G}_{b} the family of all open subset G of R such that (k_{b})_{R-G}(z)

\not\equiv k_{b}(z) on R. Then we define the fine boundary cluster set f^{\prime\sim}(b) of f(z)
at b\in\Delta_{1} by

(5) f^{\wedge}(b)=\cap\{\overline{f(G)};G\in \mathfrak{G}_{b}\}

Let b_{0} be a point of \Delta_{M} and let E be a subset of \Delta_{M} such \dot{t}hat b_{0}\in E

and b_{0}\in\overline{\Delta_{1}-E}^{M} (the closure -M is taken in R_{M}^{*}). Then we define the fine
boundary cluster set C_{\Delta_{M}-E}^{\wedge}(f, b_{0}) of f(z) at b_{0} modulo E by

\langle 6) C_{J_{M}-E}^{\wedge}(f, b_{0})= \bigcap_{n=1}\overline{M_{n}^{(3)}} , where

M_{n}^{(3)}=\cup\{f^{\wedge}(b);b\in V_{n}\cap\Delta_{1}-E\}

THEOREM 4. (T. Fuji’i’e [3]) Suppose that b_{0} is a minimal and regular
(with respect to Dirichlet problem) point of \Delta_{M} and that E is a set of the
harmonic measure zero on \Delta_{M} . Then

\Omega’=C(f, b_{0})-C_{\Delta_{M}-E}^{\wedge}(f, b_{0})
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is an open set. And if \Omega’\neq\phi, then every value of \Omega’ is assumed infifinitely
often by f(z) in any neighborhood of b_{0} with the possible exception of a set
of capacity zero.

In the next theorem, we suppose neither the minimality nor the regu-
larity of b_{0} .

THEOREM 5. Let E be a set of harmonic measure zero on \Delta_{M} . Then
\Omega_{3}=C(f, b_{0})-C_{\Delta_{M}-E}^{\wedge}(f, b_{0})-C_{\{\Gamma_{n}\}}(f, b_{0})

is an open set. If \Omega_{3}\neq\phi, then every value of \Omega_{3} is assumed infifinitely often
by f(z) in any neighborhood of b_{0} with the possible exception of a set of
capacity zero.

REMARK. Theorem 5 does not always imply Theorem 4.

3. SO_{HB}-region

We state properties of SO_{HB}-regions which need to prove the theorems
in \S 2. Let w=f(z) be a moromorphic function on R. For any subset A
of R and any point w of the w-sphere, we denote by n(w,f|A) the number
of points in f^{-1}(w)\cap A with the multiple points counted repeatedly. For
any subset B of the w-sphere we set n_{B}(f|A)= \sup\{n(w,f|A);w\in B\} . Let
G’ be an open disk in the w-sphere and let G be a connected component
of f^{-1}(G’) . If G is an SO_{HB}-region, the mapping f|G:Garrow G’ is of type Bl.
Hence the next lemma follows from Heins’ theorem (cf. Satz 10. 5 in [2]).

Lemma 2. If G is an SO_{HB}-region, then n(w,f|G)=n_{G’}(f|G) for every
w\in G’ except for a set of capacity zero.

We suppose that R is a hyperbolic Riemann surface. We denote by
\underline{n;,} the inner measure induced by the Green measure m. Then we have
the following:

Lemma 3. Let G be a subregion of R. If \underline{n}(\mathscr{L}(G))=0, then G is
an SO_{HB}-region.

PROOF. Let R_{W}^{*} be the Wiener compactification of R, let \Gamma_{W} be the
harmonic boundary of \Delta_{W}=R_{W}^{*}-R and let \mu_{z}^{W} be the harmonic measure on
\Delta_{W} with respect to z\in R . Suppose G\not\subset_{-} SO_{HB} . Then we have (\overline{G}^{W}-\overline{\partial G}^{W})\cap

\Gamma_{W}\neq\phi, where the closure -W is taken in R_{W}^{*} (Satz 9. 12 in [2]). Since
\overline{G}^{W}-\overline{\partial G}^{W} is an open set in R_{W}^{*} (Satz 9. 9 in [2]), there exists an open neigh-
borhood N(\xi) of a point \xi of \Gamma_{W} such that N(\xi)\subset\overline{G}^{W}-\overline{\partial G}^{W}. We set N_{1}

=A^{\tau}(\xi)\cap\Delta_{W} and \tilde{N}_{1}=\{\swarrow’\in \mathscr{L}_{r} ; \overline{\swarrow’}W\cap N_{1}\neq\phi\} . Then we have \mu_{z_{0}}^{W}(N_{1})\leqq\underline{n}(\tilde{N}_{1})

(Theorem 1 in Y. Nagasaka [6]). Since the support of \mu_{z_{0}}^{W} equals \Gamma_{W} we
have \mu_{z_{0}}^{W}(N_{1})>0 and so m_{-^{J}}(\tilde{N}_{1})>0 . Suppose \tilde{N}_{1}-\mathscr{L}(G)\neq\phi. Let \swarrow\in\tilde{N}_{1}-
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\mathscr{L}(G). By\swarrow\not\in_{-}\mathscr{L}(G), there exists some n_{0} such that \swarrow\cap G\subset R_{n_{0}} . And
by\swarrow\in\tilde{N}_{1} , there exists a neighborhood N(\xi_{1}) of a point \xi_{1} of N_{1} such that
N(\xi_{1})\cap R_{n_{0}+1}=\phi, N(\xi_{1})\subset N(\xi) and N(\xi_{1})\cap R\cap\swarrow’\neq\phi . But, since N(\xi)\cap R\subset G,
we have

N(\xi_{1})\cap R\cap\swarrow\subset(R-R_{n_{0}+1})\cap G\cap\swarrow\subset(R-R_{n_{0}+1})\cap R_{n_{0}}=\phi .
This is a contradiction. Hence we have \tilde{N}_{1}\subset \mathscr{L}(G) and so n–(-L(G))>0.
This complete the proof.

We suppose that R is a hyperbolic Riemann surface. Let \mu^{M} be the
harmonic measure on \Delta_{M} . We set \Delta_{1}(G)=\{b\in\Delta_{1} ; G\in \mathfrak{G}_{b}\} . It is known
that \Delta_{1}(G) is an F_{\sigma}-set. Let G be a subregion of R. We denote by w_{n}

the bounded harmonic function in G\cap R_{n} which takes the boundary values
0 on \partial G\cap R_{n} and 1 on G\cap\partial R_{n} . Then w_{n} decreases to a harmonic func-
tion w^{G} in G. Then we have the following equality,

w^{G}(z)=1-1_{R-G}(z)= \int\{k_{b}(z)-(k_{b})_{R-G}(z)\}d\chi(b) ,

where \chi is the canonical measure of 1. By Brelot’s theorem (cf. Satz 13. 4
in [2] ), \mu^{M}(E)=0 is equivalent to \chi(E)=0 for every Borel set E of \Delta^{M}.
Hence we have the next lemma.

LEMMA 4. A subregion G of R is an SO_{HB}-region if and only if
\mu^{M}(\Delta_{1}(G))=0 .

4. The proof of theorems

In \S 4, we give at the same time the proofs of Theorem 2, Theorem
3 and Theorem 5 by the same method as Z. Kuramochi used to prove
Theorem 1.

Let \alpha be an arbitrary point of \Omega_{i} (i=1,2, 3). Since the boundary
cluster sets (2), (3), (4) and (6) are closed sets, we have only to show
\alpha\in Int(C(f, b_{0})) . Since \alpha\not\in\overline{M_{n_{0}}^{(i)}}\cup\overline{N}_{n_{0}} for some n_{0} , there exists a disk
D(\alpha, t_{1})=\{w;|w-\alpha|<t_{1}\} such that D(\alpha, t_{1})\cap(\overline{M_{n_{0}}^{(i)}}\cup\overline{N}_{n_{0}})=\phi. By \alpha\lrcorner_{-}^{-}d-\overline{N}_{n_{0}} ,
\alpha\not\in,\overline{f(\Gamma_{n_{0}}-R_{k})} for some k. Then the number of points in f^{-1}(\alpha)\cap\Gamma_{n_{0}} is
finite. Hence, by a slight deformation of V_{n_{0}} , we can find a neighborhood

V_{n_{0}}’ of b_{0} such that V_{n_{0}}’-K--V_{n_{0}}-K for some compact set K in R and
that \alpha\not\in\overline{f(\partial(V_{n_{0}}’\cap R)}). Set U_{n_{0}}’=V_{n_{0}}’\cap R and \Gamma_{n_{0}}’=\partial U_{n_{0}}’ . Here we note
H(f, \Gamma_{n_{0}}’)=H(f, \Gamma_{n_{0}}), \mathscr{L}(U_{n_{0}}’)=\mathscr{L}(U_{n_{0}}) and H(f, \swarrow\cap U_{n_{0}}’)=H(f, \swarrow\cap U_{n_{0}}) for
every\swarrow\nearrow\in \mathscr{L}(U_{n_{0}}’) . Since \alpha\not\in\overline{f(\Gamma_{n_{0}}’}), D(\alpha, t_{2})\cap f(\Gamma_{n_{0}}’)=\phi for some t_{2}>0 . We
fix a t_{0} : 0<t_{0}< \min(t_{1}, t_{2}) and write D_{0}=D(\alpha, t_{0}) for simplicity. By \alpha\in C(f, b_{0}),
there exists a sequence \{z_{n}\}_{n=1}^{\infty} in U_{n_{0}}’ such that f(z_{n})\in D_{0} for every n and
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\lim_{narrow\infty}f(z_{n})=\alpha . We fix this sequence. For every n there exists a connected

component G_{n} of f^{-1}(D_{0}) which contains the point z_{n} of { z_{n}\rangle_{n=1}^{\infty} . Since \overline{D}_{0}\cap

f(\Gamma_{n_{0}}’)=\phi, we have G_{n}\subset U_{n_{0}}’-\Gamma_{n_{0}}’ . Then G_{n} may coincide with other G_{m} .
We shall show that every G_{n} is an SO_{BB}-region and that b_{0}\not\in-\cdot Int^{*}(G_{n}^{*}) in
the case of \alpha\in\Omega_{i}(i=1,2) and b_{0}\not\in Int^{M}(\overline{G}_{n}^{M}) in the case of \alpha\in\Omega_{3} respectively.

(i) The case of \alpha\in\Omega_{1} . Suppose \overline{G}_{n}^{*}\cap\Delta-E\neq^{-}\phi . Let a\in\overline{G}_{n}^{*}\cap\Delta-E.
Since \overline{f(G_{n}}) \subset\overline{D}_{0} , C(f, a)\cap\overline{D}_{0}\neq\phi. But, since \overline{G}_{n}^{*}\subset V_{n_{0}}’ , a\in V_{n_{0}}’\cap\Delta-E and so
C(f, a)\subset M_{n_{0}}^{(1)}\subset D(\alpha, r_{1})^{e} . This is a contradiction. Hence we have \overline{G}_{n}^{*}\cap\Delta\subset E.
Therefore, by the property of E of Theorem 2, we see that G_{n} is an SO_{HB}-

region. And since b_{0}\in\overline{\Delta-E}^{*} , we see b_{0}\not\in Int^{*}(\overline{\overline{G}}_{n}^{*}) .
(ii) The case of \alpha\in\Omega_{2} . Suppose \mathscr{L}(G_{n})-\mathcal{E}\neq\phi. Let\swarrow’\in \mathscr{L}(G_{n})-\mathcal{E} .

Since G_{n}\subset U_{n_{0}}’ , we have\swarrow\in \mathscr{L}(U_{n_{0}}’)-\mathcal{E} and so
\phi\neq H(f, \swarrow\cap G_{n})\subset H(f, l\cap U_{n_{0}}’)

=H(f, \swarrow’\cap U_{n_{0}})\subset M_{n_{0}}^{(2)}\subset D(\alpha, r_{1})^{c} .

But this contradicts H(f, \swarrow\cap G_{n})\subset\overline{D}_{0} . Hence we have \mathscr{L}-(G_{n})\subset \mathcal{E} . Then,
by the assumption of Theorem 3, we have m(\mathscr{L}(G_{n}))=0 . Therefore we
see that G_{n} is an SO_{HB}-region by Lemma 3. If b_{0}\in Int^{*}(\overline{G}_{n}^{*}) , U_{k}\subset G_{n}^{l} for
some k>n_{0} and so \mathscr{L}(U_{k})-\mathcal{E}\subset \mathscr{L}(G_{n})\subset 6’ . This contradicts \mathscr{L}(U_{k})-\mathcal{E}\neq\phi.
Hence we have b_{0}\not\subset Int^{*}(\overline{G}_{n}^{*}) .

(iii) The case of \alpha\in\Omega_{3} . Suppose \Delta_{1}(G_{n})-E\neq\phi . Let a\in\Delta_{1}(G_{n})-E.
Since \Delta_{1}(G_{n})\subset\overline{\overline{G}}_{n}^{M}\subset V_{n_{0}}’ , we have a\in V_{n_{0}}’\cap\Delta_{1}-E and so f^{\wedge}(a)\subset M_{n_{0}}^{(3)}\subset D(\alpha, r_{1})^{c} .
But this contradicts f^{\wedge}(a)\subset\overline{f(G_{7l}})\subset\overline{D}_{0} . Hence we have \Delta_{1}(G_{n})\subset E. Then,
by the assumption of Theorem 5, we have \mu^{M}(\Delta_{1}(G_{n}))=0 . Hence we see
that G_{n} is an SO_{HB}-region by Lemma 4. If b_{0}\in Int^{M}(\overline{G}_{n}^{M}), U_{k}\subset G_{n} for some
k>n_{0} and so V_{k+1}\cap\Delta_{1}\subset\Delta_{1}(G_{n})\subset E. This contradicts b_{0}\in\overline{\Delta_{1}-E}^{M}. Hence we
have b_{0}\not\subset Int^{M}(\overline{G}_{n}^{M}) .
Therefore we have n(w,f|G_{n})=n_{D_{0}}(f|G_{n}) for all w\in D_{0} except for a set
of capacity zero by Lemma 2 and in particular \overline{f(G_{n})}=\overline{D}_{0} .

First we treat the case where there is an infinite number of distinct
components G_{n} . In this case, for simplicity, we suppose G_{n}\cap G_{m}=\phi if
n\neq m . If the number of n such that G_{n}\cap\Gamma_{k}\neq\phi for some k(>n_{0}) is infi-
nite, the level curves |f(z)-\alpha|=r_{0} clusters at a point of \overline{\Gamma}_{k}^{*}\cap\Delta (or \overline{\Gamma}_{k}^{M}\cap\Delta_{M})

and so H(f, \Gamma_{k})\cap\partial D_{0}\neq\phi. But this contradicts H(f, \Gamma_{k})\subset N_{n_{0}}\subset D(\alpha, r_{1})^{e} .
Hence the number is finite and so G_{n} converges to b_{0} . This shows that
C(f, b_{0}) \supset\bigcap_{n=1}^{\infty}\overline{f(G_{n})}=\overline{D}_{0} and so b_{0}\in Int(C(f, b_{0})) and that every value of D_{0}

is assumed infinitely often by f(z) in any neighborhood of b_{0} except for
a set of capacity zero.
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Accordingly, to prove the theorems, it suffices to consider the only
case where the number of components of f^{-1}(D(\alpha, r)) containing at least
one point of \{z_{n}\}_{n=1}^{\infty} is finite for every 0<r\leqq r_{0} . Then there exists at least
a component G_{0} of f^{-1}(D_{0}) containing a subsequence of \{z_{n}\}_{n=1}^{\infty} . We set
N_{0}=n_{D_{0}}(f|G_{0}) for simplicity. We shall show N_{0}=\infty . Suppose N_{0}<\infty .
Then the set \{w\in D_{0} ; n(w,f|G_{0})\leqq N_{0}-1\} is closed relative to D_{0} . By
Lemma 2, this set is of capacity zero. Since a compact set of capacity
zero is totally disconnected, there exists a number 0<r’<r_{0} such that
n(w,f|G_{0})=N_{0} for every w\in\partial D(\alpha, r’) . Then there exists a component
G_{0}’(\subset G_{0}) of f^{-1}(D(\alpha, r’)) which contains a subsequence of \{z_{n}\}_{n=1}^{\infty} . Then,
by routine method, we see that \partial G_{0}’ is compact in R. Since b_{0}\in\overline{G}_{0}^{\prime*}\cap\Delta

(or b_{0}\in\overline{G}_{0}^{\prime M}\cap\Delta_{M}), we have b_{0}\in Int^{*}(\overline{G}_{0}^{\prime*}) (or b_{0}\in Int^{M}(\overline{G}_{0}’ by Lemma 1. But
this is a contradiction. Hence we have N_{0}=\infty . Finally we shall show
\bigcap_{n=n_{0}+1}\overline{f(U_{n}\cap G_{0}})\supset\overline{D}_{0} . Take an arbitrary number n\geqq n_{0}+1 . If \Gamma_{n}\cap G_{0} is

not relatively compact in R, then H(f, \Gamma_{n})\cap\overline{\overline{D}}_{0}\neq\phi . But this contradicts
H(f, \Gamma_{n})\subset N_{n_{0}}\subset D(\alpha, r_{1})^{c} . Therefore \Gamma_{n}\cap G_{0} is compact and so \Gamma_{n}\cap G_{0}\subset R_{k}

for some k. Hence, by a slight deformation of V_{n} , we can find a neigh-
borhood V_{n} of b_{0} which satisfies the following conditions, (i) V_{n}’\subset V_{n} , (ii)
V_{n}-R_{k}=V_{n}-R_{k} for the above k, (iii) \alpha\not\subset f(\partial(V_{n}’\cap R)\cap G_{0}), (iv) \partial(V_{n}’\cap R)\cap G_{0}

consists of a finite number of analytic curves \gamma_{1} , \cdots , \gamma_{l} such that D_{0}-f( \bigcup_{i=1}^{l}\gamma_{i})

is composed of a finite number of components D_{1}, \cdots , D_{m} . We set U_{n}’=

V_{n}\cap R-\partial(V_{n}\cap R) and N_{i}= \sup\{n(w,f|U_{n}’\cap G_{0}), w\in D_{i}\} . Then, by Lemma
2, we have n(w,f|U_{n}’\cap G_{0})=N_{i} for all w\in D_{i} except for a set of capacity
zero. Since the number of points in f^{-1}(w)\cap U_{n}’\cap G_{0} jumps only a finite
number when w crosses f(\gamma_{i}), we have the following: If N_{i}<\infty for some
i, then N_{f}<\infty for every j such that \partial D_{i}adjoins\partial D_{f} and so N_{f}<\infty for all
j=1, \cdots , m. Now let D_{i_{0}} be a component containing \alpha in \{D_{i}\}_{i=1}^{m} . Take
a disk D(\alpha, r)\subset D_{i_{0}} . Since n_{D(a,r)}(f|G_{\alpha})=\infty for some component G_{a}(\subset U_{n}’

\cap G_{0}) of f^{-1}(D(\alpha, r)) containing a subsequence of \{z_{n}\}_{n=1}^{\infty} , we see N_{i_{0}}=\infty .
Hence we see N_{1}=\cdots=N_{m}=\infty . Therefore we see that \overline{f(.U_{n})}\supset\overline{f(U_{n}’\cap G_{0})}

\supset\overline{D}_{0} and so C(f, b_{0})\supset\overline{D}_{0} and that every value of D_{0} is assumed infinitely
often by f(z) in any neighborhood of b_{0} except for a set of capacity zero.
This completes the proofs.
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