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\S 0. Introduction and results

This paper is concerned with a class of characteristic mixed problems
for a strongly hyperbolic system P :

(P, B)\{

Pu=f in (0, \infty)\cross G,\cdot

Bu=0 on (0, \infty)\cross\partial G ,

u(0, x)=0 on G ,

where

P(t, x;D_{t}, D_{x})=D_{t}+ \sum_{f=1}^{n}A_{j}(t, x)D_{j}+C(t, x) ,

A_{j} and C are m\cross m matrices, D_{t}=-i\partial/\partial t, D_{j}=-i\partial/\partial x_{j}(j=1, \cdots, n) , G is
an open set of R^{n} with boundary \partial G and all coefficients of operators and
\partial G considered here are assumed to be of the class C^{\infty} . Furthermore the

boundary matrix A_{\nu}(t, x)= \sum_{j=1}^{n}\nu_{j}(x)A_{j}(t, x) is assumed to be of constant

rank d less than m near R^{1}\cross\partial G, where \nu=(\nu_{1^{ }},\cdots, \nu_{n}) is the inner unit nor-
mal to \partial G . The B(t, x) is an l\cross m matrix of constant rank l, where the
number l will be determined later (see Lemma 2.7 below).

In treating such kind of mixed problems it is natural to assume the
condition that the problem (P, B) is reflexive, i . e. ,

ker A_{\nu}(t, x)\subset kerB(t, x) for all x\in\partial G1

In fact Lax and Phillips [10] proved that a solution of Pu=f with the
boundary condition Bu=0 in a weak sense is a solution of the problem in
a semi-strong sense provided the problem (P, B) is reflexive. They also
showed that, when P is symmetric, the reflexiveness of (P, B) is necessary
for the kernel of B to be maximally non-positive for the matrix A_{\nu} . Fur-
thermore Rauch [14] showed that if a mixed problem of constant coefficients
in the quarter space t>0 , x_{1}>0 has a unique strong solution and if it is
well posed in the sense of Hersh, then the problem is reflexive.

In the present article, as our first approach to characteristic mixed
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problems, we shall deal with a reflexive problem (P, B) for Maxwell’s equa-
tions which is one of typical those. In particular we shall try to clarify the
situation occupied by problems with maximally non-positive boundary con-
ditions within all L^{2}-well posed reflexive ones, on the basis of works of Hersh
[5], Agemi and Shirota [2], Sakamoto [15], Agemi [1], Ohkubo and Shirota
[12]. (For the definition of the L^{2}-well posedness see \S 1). In doing
so the rank l of B may be assumed to equal 2, since the matrix A_{\nu} has
exactly two positive eigenvalues. (See Lemma 2. 7 below). Then for the
Maxwell system P we obtain the following

THEOREM. Let G=\{x\in R^{3} ; x_{1}>0\} . Suppose that B is a constant
2\cross 6 matrix and the problem (P, B) is refiexive.

(a) If B is real and (P, B) satisfifies Hersh’s condition, then the kerne_{1}l

of B is maximally non-positive for the matrix A_{1} , i. e. ,

(0. 1) A_{1}u\cdot u\leqq 0 for all u\in(kerB)\backslash 0

and kerB is a maximal subspace obeying the above property (hence \{P,B)

is L^{2} well posed). Here v\cdot u denotes the inner product of v and u in C^{6} .
(b) For some non-real matrix B, the problem (P, B) is L^{2} well posed,

but the kernel of B is not maximally non-positive for A_{1} even after any
nonsingular transformation of the dependent variables which keeps the sys-
temP symmetric.

In proving Theorem we will transform the system of equations into the
form (3. 1) below. Then it will be shown that Hersh’s condition implies
||S||\leqq 1 if B is real. Here S is the 2\cross 2 matrix in (3. 5) below and ||S||

denotes the matrix norm:

\sup_{0^{\underline{\wedge}}v\in C^{2}}|Sv|/|v|’\sim

where |v| is the usual hermitian norm in C^{2} .
Although the boundary condition prescribed by (3. 5) is not intrinstic

(see Majda and Osher [11] for an intrinstic representation of the reflexive
boundary condition), we can also prove the following

COROLLARY. Let G be an open set of R^{3} with compact boundary and
let B(t, x) be a real 2\cross 6 matrix-valued function. Suppose that the prO-

blem (P, B) is reflexive and for every (t, x)\in R^{1}\cross\partial G the frozen problem
(P, B)_{(t.x)} in the quarter space with the inner normal (0, \nu(x)) on its lateral
boundary plane is L^{2}-well posed. Then (P, B) is also L^{2}-well posed. More
precisely the kernel of B(t, x) is maximally non-positive for the matrix
A_{\nu}(t, x) at each (t, x)\in R^{1}\cross\partial G .
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This fact is a direct consequence of Theorem, because of the rotational
Invariancen of the curl operator. In the point of view stated in Corollary
eertain results have been already obtained by Sato and Shirota [16], Kubota
[9] and others.

The assertion (b) of Theorem contrasts with the result of Strang [18]
for 2\cross 2 systems. For a 3\cross 3 system P, Rauch [13] has already given
such an example as ours, where P is strictly hyperbolic but not symmetrizable
and which satisfies Kreiss’ condition (i . e. , the uniform Lopatinskii condition).
Nevertheless for the Maxwell system P it can be shown that if a mixed
problem (P, B) satisfies the first three hypotheses of Theorem and Kreiss’
condition, then the strict inequality in (0. 1) is valid after such a transfor-
mation as described there. The proof of this fact will be given elsewhere.
(For the case of real boundary conditions see Remark 3. 7 below).

In section 1 we describe assumptions on our problem with terminologies
used here and in section 2 we give some preliminary lemmas. In section
3 we prove part (a) of Theorem and finally in section 4 we give such an
example as described in part (b).

The authors would like to thank Prof. T. Shirota for his kind criticisms.
They would also like to thank Dr. R. Agemi for the valuable discussions.

\S 1. Notations and assumptions

In order to develope a general theory for a mixed problem (P, B) used
later we shall describe precisely our assumptions on the operators P and B.
The coefficients of P are complex m\cross m matrix-valued functions defined on
\overline{\Omega} and are constant outside a compact subset of \overline{\Omega} , where \Omega=R^{1}\cross G and,
unless indicated otherwise, G is assumed to be the open half space \{x=(x_{1} ,
d);x_{1}>0 , x’=(X_{2}^{ },\cdots, x_{n})\in R^{n-1}\}(n\geqq 2) . The principal symbol P^{0} of P is
assumed to satisfy the inequality

(1. 1) ||(P^{0})^{-1}(t, x;\tau, \lambda, \sigma)||\leqq C|{\rm Im}\tau|^{-1}

for all (t, x)\in\overline{\Omega}, \tau\in C_{-} , \lambda\in R^{1} and \sigma=(\sigma_{2}, \cdots, \sigma_{n})\in R^{n-1} , where \tau , \lambda and \sigma are
the covariables of t, x_{1} and x’ respectively, C_{-} is the lower open half of
the complex plane and C is a positive constant independent of t, x, \tau, \lambda and
\sigma . For a square matrix Q we denote by ||Q|| such matrix norm as defined
in the preceding section. Moreover the boundary matrix A_{1}(^{\neq},, x) is assumed
to be of constant rank d(<m) near the boundary \partial\Omega of f2 so that, without
loss of generality, it may be regarded as the block diagonal form

(1. 2) A_{1}=\{\begin{array}{ll}A 00 0\end{array}\},\cdot A=\{\begin{array}{ll}A^{+} 00 A^{-}\end{array}\} near \partial\Omega,\cdot
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where A^{+}(A^{-}) is a positive (negative) definite d^{+}\cross d^{+}(d^{-}\cross d^{-}) matrix respec-
tively and d^{+}+d^{-}=d.

The B(t, x) is a complex l\cross m matrix-valued function defined on \partial\Omega

which is of rank l and is constant outside a compact subset of \partial\Omega . Fur-
thermore the problem (P, B) is assumed to be reflexive, i . e. , for every (t, x)
\in\partial\Omega let B(t, x) be of the form

(1. 3) B(t, x)=[B_{I}(t, x), 0] ,

where B_{I} is an l\cross d matrix of rank l (see Lemma 2. 1 below). Then a
vector u\in C^{m} will be often written as

u=\{\begin{array}{l}u_{I}u_{II}\end{array}\} ,

where u_{I} and u_{II} denote the projections of u on the range of A_{1} and the
kernel of A_{1} respectively. This leads to Green’s formula as follows:

(1. 4) (P, v)_{L^{2}(\Omega)}-(u, P^{*}v)_{L^{2}(\Omega)}=i(A_{1}u, v)_{L^{2}(\partial\Omega)}

=i(Au_{I}, v_{I})_{L^{2}(\partial\rho)} ,

where P^{*} is the formal adjoint of P, and the boundary condition Bu=0
becomes B_{I}u_{I}=0 .

We also use the following function spaces. For u\in C_{0}^{\infty}(\partial\Omega) we define
its norm |u|_{q,\gamma} (q, \gamma are real numbers and \gamma\neq 0) by

|u|_{q,\gamma}=||e^{-\gamma t}(\Lambda_{\gamma}^{q}u)(t, d)||_{L^{2}(\partial\Omega)} .
where

( \Lambda_{\gamma}^{q}u)(t, x\acute{)}=e^{\gamma t}(\gamma^{2}+D_{t}^{2}+\sum_{j=2}^{n}D_{j}^{2})^{q/2}(e^{-tt}u(\dot{\tau}, x\acute{)}) ,

and by H_{q,\gamma}(\partial\Omega) we denote the completion of C_{0}^{\infty}(\partial\Omega) with respect to this
norm. By H_{p,q,\gamma}(\Omega)(p=0,1,2, \cdots) we denote the completion of C_{0}^{\infty}(\overline{\Omega}) with
respect to the norm

||u||_{p,q,\gamma}=[ \sum_{f=0}^{p}\int_{0}^{\infty}|(D_{1}^{j}u)(\cdot, x_{1},\cdot)|_{p+q-j,\gamma}^{2}dx_{1}]^{1/2}

Moreover we often use the abbreviations H_{p,\gamma}(\Omega) and ||u||_{p,\gamma} for H_{p,0,\gamma}(\Omega)

and ||u||_{p,0,\gamma} respectively. (See [6] or [8]).
Now let f\in H_{0,\gamma}(\Omega) and \gamma>0 . Then a function u\in H_{0,\gamma}(\Omega) is said to be

a solution of Pu=f with the homogeneous boundary condition Bu=0 in
a weak sense if the equality

(1. 5) (f, v)_{L^{2}(\Omega)}-(u, P^{*}v)_{L^{2}(\rho)}=0
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is valid for all v(t, x)\in C_{0}^{\infty}(\overline{\Omega}) satisfying the homogeneous adjoint boundary
condition v(t, x)\in N’(t, x) at each boundary point (t, x)\in\partial\Omega . Here, for every
(t, x)\in\partial\Omega, N’(t, x) stands for the orthogonal complement of A_{1}(t, x)N(t, x)

in C^{m} , where N(t, x)=kerB(t, x) . Moreover the problem (P, B) is said to
be L^{2}-well posed if for every \gamma\geqq\gamma_{0} and every f\in H_{0,\gamma}(\Omega) there exists uniquely
such a solution u as described above and the inequality

(1. 6) ||u||_{0,\gamma}\leqq C_{0}\gamma^{-1}||f||_{0.\gamma} .
is valid, where \gamma_{0} and C_{0} are positive constants independent of f, u and \gamma .
(See Lemma 2. 4).

\S 2. Preliminaries concerning reflexive mixed problems

In this section we shall show that the reflexiveness of the problem
(P, B) allows us a treatment similar to the one in the case of noncharacter-
istic boundary. (See particularly Lemmas 2. 6, 2. 7 and 2. 9 below).

We shall first state the following

Lemma 2. 1. For every (t, x)\in\partial\Omega the assumption (1. 3) is equivalent
to each of the following conditions:

codim N’(t, x)=rank A_{1}(t, x)- rank B(t, x) ,

N’(t, x)=N(t, x) ,

where N’(t, x) is the orthogonal complement of A_{1}^{*}(t, x)N’(t, x) in C^{m} .
PROOF. For simplicity we shall omit the variables t, x in the following

matrix and subspaces. We first remark that in general

(2. 1) dim (A_{1}N)=\dim N- dim (N\cap kerA_{1}) ,

(2. 2) dim (A_{1}^{*}N’)=\dim N’- dim (N’\cap ker A_{1}^{*}\grave{)} .
Now (1. 3) is equivalent to

dim (N\cap kerA_{1})=\dim ker A_{1} .

Furthermore, from the definition of N’ , the first equality in this lemma is
written as

dim (A_{1}N)=\dim N- dim ker A_{1} ,

which is equivalent to (1. 3) according to (2. 1).
Next, since N\subset N’ , to prove the equivalence of the second equality

in this lemma and (1. 3) we need merely to show

(2. 3) dim N’-dim N=\dim ker A_{1}- dim (N\cap kerAJ .
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Now we have

dim (N’\cap ker A_{1}^{*} ) =\dim ker A_{1} ,

since ker A_{1}^{*}\subset N’ . Therefore (2. 2) is written as

dim N’= codim N’+\dim ker A_{1}

From this and (2. 1) we obtain (2. 3), since codim N’=\dim(A_{1}N) .
Lemma 2. 2. Let (P, B) be L^{2}-well posed. Then for every \gamma\geqq\gamma_{0} we

have

(2. 4) ||u||_{0,\gamma}\leqq C_{0}\gamma^{-1}||Pu||_{0,\gamma} for u\in C_{0}^{\infty}(\overline{\Omega}) with u(t, x)\in N(t, x) on \partial\Omega

and

(2. 5) ||v||_{0,-\gamma}\leqq C_{0}\gamma^{-1}||P^{*}v||_{0,-\gamma} for v\in C_{0}^{\infty}(\overline{\Omega}) with v(t, x)\in N’(t, x) on \partial\Omega,

where \gamma_{0} and C_{0} are the same constants as in (1. 6).

PROOF. The inequality (2. 4) follows immediately from (1. 4) and (1. 6).

To prove (2. 5) we note that

(2. 6) ||v||_{0,-\gamma}= \sup|,(f, v)_{L^{2}(Q)}|/||f||_{0,\gamma}0\neq f\epsilon H_{0,\gamma}(\Omega^{\cdot}

Let f\in H_{0,\gamma}(\Omega) and let u\in H_{0,\gamma}(\Omega) be a solution of Pu=f with the boundary
condition Bu=0 in the weak sence. Then we obtain the desired inequality
(2. 5) from (1. 5), (1. 6) and (2. 6).

To derive a priori estimates for derivatives of arbitrary order it is con-
venient to deal with inhomogeneous boundary conditions.

Let \{b_{1}’(t, x), \cdots, b_{m-l}’(t, x)\} be an arbitrary smooth basis of N(t, x) .
Then the ad]oint boundary condition v(t, x)\in N’(t, x) is equivalent to

[b_{1}’(t, x), \cdots, b_{m-l}’(t, x)]^{*}A_{1}^{*}(t , x_{J}^{\backslash }v(t, x)=0 .

Furthermore according to (1. 3) we can take b_{1}’\cdots , b_{m-l}’ so that

[b_{1}’, \cdots, b_{m-l}’]^{*}=\{\begin{array}{ll}B_{I}’ 00 I_{m-d}\end{array}\} ,

where I_{m-a} is the identity matrix of order m-d and B_{I}’ is a (d-l)\cross d matrix
of rank d-l such that

(2. 7) B_{I}(B_{I}’)^{*}=0 .
Now let us define a nonsingular d\cross d matrix H by

(2. 8) H=\{\begin{array}{l}B_{I}B,I\end{array}\}

*
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Then (2. 7) implies

(2. 9) B_{I}=(B_{I}B_{I}^{*})[I_{l}, 0]H^{-1} .

Moreover, from (1. 2), the adjoint boundary condition v(t, x)\in N’(t, x) becomes
(B_{I}’A^{*})(t, x)v_{I}(t, x)=0 .

Thus in the same way as in the proof of Lemma 3. 3 in [8] we obtain
the following

Lemma 2. 3. Let the conclusion of Lemma 2. 2 be valid. Then for
every real number q there are positive constants C_{q} and \gamma_{q} such that for
\gamma\geqq\gamma_{q} we have

(2. 10) ||u||_{0,q,\gamma}\leqq C_{q}\gamma^{-1}(||Pu||_{0,q,\gamma}+|B_{I}u_{I}|_{1/2+q,\gamma})

for u\in H_{0,q+1,\gamma}(\Omega) with A_{1}u\in H_{1,q,\gamma}(\Omega) , and

(2. 11) ||v||_{0,q,-\gamma}\leqq C_{q}\gamma^{-1}(||P^{*}v||_{0,q,-\gamma}+|B_{I}’A^{*}v_{I}|_{1/2+q,-\gamma})

for v\in H_{0,q+1,-\gamma}(\Omega) with A_{1}^{*}v\in H_{1,q,-\gamma}(\Omega) .
Using Lemmas 2. 2, 2. 3, (2. 7) and (2. 9) we can now prove the following

Lemma 2. 4. Let (P, B) be L^{2}-well posed and let q\geqq 0 , \gamma\geqq\gamma_{q}>0 . Then
for every f\in H_{0,q,\gamma}(\Omega) and g\in H_{1/2+q,\gamma}(\partial\Omega)\cap rangeB_{I} there exists a unique
solution u\in H_{0,q,\gamma}(\Omega) with A_{1}u\in H_{1,q}

-
1,\gamma(\Omega) of Pu=f satisfying

B_{I}u_{I}|_{\partial\Omega}=g in \Lambda\Gamma) ’(\partial\Omega)

and
||u||_{0,q,\gamma}\leqq C_{q}\gamma^{-1}(||f||_{0,q,\gamma}+|g|_{1/2+q,\gamma})

Here \gamma_{q} and C_{q} are positive constants independent off, g and \gamma . Moreover
we have

u(t, x)=0 for t<0

if f(t, x)=0 for t<0 and g(t, x)=0 for t<0-

The proof may be also carried out in the same way as in \S \S 4 and
5 of [8].

Lemma 2. 5. Put

(2. 12) \tau+\sum_{j=2}^{n}A_{j}(t, x)\sigma_{j}=\{\begin{array}{lllllllll}A_{I} I(t,x .. \tau,\sigma) A_{I} II(t, x .. \sigma)A_{II} I(t,x..\sigma) A_{II} II(t,x..\tau,\sigma) \end{array}\}, \cdot

where A_{II} is a d\cross d matrix and A_{IIII}a(m-d)\cross(m-d) matrix.
Then we have

(2. 13) ||A_{IIII}^{-1}(t, x;\tau, \sigma)||\leqq C|{\rm Im}\tau|^{-1}
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for (t, x) near \partial\Omega, \tau\in C_{-} and \sigma\in R^{n-1}, where C is a positive constant in-
dependent of (t, x;\tau, \sigma) .

PROOF. Notice that, under (1. 2), P^{0} is written as

(2. 14) P^{0}(t, x;\tau, \lambda, \sigma)=[_{A_{III}}^{A\lambda+A_{11}} A_{III}A_{IIII}] .

For simplicity let us omit the variables t, x in the following matrices. Let
P_{ij}(\tau, \lambda, \sigma) and Q_{ij}(\tau, \sigma)(i, j=1, \cdots, m-d) be the (d+i, d+j) cofactor of
P^{0}(\tau, \lambda, \sigma) and the (i,j) cofactor of A_{IIII}(\tau, \sigma) respectively. Then from (2. 14)
we have

|P_{ij}(\tau, \lambda, \sigma)|=\lambda^{d}|Q_{ij}(\tau, \sigma)|\cdot|\det A|+O(\lambda^{d-1})

as \lambdaarrow\infty , while it follows from (1. 1) that

\sum_{i,f=1}^{m-d}|P_{ij}(\tau, \lambda, \sigma)|\leqq C|{\rm Im}\tau|^{-1}|\det P^{0}(\tau, \lambda, \sigma)| for \tau\in C_{-}

Hence we see that

\sum_{i,f=1}^{m-\prime l}|Q_{ij}(\tau, \sigma)|\leqq C|{\rm Im}\tau|^{-1}|\det A_{IIII}(\tau, \sigma)|+O(\lambda^{-1})

as \lambdaarrow\infty , since A is nonsingular and
|\det P^{0}(\tau, \lambda, \sigma)|=\lambda^{d}|\det A|\cdot|\det A_{IIII}(\tau, \sigma)|+O(\lambda^{d-1})

as \lambdaarrow\infty . Therefore we obtain (2. 13), because for a fixed \sigma\in R^{n-1}A_{IIII}(’\tau, \sigma)

is an analytic function of \tau\in C_{-} and is nonsingular when | Im \tau| is sufficiently
large hence A_{IIII}(\tau, \sigma) is nonsingular in a dense subset of C_{-} .

The following lemma is also an extension of Theorem 1 in [1] to the
case of characteristic boundary.

Lemma 2. 6. Let (P, B) be L^{2}-well posed. Then for every boundary
point (t^{0}, x^{0})\in\partial\Omega the frozen (constant coefficients) problem :

(P^{0}, B)_{(t^{0},x^{0})}

.P^{0} (t^{0}, x^{0} ; D_{t}, D_{x})u=f in (0, \infty)\cross G ,

B(t^{0}, x^{0})u=0 on (0, \infty)\cross\partial G .
-u (0, x)=0 on G

is L^{2}-well posed. That is, for every \gamma>0 and every f\in H_{0},\gamma(\Omega) there exists
uniquely a solution u\in H_{0,\gamma}(\Omega) of P^{0}(t^{0}, x^{0} ; D_{t}, D_{x})u=f with the boundary
condition B(t^{0}, x^{0})u=0 in the weak sence and the inequality (1. 6) is valid
for the same constant C_{0} .

PROOF. The method used here is similar to that of the proof of Lemma
2. 1 in [16].
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In view of Lemmas 2. 2, 2. 3 and 2. 4 it is enough to prove (2. 4) and
(2. 5) for P^{0}(t^{0}, x^{0} ; D_{t}, D_{x}) and (P^{0})^{*}(t^{0}, x^{0} ; D_{t}, D_{x}) instead of P and P^{*} re-
spectively and for \gamma>0 .

Let w\in C_{0}^{\infty}(\overline{\Omega}) and B(t^{0}, x^{0})w(t, x)=0 for all (t, x)\in\partial\Omega . For \epsilon>0 , \mu>0

and (t, x)\in\overline{\Omega} we set \gamma=\epsilon^{-1}\mu,

u_{I}(t, x)=H(t, x)H^{-1}(t^{0}, x^{0})w_{I}(\epsilon^{-1}(t-t^{0}), \epsilon^{-1}(x-x^{0})) ,

u_{II}(t, x)=w_{II}(\text{\’{e}}^{-1}(t-t^{0}), \epsilon^{-1}(x-x^{0}))

and u=^{\iota}[^{t}u_{I},{}^{t}u_{II}] , where H is the matrix defined by (2. 8). Then we see
from (2. 7) and (2. 9) that B_{I}(t, x)w\{t,x) =0 for all (t, x)\in\partial\Omega . Therefore
applying (2. 4) to u and tending \epsilon to 0 we obtain

||w||_{0,\mu}\leqq C_{0}\mu^{-1}||P^{0}(t^{0}, x^{0} ; D_{t}, D_{x})w||_{0,\mu} .

Similarly we can prove the desired \dot{1}nequality for (P^{0})^{*}(t^{0}, x^{0} ; D_{t}. D_{x}) . This
completes the proof.

In what follows we restrict ourselves to the case where (P, B) is of
constant coefficients and P(\tau, \lambda, \sigma) is homogeneous in \tau , \sigma and \lambda .

When \partial\Omega is noncharacteristic, it is known that if (P, B) is L^{2}-well posed
then the rank l of B coincides with the number d^{+} of positive eigenvalues
of A_{1} . This is also true in our case, because of the reflexiveness of (P, B) .
That is, we obtain the following

Lemma 2. 7. Let (P, B) be L^{2}-well posed. Then l=d^{+}r

To prove this we shall now associate with the problem (P, B) a system
of ordinary differential equations in x_{1} depending a parameter (\tau, \sigma)\in C_{-}\cross

R^{n-1} (see (2. 16) below), as in the case of noncharacteristic boundary. This
is carried out formally as follows: Let us consider partial Fourier transform
u of u with respect to t, dr Then from (2. 14) we obtain

(2. 1_{\partial}^{r})\{

(AD_{1}+A_{I1}(\tau, \sigma))\hat{u}_{I}(\tau, x_{1}, \sigma)+A_{III}(\sigma)\hat{u}_{II}(\tau, x_{1}, \sigma)=fI(\tau, x_{1}, \sigma) , x_{1}>0 ,
A_{II1}(\sigma)\hat{u}_{I}(\tau, x_{1}, \sigma)+A_{IIII}(\tau, \sigma)\hat{u}_{II}(\tau, x_{1}, \sigma)=\hat{f}_{II}(\tau, x_{1}, \sigma) , x_{1}>0 ,

B_{I}\hat{u}_{I}(\tau, 0, \sigma)=0 ,

where for instance

\hat{u}_{I}(\tau, x_{1}, \sigma)=\int e^{-i(\tau t+\sigma x’)}u_{I}(tR^{1}\cross R^{n-1}’
x_{1} , x\acute{)} dtdx’

Now let \tau\in C
- and \sigma\in R^{n-1} . Then, since A_{IIII}(\tau, \sigma) is nonsingular according

to Lemma 2. 5, we may solve the second equation of (2. 1\overline{0}) for \hat{u}_{II} and
insert it into the first. Thus we arrive at
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/(D_{1}-M(\tau, \sigma))\hat{u}_{I}(\tau, x_{1}, \sigma)=F(\tau, x_{1}, \sigma) , x_{1}>0,\cdot

(2. 16)
|B_{I}\hat{u}_{I}(\tau, 0, \sigma)=0 ,

where

(2. 17) M(\tau, \sigma)=-A^{-1}(A_{II}-A_{III}A_{IIII}^{-1}A_{III})(\tau, \sigma)

and
F(\tau, x_{1}, \sigma)=A^{-1}(\hat{f}_{I}-A_{III}A_{IIII}^{-1}\hat{f}_{II})(\tau, x_{1}, \sigma)

From (2. 17) and (2. 17) we have

(2. 18) P(\tau, \lambda, \sigma)=\{\begin{array}{ll}A 00 I_{m-d}\end{array}\}\{\begin{array}{lll}\lambda-M(\tau,\sigma) A^{-1}A_{III} A_{IIII}^{-1}0 I_{m-d} \end{array}\}\{\begin{array}{lll}I_{d} 0 A_{III} A_{II} II\end{array}\}

so that

(2. 19) det P(\tau, \lambda, \sigma)=(\det A) (det (\lambda-M(\tau, \sigma)) det A_{IIII}(\tau, \sigma)1

Therefore we find from (1. 2), Lemma 2. 5 and the hyperbolicity of P that
the number of the eigenvalues of M(\tau, \sigma) with positive imaginary parts is
independent of (\tau, \sigma)\in C_{-}\cross R^{n-1} and hence is equal to d^{+} .

For (\tau, \sigma)\in C_{-}\cross R^{n-1} now let P_{I}^{+}(\tau, \sigma) denote the projection

(2. 20) \frac{1}{2\pi i}\int_{r}(\lambda-M(\tau, \sigma))^{-1}d\lambda\neq(\tau,\sigma) ’

where \Gamma^{+}(\tau, \sigma) is a positively-0riented closed Jordan curve enclosing only the
eigenvalues of M(\tau, \sigma) with positive imaginary parts. Then the rank of
P_{I}^{+}(\tau, \sigma) is equal to d^{+} Furthermore to prove Lemma 2. 7 we use the fol-
lowing

Lemma 2. 8. Suppose that

rank (B_{I}P_{I}^{+})(\tau, \sigma)<d^{+} for all (\tau, \sigma) in an open set of C_{-}\cross R^{n-1}

Then for every \gamma>0 there is a solution u_{\gamma}\in H_{1,\gamma}(\sqrt)\cap C^{\infty}(\overline{\Omega}) of the homO-
geneous equation Pu=0 in \Omega satisfying the boundary condition Bu=0 on
\partial\Omega which does not identically vanish.

PROOF. For (\tau, \sigma)\in C_{-}\cross R^{n-1} we define a projection by

P^{+}( \tau, \sigma)=\frac{1}{2\pi i}\int P^{-1}(\tau, \lambda, \sigma)A_{1}d\lambda\Gamma^{+}(\tau,\sigma) ’

where \Gamma^{+}(\tau, \sigma) is the same curve as in (2. 20). Then it follows from (2. 17)

and (2. 18) that
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P^{+}(\tau, \sigma)=\{\begin{array}{lll}P_{1}^{+}(\tau, \sigma) 0-(A_{IIII}^{-1}A_{III} P_{I}^{+})(\tau,\sigma) 0\end{array}\}

Moreover from (1. 3) we have BP^{+}(\tau, \sigma)=[B_{I}P_{I}^{+}(\tau, \sigma), 0] . Therefore denoting
by U^{+}(\tau, \sigma) an m\cross d^{+} matrix consisting of d^{+} linearly independent columns of
P^{+}(\tau, \sigma) we find from the hypothesis that there are a point (\tau^{0}, \sigma^{0})\in C_{-}\cross R^{n-1}

and a smooth vector-valued function defined on a neighourhood of (\tau^{0}, \sigma^{0})

which is a null vector of BU^{+}(\tau, \sigma) and does not identically vanish. Accord-
ingly we can construct as usual for \gamma=\gamma^{0} such a solution u_{\gamma^{0}} as described
in the statement of the lemma, where \gamma^{0}=- Im \tau^{0} . For arbitrary \gamma>0 we
now set u_{\gamma}(t, x)=u_{\gamma^{0}}((\gamma^{0})^{-1}\gamma t, (\gamma^{0})^{-1}\gamma x) . Then u_{\gamma} has the desired property.

PROOF of Lemma 2. 7. It follows from the previous lemma and the
uniqueness of solutions of (P, B) that l\geqq d^{+}\iota The same argument applied
to the adjoint problem of (P, B) gives that d-l\geqq d_{:}^{-} because of Lemmas
2. 1 and 2. 2. Therefore we conclude that l=d^{+} , since d=d^{+}+d^{-} Thus
we have proved the lemma.

From Lemmas 2. 7 and 2. 8 we can obtain the following

Lemma 2. 9. Let (P, B) be L^{2}-well posed. Then l=d^{+} and the problem
satisfifies Hersh’s condition, i. e. ,

rank (B_{I}P_{I}^{+})(\tau, \sigma)=d^{+} for all (\tau, \sigma)\in C_{-}\cross R^{n-1} .
For the proof see for instance that of Theorem 3. 1 in [2].
Now let U_{I}^{+}(\tau, \sigma) be a d\cross d^{+} matrix whose columns form a basis of

the range of P_{I}^{+}(\tau, \sigma) . Then, if l=d^{+} , the function

(2. 21) R(\tau, \sigma)=\det(B_{I}U_{I}^{+})(\tau, \sigma)

is said to be Lopatinskii determinant of the problem (P, B) (associated with
U_{I}^{+}) . Notice that the zeros of Lopatinskii determinant do not depend on
the choice of a basis of P_{I}^{+} . Therefore Hersh’s condition means that R(\tau, \sigma)

\neq 0 for all (\tau, \sigma)\in C_{-}\cross R^{n-1} .
Furthermore let U_{I}^{-}(\tau, \sigma) be a d\cross d^{-} matrix whose columns form a basis

of the range of the projection I_{d}-P_{I}^{+}(\tau, \sigma) . Then, if det (B_{I}U_{I}^{+})(\tau, \sigma)\neq 0 ,
the elements of the d^{+}\cross d^{-} matrix

(2. 22) (B_{I}U_{I}^{+})^{-1}(B_{I}U_{I}^{-})(\tau, \sigma)

are said to be (generalized) reflection coefficients of the problem (P, B) (as-
sociated with U_{I}^{+} and U_{I}^{-}). This concept will be used in section 4.

Finally we state the following

Lemma 2. 10. If l=d^{+} and (P, B) satisfifies Hersh’s condition then the
matrix B_{I} in (1. 3) may be taken to be of the form
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\langle2. 23) B_{I}=[I_{d^{+}}, S] ,

where S is a constant d^{+}\cross d^{-} matrix. Moreover if (2. 23) holds then Lopa-
tinskii determinant R(\tau, \sigma) defifined by (2. 21) does not vanish when Im \tau<0

and \sigma=0 .
PROOF. Let Im \tau<0 . Then from (2. 12) and (2. 17) we have M(\tau, 0)

=-A^{-1}\tau . Moreover it may be assumed that the matrix A is diagonal,
since P is strongly hyperbolic. Therefore we find from (1. 2) and (2. 20) that

(2. 24) P_{I}^{+}(\tau, 0)=\{\begin{array}{ll}I_{a^{+}} 00 0\end{array}\} .

Now let l=d^{+} and rank (B_{I}P_{I}^{+})(\tau, 0)=d^{+} . Then (2. 24) implies that the left
d^{+}\cross d^{+} block of B_{I} is nonsingular, i . e. , the boundary condition B_{I}u_{1}=0 may
be prescribed by a matrix of the form (2. 23). This proves the first assertion.
Next by (2. 24) we can take a basis of the range of P_{I}^{+}(\tau, 0) so that

U_{1}^{+}(\tau, 0)=\tau \{\begin{array}{l}I_{d^{+}}0\end{array}\} .

Therefore if (2. 23) holds then from (2. 21) we have R(\tau, 0)=\tau^{a^{+}} , which implies
the second assertion.

\S 3. Proof of part (a) of Theorem

Consider Maxwell’s equations defined by

(D_{t}+ \frac{1}{i}\{\begin{array}{ll}0 -curlcurl 0\end{array}\}) \{\begin{array}{l}EH\end{array}\}=F ,

where E is the electric field vector, H is the magnetic field vector and the
speed of light is taken as unity. To transform the boundary matrix into
the form (1. 2) we shall change the dependent varables by

u=T_{1}^{*}\{\begin{array}{l}EH\end{array}\} ,

where T_{1} is the orthogonal matrix :

\frac{1}{\sqrt{2}}[_{1}^{0}1000-100001 000011-100001\sqrt{2}00000\sqrt{2}00]000 .
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Then the equations become

(3. 1) P(D_{t}, D_{x})u=(D_{t}+ \sum_{j=1}^{3}A_{j}D_{j})u=f ,

where f=T_{1}^{*}F_{:}

1
1

-1
A_{1}=

-1
0

0,

’
A_{2}= \frac{1}{\sqrt{2}} \{\begin{array}{lllllll} l 0 -1 1 00 1 0 --------- 10 1 0-1 0 0-1 \frac{0-1}{0}\end{array}\} ,

A_{3}= \frac{1}{\sqrt{2}} (\begin{array}{llllll} -1 0 0 -1 0 0 1 1 0-.-10 -10 01 01 0\end{array}\} .

Since P is symmetric and det P(\tau, \lambda, \sigma)=\tau^{2}(\tau^{2}-\lambda^{2}-|\sigma|^{2})^{2} , P is a strongly
hyperbolic system of constant multiplicity so that the inequality (1. 1) is valid.
Moreover it becomes that d=4, d^{+}=d^{-}=2 , A^{+}=I_{2} , A^{-}=-I_{2} in (1. 2) and
that for the matrices defined by (3. 12) and (2. 17)

A_{I1}(\tau, \sigma)=\tau I_{4} , A_{IIII}(\tau, \sigma)=\tau I_{2} ,

(3. 2)
A_{III}( \sigma)=\frac{1}{\sqrt{2}} \{\begin{array}{l}-T_{\sigma}T_{\sigma}J,\end{array}\}

\wedge,
A_{II1}(\sigma)=A_{III}^{*}(\sigma)

and

(3. 3) M(\tau, \sigma)=-\{\begin{array}{ll}\tau I_{2} 00 -\tau I_{2}\end{array}\} + \frac{1}{2\tau}\{\begin{array}{ll}|\sigma|^{2}I_{2} -T_{\sigma}JT_{\sigma}^{*}T_{\sigma}JT_{\sigma}^{*} -|\sigma|^{2}I_{2}\end{array}\} .

Here we have set as follows:

(3. 4) T_{\sigma}=\{\begin{array}{ll}\sigma_{3} \sigma_{2}-\sigma_{2} \sigma_{3}\end{array}\}

,\cdot
J=\{\begin{array}{ll}0 11 0\end{array}\}

Together with the system P defined by (3. 1) here we may assume that
B is a constant 2\cross 6 matrix of the form

(3. 5) B=[I_{2}, S, 0] , i . e. , B_{I}=[I_{2}, SJ
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and S is a 2\cross 2 matrix. Although it follows from Lemma 2. 10 that (3. 5)
holds under the hypotheses of part (a) of Theorem, we wish to clarify the
relation between ||S|| and Hersh’s condition and therefore we like to do so.

Now let \lambda^{+}(\tau, \sigma) denote the root of the equation det P(\tau, \lambda, \sigma)=0 in \lambda

with positive imaginary part when Im \tau<0 and in this section assume that
\sigma\in R^{2}\backslash 0 (see Lemma 2. 10). Then the following two lemmas are valid even
if S is non-real. They will be also used in \S 4.

LEMMA 3. 1. Let \tau\in C
- and \sigma\in R^{2}\backslash 0 . Then the columns of the 4\cross 2

matrix

(3. 6) U_{I}^{+}( \tau, \sigma)=\frac{1}{\sqrt{2}|\sigma|} \{\begin{array}{ll}(\tau-\lambda^{+}(\tau, \sigma))T_{C}-(\tau+\lambda^{+}(\tau,\sigma))T_{\sigma}J \end{array}\}

form a basis of the range of the projection P_{I}^{+}(\tau, \sigma) defifined by (2. 20). MoreO-
ver Lopatinskii determinant R(\tau, \sigma) defifined by (2. 21) is as follows
(3. 7) R(\tau, \sigma)= (1- det S) \tau^{2}-(1+\det S)\tau\lambda^{+}(\tau, \sigma)-\Phi(\sigma)/2_{\tau}

where

(3. 8) \Phi(\sigma)= (1- det S-s_{12}-s_{21}) \sigma_{2}^{2}+2(s_{11}-s_{22})\sigma_{2}\sigma_{3}+ (1- det S+s_{12}+s_{21}) \sigma_{3}^{2}

and

S=\{\begin{array}{ll}s_{11} s_{12}s_{21} s_{22}\end{array}\} .

PROOF. Since (\lambda^{+}(\tau, \sigma))^{2}=\tau^{2}-|\sigma|^{2} and (3. 4) implies

(3. 9) T^{\star},,\cdot T_{\sigma}=T_{\sigma}T_{\sigma}^{*}=|\sigma|^{2}I_{2} ,

we find from (3. 3) and (3. 6) that
(\lambda^{+}(\tau, \sigma)-M(\tau, \sigma))U_{I}^{+}(\tau, \sigma)=0

and rank U_{I}^{+}(\tau, \sigma)=2 . Therefore the first assertion follows from (2. 20).
We shall next prove (3. 7). From (3. 5), (3. 6\rangle and (3. 9) we have

(3. 10) (B_{I}U_{I}^{+})(\tau, \sigma)=(\sqrt{2}|\sigma|)^{-1}T_{\sigma}((\tau-\lambda^{+})I_{2}-(\tau+\lambda^{+})\hat{S}(\sigma)J) ,

where

(3. 11) S(\sigma)=|\sigma|^{-2}T_{\sigma}^{*}ST_{c}=\{\begin{array}{ll}\hat{s}_{11} \hat{s}_{12}\hat{s}_{21} \hat{s}_{22}\end{array}\} (\sigma) .

Hence we obtain

det (B_{I}U_{I}^{+})(\tau, \sigma)=2^{-1} det ((\tau-\lambda^{+})I_{2}-(\tau+\lambda^{+})S(\sigma)J)

=\tau^{2} (1-det \hat{S}) -\tau\lambda^{+}(1+\det\hat{S})-|\sigma|^{2}(1- det \hat{S}+\hat{s}_{12}+\hat{s}_{21})/2 .
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Moreover it follows from (3. 14) and (3. 4) that det \hat{S}(\sigma)=\det S,

|\sigma|^{2}\hat{s}_{12}(\sigma)=(s_{11}-s_{22})\sigma_{2}\sigma_{3}+s_{12}\sigma_{3}^{2}-s_{21}\sigma_{2}^{2} ,

|\sigma|^{*}‘\hat{s}_{21}(\sigma)=(s_{11}-s_{22})\sigma_{2}\sigma_{3}-s_{12}\sigma_{2}^{2}+s_{21}\sigma_{3}^{2} .
Thus we obtain the desired equality (3. 7).

Lemma 3. 2. In order that there exists a nonsingular 6\cross 6 matrix W
such that W^{-1}A_{j}W are hermitian for j=1,2,3 and

(3. 12) W^{-1}A_{1}Wu\cdot u\leqq 0 for u\in(kerBW)\backslash 0r

it is necessary and sufficient that there are real numbers \alpha, \beta such that
|\beta|<\alpha and

\langle3. 13) \alpha(I_{2}-S^{*}S)+\beta(\{\begin{array}{ll}0 i-i 0\end{array}\}+S^{*}\{\begin{array}{ll}0 i-i 0\end{array}\} S)\geqq 0 .

In particular, A_{1}u\cdot u\leqq 0 for u\in kerB if and only if I_{2}-S^{*}S\geqq 0 , i. e. , ||S||

\leqq 1 , and the strict inequality in (3.12) is valid if and only if the left side
of (3. 13) is positive defifinite.

PROOF. Necessity. Since it is invariant under unitary transforma-
tions that W^{-1}A_{j}W is hermitian and (3. 12) is valid, we may assume that
W^{-1}A_{1}W=A_{1} and so W is of the from

W=\{\begin{array}{lll}W_{1} 00 W_{2} W_{3}\end{array}\} ,

where W_{j}(j=1,2,3) are nonsingular 2\cross 2 matrices.
We first find from (3. 1) that W^{-1}A_{2}W is hermitian if and only if

(3. 14) W_{1}W_{1}^{*}=-\{\begin{array}{ll}0 -11 0\end{array}\} W_{3}W_{3}^{*}\{\begin{array}{ll}0 -11 0\end{array}\} ,

(3. 15) W_{2}W_{2}^{*}=\{\begin{array}{ll}1 00 -1\end{array}\} W_{3}W_{3}^{*}\{\begin{array}{ll}1 00 -1\end{array}\}

and that W^{-1}A_{3}W is so if and only if

(3. 16) W_{1}W_{1}^{*}=W_{3}W_{3}^{*} ,

(3. 17) W_{2}W_{2}^{\star}=\{\begin{array}{ll}0 11 0\end{array}\} W_{3}W_{3}^{*}\{\begin{array}{ll}0 11 0\end{array}\} .

Now it follows from (3. 14) and (3. 16) that for some real numbers \alpha and \beta



On well posedness of mixed problems for Maxwell’s equations 157

\langle3. 18) W_{1}W_{1}^{*}=W_{3}W_{3}^{*}=\{\begin{array}{ll}\alpha i\beta-i\beta \alpha\end{array}\} .

Moreover, since W_{3}W_{3}^{*} is positive definite, we have

|\beta|<\alpha .
From (3. 17) and (3. 18) we also obtain

(3. 19) W_{2}W_{2}^{*}=\{\begin{array}{ll}\alpha -i\beta i\beta \alpha\end{array}\} .

Furthermore we find from (3. _{\iota}5) that, under (3. 18) and (3. 19) with |\beta|<\alpha,
(3. 12) is equivalent to (3. 13). Similarly other assertions of the lemma follow.

Sufficiency. Let

(3. 20)

W=\{\begin{array}{lll}W_{1} W_{2} W_{3}\end{array}\} , W_{1}=W_{3}=T_{0}^{*}[_{0}^{\sqrt{\alpha+\beta}} \sqrt{\alpha-\beta}0]T_{0} ,

W_{2}=T_{0}^{\star}
.

[_{0}^{\sqrt{\alpha-\beta}} \sqrt{\alpha+\beta}0]T_{0}, T_{0}= \frac{1}{\sqrt{2}} \{\begin{array}{ll}1 ii 1\end{array}\}

Then (3. 18) and (3. 19) are valid. Therefore we see from the preceding
argument that the matrix W thus defined has the desired property, since
(3. 18) and (3. 19) imply (3. 15).

From now on in this section the matrix S in (3. 5) is assumed to be
real. Then we obtain the following

Lemma 3. 3. ([5]). R(\eta-i\gamma, \sigma)\neq 0 for all \gamma>0 , \eta\in R^{1}\backslash 0 and \sigma\in R^{2}\backslash 0

if and only if det S\geqq-1 .
PROOF. Since the proof given at pp. 254-255 in [5] is complicated,

we shall give a somewhat simple proof.

Let \eta\neq 0 and \gamma>0 . For convenience put

\lambda^{+}(\eta-i\gamma, \sigma)=\alpha+i\beta , \beta>0\iota

Then we have

(3. 21) \alpha^{2}-\beta^{2}=\eta^{2}-\gamma^{2}-|\sigma|^{2}

and

(3. 22) \alpha\beta=-\eta\gamma

so that \eta\alpha<0 . Moreover it follows from (3. 7) that
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(3. 23) Re R(\eta-i\gamma, \sigma)= (1- det S) (\eta^{2}-\gamma^{2})-(1+\det S)(\eta\alpha+\gamma\beta)-\Phi(\sigma)/2 ,

(3. 24) Im R(\eta-i\gamma, \sigma)=-2 (1- det S) \eta\gamma-(1+\det S)(\eta\beta-\gamma\alpha)
\{

We first show that det S\geqq-1 implies Im R(\eta-i\gamma, \sigma)\neq 0 for \eta\neq 0 and
\gamma>0 . When det S=-1, we have from (3. 21)

Im R(\eta-i\gamma, \sigma)=-4\eta\gamma\neq 01

Now let det S>-1 . Then we find from (3. 22) and (3. 24) that, if \eta\neq 0 ,
Im R(\eta-i\gamma, \sigma)=0 is equivalent to

\frac{\beta}{\gamma}+\frac{\gamma}{\beta}=-2\frac{1-\det S}{1+\det S}\circ

which is impossible, because the left hand side \geqq 2 and the right one <2
when det S>-1 .

Next suppose that det S<-1 . Then in the same way as in [5] it can
be shown that there is a point (\eta, \gamma, \sigma) such that R(\eta-i\gamma, \sigma)=0 , \alpha=-\gamma and
\beta=\eta . In fact, under the last two equalities, (3. 22) is valid and (3. 21) becomes

(3. 25) \eta^{2}-\gamma^{2}=|\sigma|^{2}/2

Moreover, according to (3. 24), Im R(\eta-i\gamma, \sigma)=0 may be written as

(3. 26) ( \frac{\eta}{\gamma})^{2}+2\frac{1-\det S}{1+\det S}(\frac{\eta}{\gamma})+1=0 .

Notice that (1+\det S)^{-1} (1- det S)<-1 , since det S<-1 . Therefore the
equation (3. 26) in \eta/\gamma has a solution such that \eta>\gamma>0 . Let us fix such
a point (\eta, \gamma) . Then to complete the proof it is enough to find \sigma\in R^{2} sat-
isfying (3. 25) and Re R(\eta-i\gamma, \sigma)=0 . Now it follows from (3. 8) and the
relation \eta\alpha+\gamma\beta=0 that, under (3. 25), the equality (3. 23) becomes

-2{\rm Re} R(\eta-i\gamma, \sigma)=(s_{12}+s_{21})(\sigma_{3}^{2}-\sigma_{2}^{2})+2(s_{11}-s_{22})\sigma_{2}\sigma_{3} .
The right side of this equation is an indefinite quadratic form so that we
can find a desired point \sigma.

Lemma 3. 4. Let det S\geqq-1 . Then R(-i\gamma, \sigma)\neq 0 for all \gamma>0 and
\sigma\in R^{2}\backslash 0 if and only if ||S||\leqq 1 .

PROOF. Let \gamma>0 . Then \eta=0 is equivalent to \alpha=0 according to (3. 22).
Hence it follows from (3. 21) that Im R(-i\gamma, \sigma)=0 for \gamma>0 and \sigma\in R^{2} .
Moreover we may assume in the proof that \gamma^{2}+|\sigma|^{2}=1 , since R(-i\gamma, \sigma)

is homogeneous in \gamma and \sigma . Therefore from (3. 21) and (3. 23) we have

(3. 27) R(-i\gamma, \sigma)=f(\gamma)-\Phi(\sigma)/2 ,
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where
f(\gamma)=- (1- det S) \gamma^{2}-(1+\det S)\gamma

and \Phi(\sigma) is the quadratic from defined by (3. 8) Notice that

(3. 28) f(0)=0 and. f(\gamma)<0 if 0<\gamma\leqq 1 and det S+1\geqq 0

We now claim that R(-i\gamma, \sigma)\neq 0 for \gamma>0 if and only if \Phi(\sigma) is positive
semi-definite. The “if” part follows from (3. 29) and (3. 28). To prove
the “only if” part we suppose that there is a point \sigma^{0}\in R^{2}\backslash 0 satisfying \Phi(\sigma^{0})

<0 . Then (3. 29) and (3. 28) imply that R(0, |\sigma^{0}|^{-1}\sigma^{0})>0 and R(– i, 0)<0 .
Therefore we find another point \sigma and \gamma>0 such that R(-i\gamma, \sigma)=0 , since
R(-i\gamma, \sigma) is real-valued and the set { (\gamma, \sigma)j\gamma^{2}+|\sigma|^{2}=1 and 0<\gamma<1} is con-
nected.

Thus to complete the proof of the lemma it is enough to show that
\Phi(\sigma) is positive semi-definite if and only if
(3. 29) | det S|\leqq 1 and det (I_{2}-S^{*}S)\geqq 0.,

which is equivalent to ||S||\leqq 1 .
Now from (3. 8) we have

(3. 30) the discriminant of \Phi(\sigma)

=(s_{11}-s_{22})^{2}+(s_{12}+s_{21})^{2}-(1- det S)^{2}

=-det (I_{2}-S^{*}S)

To prove the “only if” part let \Phi(\sigma) be positive semi-definite. Then we
find from (3. 8) and (3. 30) that det (I_{2}-S^{*}S)\geqq 0 and det S\leqq 1 . Hence by
hypothesis we obtain (3. 29). Now the “if” part follows from (3. 29) and
(3. 30).

From Lemmas 3. 3 and 3. 4 we now obtain the following

lemma 3. 5. R(\tau, \sigma)\neq 0 for all (\tau, \sigma)\in C_{-}\cross(R^{2}\backslash 0) if and only if
||S||\leqq 1 .

Lemma 3. 6. Let ||S||\leqq 1 . Then ||S||<1 if and only if R(\eta, \sigma)\neq 0 for
all (\eta, \sigma)\in R^{1}\cross(R^{2}\backslash 0) .

PROOF. The hypothesis implies (3. 29) so that the quadratic form \Phi(\sigma)

defined by (3. 8) is positive semi-definite according to (3. 30).
To prove the ((if” part let R(0, \sigma)\neq 0 for all \sigma\neq 0 . Then \Phi(\sigma) is positive

definite according to (3. 7), since it is positive semi-definite. Therefore from
(3. 8), (3. 29) and (3. 30) we obtain

(3. 31) | det S|<1 and det (I_{2}-S^{*}S)>0 ,

which is equivalent to ||S||<1 .
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To prove the “only if” part suppose that (3. 31) is valid hence \Phi(\sigma) is
positive definite. If 0<|\eta|<|\sigma| then according to (3. 7) Im R(\eta, \sigma)\neq 0 , since
\lambda^{+}(\eta, \sigma)=i(|\sigma|^{2}-\eta^{2})^{1/2}\neq 0 . If 0<|\sigma|\leqq|\eta| then, since \lambda^{+}(\eta, \sigma)=- (sgn \eta) (\eta^{2}-

||\sigma|^{2})^{1/2}, we have
R(\eta, \sigma)= (1- det S) \eta^{2}+ (1- det S) |\eta|(\eta^{2}-|\sigma|^{2})^{1/2}-\Phi(\sigma)/2 .

Hence we may assume in the proof that \eta\geqq|\sigma|>0 . Then it follows that
\langle \partial R/\partial\eta)(\eta, \sigma)>0 for \eta>|\sigma|>0 . Moreover we have from (3. 8)

2R(|\sigma|, \sigma)= (1- det S+s_{12}+s_{21}) \sigma_{2}^{2}-2(s_{11}-s_{22})\sigma_{2}\sigma_{3}+ (1- det S-s_{12}-s_{21}) \sigma_{3}^{2} ,

which is positive definite according to (3. 30) and (3. 31). Therefore we find
that R(\eta, \sigma)\neq 0 for |\eta|\geqq|\sigma|>0 . Finally we have 2R(0, \sigma)=-\Phi(\sigma)<0 for
\sigma\neq 0 .

PROOF of part (a) of THEOREM. Notice that Hersh’s condition and the
maximal non-positivity are invariant under unitary transformations of the
dependent variables, and that if the kernel of B is non-positive for the matrix
A_{1} in (3. 1) then it is maximally non-positive, since rank B=2. Therefore
the assertion follows from Lemmas 2. 10, 3. 2 and 3. 5. Then for the L^{2}-

well posedness see [10].
REMARK 3. 7. The above proof of part (a) of Theorem together with

Lemma 3. 6 implies that if (P, B) satisfies Kreiss’ condition, i . e. , R(\tau, \sigma)\neq 0

for all (\tau, \sigma)\in(^{\overline{r^{\gamma}}_{-}}.\cross R^{2})\backslash 0 then the kernel of B is maximally non-positive for
A_{1} and the strict inequality in (0. 1) is valid. The converses of part (a) of
Theorem and the above assertion also hold by virtue of Lemma 2. 9 and
the same lemmas used above. Compare with the results in p. 627 of [11].

\S 4. Maxwell’s equations with non-real boundary conditions

We shall first derive a necessary and sufficient condition for the problem
(P, B) to be L^{2}-well posed in terms of Lopatinskii determinant and reflection
coefficients (see (2. 22)), as in the case of noncharacteristic boundary (see [2],
[15] or Theorem 4. 1 in [12] ) . Here P is the system defined by (3. 1) and
B is a constant 2\cross 6 matrix of the form (3. \backslash \ulcorner)) . Notice that -\lambda^{+}(\tau, \sigma) is
the root of the equation det P(\tau, \lambda, \sigma)=0 in \lambda with negative imaginary part
when Im \tau<0 . Then we obtain the following

PROPOSITION 4. 1. In order that the problem (P, B) is L^{2}-well posed
it is necessary and sufficient that 1) R(\tau, \sigma)\neq 0 if either Im \tau<0 or Im \tau

=0 and |\tau|>|\sigma| , and -) for every (\eta^{0}, \sigma^{0})\in R^{1}\cross R^{2} with |\eta^{0}|\leqq|\sigma^{0}| and \sigma^{0}\neq 0

there are a positive constant C=C(\eta^{0}, \sigma^{0}) and a neighborhood U(\eta^{0}, \sigma^{0}) in
C_{-}\cross R^{2} such that for (\tau, \sigma)\in U(\eta^{0}, \sigma^{0})
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(4. 1) ||(B_{I}U_{I}^{+})^{-1}(B_{I}U_{I}^{-})(\tau, \sigma)||

\leqq\{

C| Im \tau|^{-1} (Im \lambda^{+}(\tau , \sigma)) \cdot|\lambda^{+}(\tau, \sigma)| , if |\eta^{0}|=|\sigma^{0}| ,

C| Im \tau|^{-1}, if 0<|\eta^{0}|<|\sigma^{0}| ,

C| Im \tau|^{-1}|\tau| , if \eta^{0}=0 ,

where U_{I}^{+} is the matrix given by (3. 6) and U_{I}^{-} is defifined as U_{I}^{+} resulting

from replacing \lambda^{+} by -\lambda^{+} in its defifinition.
It should be pointed out that the presence of the factor |\tau| in the right

side of the last inequality of (4. 1) is caused by the unboundedness of the
matrix M(\tau, \sigma) (see (3. 3)).

To prove Proposition 4. 1 we need the following two lemmas.
We first suppose that (P, B) is L^{2}-well posed. Let f\in C_{0}^{\infty}(\Omega) and supp

f\subset\{(t, x);t>0\} . Then it follows from Lemma 2. 4 and the homogeneity
of P that for every \gamma>0 there exists a unique solution u\in H_{0,1,\gamma}(\Omega) of the
equation Pu=f satisfying (1. 6) such that u_{I}\in H_{1,0,\gamma}(\Omega) , B_{I}u_{I}|_{\partial\Omega}=0 in \mathscr{D}(\partial\Omega)

and u(t, x)=0 for t<0 . Now let v\in H_{1,0,\gamma}(\Omega) be the solution of the Cauchy
problem Pv=f in R^{4} , v(t, x)=0 for t<0 . Then the inequality (1. 6) for v in-
stead of u is valid. Setting w=u-v, we see that w\in H_{0,1,\gamma}(\Omega) , w_{I}\in H_{1,0,\gamma}(\Omega) ,

\int^{Pw}=0 in 12 ,
(4. 2)

|B_{I}w_{I}=-B_{I}v_{I} on \partial\Omega

and

(4. 3) ||w||_{0,\gamma}\leqq 2C_{0}\gamma^{-1}||f||_{0,\gamma} , w(t, x)=0 for t<0 .

Now the partial Fourier transform \hat{w}(\tau, x_{1}, \sigma) of w(t, x_{1}, d) with respect to
t, x’ may be represented as

(4. 4) \hat{w}(\tau, x_{1}, \sigma)=\int_{0}^{\infty}G(\tau, \sigma;x_{1}, y_{1})\acute{\grave{f}}(\tau, y_{1}, \sigma)dy_{1} ,

where G is the matrix defined by (4. 12) below. Then we have

Lemma 4. 2. Let (P, B) satisfy HersKs condition. Then the problem
is L^{2} well posed if and only if for every (\eta^{0}, \sigma^{0})\in(R^{1}\cross R^{2})\backslash 0 there are a

positive constant C and a neighborhood U(\eta^{0}, \sigma^{0}) in C_{-}\cross R^{2} such that for
(\tau, \sigma)\in U(\eta^{0}, \sigma^{0})

(4. 5) ||G(\tau, \sigma;.,\cdot)||_{4(L^{2}(0,\infty),L^{2}(0,))}\infty\leqq C|{\rm Im}\tau|^{-1} ,

where || ||_{4^{(L(0,\infty}}*), L^{2}(0,\infty)) denotes the norm as an operator from L^{2}(0, \infty)

into itself.
We shall indicate the proof. If we suppose that for (\tau, \sigma) in a suitable

neighborhood U(\eta^{0}, \sigma^{0}) the kernel G(\tau, \sigma;x_{1}, y_{1}) is continuous with respect



162 K. Kubota and T. Ohkubo

to \tau, \sigma, x_{1} and y_{1} , then the assertion of Lemma 4. 2 can be proved in the
same way as in the proof of Theorem 4. 1 in [2], since the uniqueness of
the solutions is a consequence of Hersh’s condition (see Part III in [5])-
Therefore we need merely to seek for the kernel G satisfying (4. 4) a^{\gamma}1d the
above property.

From (4. 2), (2. 12) and (2. 16) we have for almost all (\tau, \sigma)\in C_{-}\cross R^{2}

(4. 6)

.
(D_{1}-M(\tau, \sigma))\hat{w}_{I}(\tau, x_{1}, \sigma)=0 , x_{1}>0 ,
\hat{w}_{II}(\tau, x_{1}, \sigma)=-A_{IIII}^{-I}(\tau, \sigma)A_{II1}(\sigma)\hat{w}_{I}(\tau, x_{1}, \sigma) , x_{1}>0

B_{I}\hat{w}_{1}(\tau, 0, \sigma)=-B_{I}\hat{v}_{I}(\tau, 0, \sigma)

and from the definition of v

(4. 7) (D_{1}-M(\tau, \sigma)\hat{v}_{I}(\tau, x_{1}, \sigma)=A^{-1}(\hat{f}_{I}-A_{III}A_{IIII}^{-I}\hat{f}_{II})(\tau, x_{1}, \sigma) , x_{1}\in R^{1}

Here M(\tau, \sigma) etc. are the matrices defined by (3. 2) and (3. 3).
In what follows let (\tau, \sigma)\in U(\eta^{0}, \sigma^{0}) . First let \sigma^{0}\neq 0 and put

(4. 8) T(\tau, \sigma)=[U_{I}^{+}(\tau, \sigma), U_{I}^{-}(\tau, \sigma)] ,

where U_{I}^{+} and U_{I}^{-} denote the matrices in (4. 1). Then we have

(4. 9) T^{-1}MT=\{\begin{array}{ll}\lambda^{+}I_{2} 00 -\lambda^{+}I_{2}\end{array}\} .

Next let \sigma^{0}=0 . Then, since P is a strongly hyperbolic system of constant
multiplicity and \lambda^{+}(\eta^{0}, \sigma^{0})\neq 0 , according to (2. 12) and (2. 18) we can take the
matrix defined by (4. 8), so that it is continuous in U(\eta^{0}, \sigma^{0}) , (4. 9) is valid
and T^{-1}(\tau, \sigma) is bounded in U(\eta^{0}, \sigma^{0}) . Therefore, putting

T^{-1}(\tau, \sigma)\hat{w}_{1}(\tau, x_{1}, \sigma)=\{\begin{array}{l}w_{I}^{+}w_{I}^{-}\end{array}\} (\tau, x_{1}, \sigma) ,

(4. 10)
T^{-1}(\tau, \sigma)\hat{v}_{I}(\tau, x_{1}, \sigma)=\{\begin{array}{l}v_{I}^{+}v_{I}^{-}\end{array}\} (\tau, x_{1}, \sigma) ,

where w_{I}^{\pm} , v_{I}^{\pm} are 2-vectors, we find from the first equality of (4. 6), (4. 7),
(4. 9) and the definition of v that

(4. 11) w_{I}^{-}(\tau, x_{1}, \sigma)=0 for x_{1}>0 and v_{I}^{+}(\tau, 0, \sigma)=0 ,

since f\in C_{0}^{\infty}(\Omega) and Im \lambda^{+}(\tau, \sigma)>0 . Moreover from (4. 7), (4. 9) and (4. 10)
we have

v_{I}^{-}( \tau, 0, \sigma)=-\int_{0}^{\infty}e^{i\lambda^{+}y_{1}}(T^{-1})_{(2)}A^{-1}(\hat{f}_{I}-A_{III}A_{IIII}^{-1}\hat{f}_{II})(\tau, y_{1}, \sigma)dy_{1} ,
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where (T^{-1})_{(2)} denotes the lower 2\cross 4 block of T^{-1} . Thus from (4. 4), (4. 6)
and (4. 8)\sim(4.11) we obtain

(4. 12) G(\tau, \sigma;x_{1} , yj

=\{\begin{array}{ll}I_{4} -A_{IIII}^{-I}A_{II} I\end{array}\} U_{I}^{+}e^{i\lambda^{+}x_{1}}(B_{I}U_{I}^{+})^{-1}(B_{I}U_{I}^{-})e^{i\lambda^{+}y_{1}}(T^{-1})_{(2)}A^{-1}[I_{4}, - A_{III}A_{IIII}^{-1}] .

Now it is clear that the matrix G defined by (4. 12) is continuous with respect
to \tau , \sigma, x_{1} and y_{1} when Im \tau<0 . Thus we obtain Lemma 4. 2.

LEMMA 4. 3. Let (P, B) satisfy Hersh’s condition and let (\eta^{0}, \sigma^{0})\in R^{1}\cross

(R^{2}\backslash 0) . Then (4. 5) is equivalent to (4. 1). Here, when |\eta^{0}|>|\sigma^{0}| , the fifirst
inequality in (4. 1) is taken.

PROOF. We shall first derive a more concrete representation for the
kernel G defined by (4. 12). If follows from (3. 2), (3. 6) and (3. 9) that

-(A_{IIII}^{-1}A_{III}U_{I}^{+})(\tau, \sigma)=|\sigma|I_{2} .
Moreover from (4. 8) we have

T^{-1}( \tau, \sigma)=\frac{\sqrt{2}}{4\tau|\sigma|\lambda^{+}} \{\begin{array}{ll}-(\tau-\lambda^{+})T_{\sigma}^{*} -(\tau+\lambda^{+})JT_{\sigma}^{*}(\tau+\lambda^{+})T_{\sigma}^{*} (\tau-\lambda^{+})JT_{\sigma}^{*}\end{array}\} ,

which implies

(T^{-1})_{(2)}A^{-1}= \frac{\sqrt{2}}{4\tau|\sigma|\lambda^{+}}[(\tau+\lambda^{+})T_{\sigma}^{*}, -(\tau-\lambda^{+})JT_{\sigma}^{*}]

Hence we see from (3. 2) that

-(T^{-1})_{(2)}A^{-1}A_{III}A_{IIII}^{-1}= \frac{|\sigma|}{2\tau\lambda^{+}}I_{2}

Thus from (4. 12) we obtain

(4. 13) G(\tau, \sigma;x_{1}, y_{1})

= \frac{1}{4\tau|\sigma|^{2}\lambda^{+}}\{

(\tau-\lambda^{+})T_{\sigma}

-(\tau+\lambda^{+})T_{\sigma}J

\sqrt{2}|\sigma|^{2}I_{2}

e^{i\lambda^{+}x_{1}}(B_{I}U_{I}^{+})^{-1}(B_{I}U_{I}^{-})\cross

\cross e^{i\lambda^{\vdash}y_{1}}[(\tau+\lambda^{+})T_{\sigma}^{*}, -(\tau-\lambda^{+})JT_{\sigma}^{*}, \sqrt{2}|\sigma|^{2}I_{2}]

We next suppose that (4. 5) is valid. Then we find that for (\tau, \sigma)\in

U(\eta^{0}, \sigma^{0})

x_{1}>0 \int_{y_{1}>0}||G_{IIII}(\tau,

\sigma:x_{1} , yj||^{2}dx_{1}dy_{1}\leqq 4C^{2}|{\rm Im}\tau|^{-2} ,
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where G_{IIII} denotes the lowest right 2\cross 2 block of G and C is the same
constant as in (4. 5). (For the proof see \S 1 in [15] or \S 4 in [12]). There-
fore from (4. 13) we obtain (4. 1), since \sigma^{0}\neq 0 and Im \lambda^{+}(\eta^{0}, \sigma^{0})>0 when |\eta^{0}|

<|\sigma^{0}| . Now it is obvious that (4. 1) implies (4. \ulcorner 0) .
PROOF of PROPOSITION 4. 1. Necessity. It follows from Lemma 2. 9

that Hersh’s condition is satisfied. Moreover R(\tau, 0) may be extended con-
tinuously to Im \tau\leqq 0 and does not vanish for \tau\in R^{1}\backslash 0 , as is seen from the
proof of the last assertion of Lemma 2. 10. Therefore in view of Lemmas
4. 2 and 4. 3 we must only prove that R(\tau, \sigma)\neq 0 for (\eta, \sigma)\in R^{1}\cross R^{2} with
|\eta|>|\sigma|>0 , i . e. , rank (B_{I}U_{I}^{+})(\eta, \sigma)=2 for such (\eta, \sigma) , as in [17]. To do it let

(.\eta^{0}, \sigma^{0})\in R^{1}\cross R^{2} and |\eta^{0}|>|\sigma^{0}|>0 . Then it follows from Lemmas 4. 2 and
4. 3 that ||(B_{I}U_{I}^{+})^{-1}(B_{I}U_{I}^{-})(\tau, \sigma)|| is bounded on a neighborhood of (\eta^{0}, \sigma^{0}) in
C_{-}\cross R^{2} . Hence there is a sequence \{(\tau^{j}, \sigma^{j})\} such that Im \tau^{j}<0 , (\tau^{j}, \sigma^{j})arrow

(\eta^{0}, \sigma^{0}) and (B_{I}U_{I}^{+})^{-1}(B_{I}U_{I}^{-})(\tau^{j}, \sigma^{j}) tends to a matrix Q(\eta^{0}, \sigma^{0}) as jarrow\infty . There-
fore we obtain

B_{I}U_{I}^{-}(\eta^{0}, \sigma^{0})=(B_{I}U_{I}^{+})(\eta^{0}, \sigma^{0})Q(\eta^{0}, \sigma^{0})’.
which implies

rank (B_{I}[U_{I}^{+}, U_{I}^{-}])(\eta^{0}, \sigma^{0})=rank(B_{I}U_{I}^{+})(\eta^{0}, \sigma^{0})(

Thus we find that rank (B_{I}U_{I}^{+})(\eta^{0}, \sigma^{0})=2 , since rank [U_{I}^{+}, U_{1}^{-}](\eta^{0}, \sigma^{0})=4 ac-
cording to the definitions of U_{I}^{+} and U_{I}^{-}r

Sufficiency. In view of Lemmas 4. 2 and 4. 3 it is enough to prove
(4. 5) for (\tau, \sigma)\in U(\eta^{0}, \sigma^{0}) with \eta^{0}\neq 0 and \sigma^{0}=0 . To do it let (\eta^{0}, \sigma^{0}) be such
a point. Then by hypothesis R(\eta^{0}, \sigma^{0})\neq 0 . Therefore from (4. 12) we obtain
the desired inequality (4. i-)) , since T^{-1}(\tau, \sigma) is bounded in U(\eta^{0}, \sigma^{0}) , as we
have already remarked, and A_{IIII}^{-1}(\tau, \sigma) is so according to (3. 2). The proof
is complete.

In order to prove part (b) of Theorem we shall now associate with (P, B)

another problem (P, B’) such that

(4. 14)
B’=[I_{2}, S’, 0] , S’=\{\begin{array}{ll}s_{11}’ s_{12}’s_{21}’ s_{22}’\end{array}\} ,

s_{11}’=-s_{22}’=(s_{11}-s_{22})/2 , s_{12}’=s_{21}’=(s_{12}+s_{21})/2 .
Notice that

(4. 15) s_{11}’-s_{22}’=s_{11}-s_{22} , s_{12}’+s_{21}’=s_{12}+s_{21} , s_{11}’+s_{22}’=s_{12}’-s_{21}’=0

Then we obtain the following

Lemma 4. 4. Suppose that | det S|\neq 1 , (s_{11}+s_{22})^{2}+(s_{12}-s_{2}J^{2}=0 and that
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the problem (P9B’) is L^{2}-well posed. Then (P, B) is also L^{2} well posed.
To prove this we use the following
Lemma 4. 5. For (\tau, \sigma)\in C_{-}\cross(R^{2}\backslash 0) with R(\tau, \sigma)\neq 0 we set

(B_{I}U_{I}^{+})^{-1}(B_{I}U_{I}^{-})(\tau, \sigma)=\{\begin{array}{ll}c_{11} c_{12}c_{21} c_{22}\end{array}\} (\tau, \sigma)’.

where the left side is the matrix in (4. 1). Then

2Rc_{11}= (1-det S) (\tau^{2}-(\lambda^{+})^{2})-\hat{s}_{12}(\tau-\lambda^{+})^{2}-\hat{s}_{21}(\tau+\lambda^{+})^{2} ,
(4. 16)

2Rc_{22}= (1-det S) (\tau^{2}-(\lambda^{+})^{2})-\hat{s}_{21}(\tau-\lambda^{+})^{2}-\hat{s}_{12}(\tau+\lambda^{+})^{2} ,

(4. 17) Rc_{12}=2\hat{s}_{11}\tau\lambda^{+} , Rc_{21}=2\hat{s}_{22}\tau\lambda^{+}-
,

where \hat{s}_{ij}=\hat{s}_{ij}(\sigma)(i, j=1,2) are the functions defifined by (3. 11) with (3.4).
Moreover we have

(4. 18) R(\tau, \sigma)= (1- det S) \tau^{2}-(1+\det S)\tau\lambda^{+}- (1- det S+\hat{s}_{12}+\hat{s}_{21}) |\sigma|^{2}/2

PROOF. From the proof of (3. 7) we obtain (4. 18) and the equality

det [(\tau-\lambda^{+})I_{2}-(\tau+\lambda^{+})\hat{S}J]=2R(\tau, \sigma) .
Moreover we see from (3. 9), (3. 10) and the definition of U_{I}^{-} that

(B_{I}U_{I}^{+})^{-1}(B_{I}U_{I}^{-})=[(\tau-\lambda^{+})I_{2}-(\tau+\lambda^{+})\hat{S}J]^{-1}[(\tau+\lambda^{+})I_{2}-(\tau-\lambda^{+})\hat{S}J]

Therefore we obtain (4. 16) and (4. 17) by (3. 4) and the formula for an inverse
matrix.

PROOF of Lemma 4. 4. Since (4. 14) and the second hypothesis give det
S’=\det S, we find from (3. 7) and (4. 1_{i}\overline{)}) that R(\tau, \sigma) is also Lopatinskii de-
terminant of the problem (P, B’) . Hence according to Proposition 4. 1 the
last hypothesis implies that R(\tau, \sigma)\neq 0 when either Im \tau<0 or Im \tau=0 and
|\tau|>|\sigma| . Therefore it remains only to prove (4. 1).

From now on (\tau, \sigma)\in C_{-}\cross R^{2} varies near a given point (\eta^{0}, \sigma^{0})\in R^{1}\cross(R^{2}\backslash 0) .
Moreover by C we denote positive constants independent of (\tau, \sigma) . Now let
|\eta^{0}|<|\sigma^{0}| . Then we obtain

(4. 19) |R(\tau, \sigma)|\geqq C|{\rm Im}\tau|

In fact from (3. 7) we have
(\partial R/\partial\tau)(\tau, \sigma)=2 (1- det S) \tau-(1+\det S)i(\sqrt{|\sigma|^{2}-\tau^{2}}-\tau^{2}/\sqrt{|\sigma|^{2}-\tau^{2}}) ,

since \lambda^{+}(\tau, \sigma)=i\sqrt{|\sigma|^{2}-\tau^{2}} . Here \Gamma denotes the branch such that \sqrt{1}=1 .
Moreover under the first hypothesis (1+\det S)^{-1} (1- det S) is not pure imagi-
nary. Hence we see that (\partial R/\partial\tau)(\eta^{0}, \sigma^{0})\neq 0 . Therefore, if R(\eta^{0}, \sigma^{0})=0 , we
find by the implicit function theorem that R is represented as
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R(\tau, \sigma)=(\tau-\psi(\sigma))R^{(1)}(\tau, \sigma)

where R^{(1)}(\eta^{0}, \sigma^{0})\neq 0 . Moreover Hersh’s condition implies that Im \psi(\sigma)\geqq 0 .
Thus we obtain (4. 19).

To prove (4. 1) first let 0<|\eta^{0}|<|\sigma^{0}| . Then the second inequality of
(4. 1) follows from (4. 16), (4. 17) and (4. 19).

Next let \eta^{0}=0 and \sigma^{0}\neq 0 . Then we see in the same way as above
that c_{12}(\tau, \sigma) , c_{21}(\tau, \sigma) and (c_{11}-c_{22})(\tau, \sigma) are estimated by |{\rm Im}\tau|^{-1}|\tau| , since
(4. 16) implies

(4. 20) R(c_{11}-c_{22})=2(\hat{s}_{12}-\hat{s}_{21})\tau\lambda^{+}

Therefore to obtain the last inequality of (4. 1) we must only prove

(4. 21) |(c_{11}+c_{22})(\tau, \sigma)|\leqq C|{\rm Im}\tau|^{-1}|\tau|

Now (4. 16) gives

(4. 22) R(c_{11}+s_{22})=-2(\hat{s}_{12}+\hat{s}_{21})\tau^{2}+ (1- det S+\hat{s}_{12}+\hat{s}_{21}) |\sigma|^{2} ,

since \tau^{2}-(\lambda^{+})^{2}=|\sigma|^{2} . Hence we have from (4. 18)

(c_{11}+c_{22})(\tau, \sigma)=-2+O(R(\tau, \sigma)^{-1}\tau) .
From this and (4. 19) we obtain (4. 21).

Finally let |\eta^{0}|=|\sigma^{0}|\neq 0 . Then we see from (4. 18) and (4. 20) that c_{12}

(\tau, \sigma) , c_{21}(\tau, \sigma) and (c_{11}-c_{22})(\tau, \sigma) are estimated by |R(\tau, \sigma)|^{-1}|\lambda^{+}(\tau, \sigma)| . MoreO-
ver we find from (4. 18) and (4. 22) that

(4. 23) c_{11}+c_{22}=2+2R^{-1}\lambda^{+}\{(1+\det S)\tau+O(\lambda^{+})\} ,

since \tau^{2}=(\lambda^{+})^{2}+|\sigma|^{2} . Therefore to obtain the first inequality of (4. 1) we
need merely to prove

(4. 24) |R(\tau, \sigma)|^{-1}\leqq C|{\rm Im}\tau|^{-1} Im \lambda^{+}(\tau, \sigma) ,

because (3. 22) gives

(4. 25) (Im \lambda^{+}(\tau , \sigma)) \cdot|\lambda^{+}(\tau, \sigma)|\geqq C|{\rm Im}\tau|

Now let c_{11}’ and c_{22}’ denote the functions defined in Lemma 4. 5 for the
problem (P, B’) instead of (P, B) . Then we find from Proposition 4. 1 that
the L^{2}-well posedness of (P, B’) implies

|(c_{11}’+c_{22}’)(\tau, \sigma)|\leqq C|{\rm Im}\tau|^{-1} (Im \lambda^{+}(\tau , \sigma)) \cdot|\lambda^{+}(\tau, \sigma)|

Thus we obtain (4. 24) from (4. 25) and the equality (4. 23) applied to (.P, B’) ,

since \eta^{0}\neq 0 and 1+\det S’=1+\det S\neq 0 . This completes the proof of Lemma
4. 4.
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PROOF of part (b) of THEOREM. Consider the problem (P, B) with

S=\{\begin{array}{ll}i 10 0\end{array}\}

We shall first show that (P, B) is L^{2}-well posed. Since the matrices
S’ and B’ defined by (4. 14) are as follows :

S’= \frac{1}{2} \{\begin{array}{ll}i 11 -i\end{array}\} and B’=[I_{2}, S’, 0] -,

it is not difficult to show that I_{2}-(S’)^{*}S’ is positive semi-definite. Hence
ker B’ is maximally non-positive for A_{1} according to Lemma 3. 2. There-
fore the problem (P, B’) is L^{2}-well posed. Thus we find from Lemma 4. 4
that (P, B) is also L^{2}-well posed.

We shall next show that there does not exist such a matrix W as de-
secribed in the statement of Lemma 3. 2. Since

S^{*}S=\{\begin{array}{ll}1 -ii 1\end{array}\} , s*\{\begin{array}{l}0 i-i0\end{array}\} S=\{\begin{array}{ll}0 00 0\end{array}\} ,

the left side of (3. 13) is as follows :

\alpha(I_{2}-S^{*}S)+\beta( \{\begin{array}{l}o i-i0\end{array}\}+S^{*}\{\begin{array}{ll}0 i-i 0\end{array}\} S)=(\alpha+\beta) \{\begin{array}{ll}0 i-i 0\end{array}\} .

This is positive semi-definite if and only if \alpha+\beta=0 . Therefore we obtain
the desired assertion from Lemma 3. 2.

REMARK 4. 6. As was pointed out in [13], it is still open the question
whether the L^{2}-well posedness of the problem (P, B) implies the energy
inequality :

\int_{x_{1}>0}|u(t, x)|^{2}dx\leqq Ce^{\gamma t}\int_{x_{1}>0}|u(0, x)|^{2}dx
, t>0

for \gamma\geqq\gamma_{0} and for solutions u of Pu=0 in t>0 , x_{1}>0 satisfying Bu=0 on
t>0 , x_{1}=0 , where C and \gamma_{0} are positive constants.
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