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On the Gross’ property

By Yukio NAGASAKA
(Received June 14, 1977)

1. Introduction

We consider a meromorphic function w=f(z) in the unit disk D=
\{z||z|<1\} and study the problem of finding a sufficient condition for f(z\rangle

to have the Gross’ property. The main results are the following:
(i) If f(z) has the radial limits f(e^{i\theta}) of modulus 1 for all points e^{i\theta}

of \Gamma=\{z||z|=1\} except for a closed set of logarithmic capacity zero, then
f(z) has the Gross’ property except \{w||w|=1\} .

(ii) If there exists a spiral path approaching \Gamma on which f(z) tmds
to infinity \infty , then f(z) has the Gross’ property.

2. The Gross’ property except a closed set

Let R be an open Riemann surface and let w=f(z) be a non-constant
meromorphic function on R. We denote by \Phi_{f} the covering Riemann
surface generated by the inverse function of w=f(z) over the extended
w-plane S. A point of \Phi_{f} which is not an algebraic branch point of \Phi_{f}

is called a regular point of \Phi_{f} . Take any regular point q_{0}\in\Phi_{f} lying over
the basic point w_{0}=f(z_{0})\neq\infty and consider the longest segment l_{\theta} on \Phi_{f}

which starts from q_{0} , consists of only regular points of \Phi_{f} and lies over
the half straight line arg (w-w_{0})=\theta(0\leqq\theta<2\pi) on the finite w-plane. If
l_{\theta} has finite length, either the end point of\swarrow_{\theta}’ is an algebraic branch
point of \Phi_{f} or l_{\theta} defines an accessible boundary point of \Phi_{f} . The set of
all algebraic branch points is countable. Let F be a closed subset of S.
We denote by S(q_{0}, F) the set of all argments \theta for which\nearrow\theta has finite
length and l_{\theta} defines an accessible boundary point B_{\theta} of \Phi_{f} whose pr0-

jection b_{\theta} is a point of S-F\cup\{\infty\} . As a set of points, H(q_{0})= \cup l_{\theta} is

mapped one to one conformally onto a domain \Omega(q_{0}) in R by f^{-1}(w)0\leq\theta<2\pi and,
for every \theta\in S(q_{0}, F), l_{\theta} is mapped to a path L_{J} which starts from z_{0} and
tends to the the ideal boundary of R.

DEFINITION. We shall say that f(z) has the Gross’ property except F
if the measure m of S(q_{0}, F) equals zero for every regular point q_{0}\in\Phi_{f}

whose projection is a point of S-F\cup\{\infty\} .
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If F=\phi and f(z) has the Gross’ property except F, f(z) is said to have
the Gross’ property (cf. T. Kuroda and A. Sagawa [3]). We set S(q_{0})=S(q_{0},
\phi). W. Gross proved that every meromorphic function in the finite z-plane
has the Gross’ property (Gross’ star theorem).

Since there exists an Evans-Selberg potential on an open Riemann
surface belonging to O_{G} (Z. Kuramochi [2]), we have the next proposition
by the same method that M. Tsuji [6] used to extend the Gross’ star
theorem (cf. Z. Yujobo [7] and p. 12 in K. Noshiro [4]).

PROPOSITION. ( i) Let \Omega be a subdomain of R with piecewise analytic
relative boundary \partial\Omega such that \hat{\Omega}\in O_{G} , where \hat{\Omega} is the double of f2 along
\partial\Omega . We set S_{\Omega}=\{\theta\in S(q_{0})|L_{\theta}\subset\Omega\} . Then m(S_{\Omega})=0 .

(ii) Let R be a domain in the finite z-plane and K be a compact set
of logarithmic capacity zero on \partial R . We denote by S_{K} the set of all \theta\in S(q_{0})

such that L_{\theta} terminates at a point of K. Then m(S_{K})=0 .

3. Theorem 1

Let w=f(z) be a meromorphic function in the unit disk D. For every
e^{i\theta}\in\Gamma_{-},

, we define the radial cluster set C_{\rho}(f, e^{i\theta}) of f at e^{i\theta} by

C_{\rho}(f, e^{i\theta})= \bigcap_{n=1}\overline{f(\rho_{7l}(\theta))} ,

where

\rho_{ll}(\theta)=\{re^{i\theta}|1-\frac{1}{n}<r<1\} .

THEOREM 1. Let F be a closed subset of S. If C_{\rho}(f, e^{i\theta})\subset F for every
point e^{i\theta}\in\Gamma except for a closed set E of logarithmic capacity zero, then
f(z) has the Gross’ property except F.

The result (i) in the introduction corresponds to F=\{w||w|=1\rangle in this
theorem.

PROOF. We set S_{n}=\{\theta\in S(q_{0}, F)|b_{\theta}\in S-F_{7l}\} , where F_{n} is an \frac{1}{n} closed
neighborhood of F\cup\{\infty\} in the Riemann sphere S. Since S(q_{0}, F)= \bigcup_{n}S_{n} ,

we have only to show m(S_{n})=0 for every n.
We fix any n_{0} and set F_{0}=F_{n_{0}} and S_{0}=S_{n_{0}} for simplicity. And we set

E_{n}=\{e^{i\theta}\in\Gamma-E|\overline{f(\rho_{n}(\theta))}\subset F_{0}\}

Since C_{\rho}(f, e^{i\theta})\subset F for every e^{i\theta}\in\Gamma-E, we have \Gamma=E=\cup E_{n} . We denote
n

by E_{\iota}^{(1)}, the subset of all points e^{i\theta}\in E_{n} such that there exist two sequences
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\{e^{i\theta_{k}}\}_{k=1}^{\infty} and \{e^{i\theta}\acute{k}\}_{k=1}^{\infty} in E_{n} which satisfy \theta_{k}<\theta<\theta_{k}’(k=1,2, \cdots) and \lim_{karrow\infty}\theta_{k}=

\lim_{karrow\infty}\theta_{k}’=\theta. And we set

E_{n}^{(0)}=E_{n}-E_{n}^{(1)} and E_{0}=E \cup(\bigcup_{n}E_{n}^{(0)}) .
Since E_{n}^{(0)} is a countable set, E_{0} is an F_{\sigma} set of logarithmic capacity zero.

We shall show that L_{\theta} terminates at a point of E_{0} for every \theta\in S_{0} .
Fix any \theta\in S_{0} . Since\swarrow\theta defines an accessible boundary point of \Phi_{f} , L_{\theta}

tends to \Gamma Suppose that L_{\theta} has two cluster points \alpha, \beta(\alpha\neq\beta) on \Gamma.

Then the set of all cluster points of L_{\theta} is a continuum C on \Gamma Since
Cap E=0, Int (C)\cap(\Gamma-E)\neq\phi. Take any point \gamma of Int (C)\cap(\Gamma-E). Then
there exists a sequence \{z_{k}\}_{k=1}^{\infty} on \overline{0\gamma}\cap L_{\theta} such that \lim_{karrow\infty}z_{k}=\mathcal{T}, where \overline{0\gamma} is

the radius to \gamma. Then, since \gamma\in\Gamma-E, the set A of all cluster points of
\{f(z_{k})\}_{k=1}^{\infty} is contained in F. But, since \{z_{k}\}_{k=1}^{\infty}\subset L_{\theta} , we have A=\{b_{\theta}\}\in S-F_{\theta} .
This is a contradiction. Hence we see that L_{\theta} terminates at a point e^{i\varphi} of
\Gamma Next, suppose e^{i\varphi}\not\in E_{0} . Then e^{i\varphi}\in E_{n}^{(1)} for some n. Then there exists
a sequence \{z_{k}’\}_{k=1}^{\infty} on L_{\theta}\cap\rho_{n} such that \lim_{karrow\infty}z_{k}’=e^{i\varphi}, where \rho_{n}=\cup\{\rho_{n}(\theta)|\theta\in E_{n}\} .
Then, since \{z_{k}’\}_{k=1}^{\infty}\subset\rho_{n} , the set A’ of all cluster points of \{f(z_{k}’)\}_{k=1}^{\infty} is
contained in F_{0} . But, since \{z_{k}’\}_{k=1}^{\infty}\subset L_{\theta} , we have A’=\{b_{\theta}\}\in S-F_{0} . This
is a contradiction. Hence we have e^{i\varphi}\in E_{0} .

Since E_{0} is an F_{\sigma}-set of logarithmic capacity zero, by (ii) of Proposition,
we have that f(z) has the Gross’ property except F. This completes the
proof.

If a bounded analytic function f(z) in D has the radial limits f(e^{i\theta}) of
modulus 1 for all \theta except for a set of measure zero, then we call f(z)
a function of class (U) in the sence of Seidel. Every function of class
(U) has the Iversen’s property in \{w||w|<1\} but there exists a function
in class (U) which has not the Gross’ property in \{w||w|<1\} (Z. Kura-
mochi [1] and p. 36 in [4] ). Let (U^{*}) be the subclass, of f\in(U) such that
f(z) has the radial limits f(e^{i\theta}) of modulus 1 for all \theta except for a closed
set of logarithmic capacity zero.

COROLLARY. Every function of class (U^{*}) has the Gross’ property in
\{w||w|<1\} .

4. Theorem 2

Let \sigma:z=z(t)(0\leq t<\infty) be a piecewise analytic curve on D. If z(t)

has the following properties, we use the term “spiral” : |z(t)| and arg z(t)

are strictly increasing, \lim_{tarrow\infty}|z(t)|=1 and \lim_{tarrow\infty} arg z(t)=\infty .
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Let \sigma be a spiral. For simplicity, we suppose z(0)= \frac{1}{2} and arg z(0)=0.

We set

\sigma_{n}=\{z(t)|2(n-1)\pi\leq\arg z(t)<2n\pi\}

Let \{J_{n,i}\}_{i} be a finite sequence of subpaths of \sigma_{n} such that J_{n,i}\cap J_{n,j}=\phi

(i\neq j). We set J_{n}= \bigcup_{i}J_{n,i} and J= \bigcup_{n=1}J_{n} .

THEOREM 2. Let w=f(z) be a meromorphic function in D. If
\lim_{narrow\infty} Cap (J_{n})=0 and

\lim_{z(t}tarrow\infty

)
\in\sigma-J,f(z(t))=\infty ,

then f(z) has the Gross property.

PROOF. We set \Omega=D-(\sigma-J)=D-\bigcup_{n=1}^{\infty}(\sigma_{n}-J_{n}). Let \hat{\Omega} be the double

of \Omega along \sigma-J. We shall show \hat{\Omega}\in 0_{G} .
Let I_{n} be the closed interval [a_{n}, a_{n+1}] , where a_{n} is a point of \sigma such

that arg a_{n}=2(n-1)\pi and let G_{n} be a subdomain of f2 whose boundary

(\overline{\bigcup_{i=1}}(\sigma_{i}-J_{i}))n1\cup\sigma_{n}\cup I_{n} . Set K= \{z||z|\leqq\frac{1}{4}\}. Let ro_{n} be the harmonic func-

tion on G_{n}-K which is equal to zero on \partial K and to 1 on J_{n}\cup I_{n} and

whose normal derivative vanishes on \bigcup_{i=1}^{n}(\sigma_{i}-\mathcal{J}_{i}), and let \omega_{n}’ be the harmonic

function on G_{n}’=\{z||z|<2\}-K\cup J_{n}\cup I_{n} which is equal to zero on \partial K\cup

\{z||z|=2\} and to 1 on J_{n}\cup I_{n} . We denote by D() the Dirichlet integral.
By Dirichlet principle, we have

D_{G_{n}-K}(\omega_{n})\leqq D_{G_{\acute{n}}}(\omega_{n}’) .

Since

\lim_{narrow\infty} Cap (J_{n} \cup I_{n})\leqq\lim_{narrow\infty} Cap (J_{n})+ \lim_{narrow\infty} Cap (I_{n})=0 ,

we have \lim_{narrow\infty}D_{G_{n}},(\omega_{n}’)=0 . Then \lim_{narrow\infty}D_{G_{n}-K}((p_{n}’)=0 and we have \hat{\Omega}\in O_{G} . Next,

we set

\Omega_{n}=D-\cup^{\infty}(\sigma_{k}-J_{k})k=n .

Similary, we get \hat{\Omega}_{n}\in 0_{G} .
Take any regular point q_{0}\in\Phi_{f} with the projection w_{0}=f(z_{0}) and con-

sider S(q_{0}) . We set

S_{n}=\{\theta\in S(q_{0})||b_{\theta}-w_{0}|<n\}
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for every n. Fix any n. Since
z(t t arrow\infty\lim_{)\epsilon\sigma-J},f(z(t))=\infty

, there exists an m_{0} such

that |f(z(t))|>|w_{0}|+n for all z(t) \in\bigcup_{m=m_{0}}(\sigma_{m}-J_{m}). Then we have that

\cup\{L_{\theta}|\theta\in S_{n}\}\subset\Omega_{m_{0}}\tau

Since \hat{\Omega}_{m_{0}}\in O_{G} , by (i) of Proposition, we have m(S_{n})=0 . Since S(q_{0})= \bigcup_{n=1}^{\infty}S_{n} ,
we have m(S(q_{0}))=0 . This completes the proof.

COROLLARY 1. If there exists a spiral path on which f(z) tends to
infinity, then f(z) has the Gross’ property.

Let ( V) be the class of holomorphic and unbounded function on D
with the property that it remains bounded on some spiral path in D. G.
Variron proved that if f(z) is a function of ( V), there exists another spiral
path on which f(z) tends to infinity (cf. W. Seidel [5]). From this Vari-
ron’s theorem, we have the following:

COROLLARY 2. Every function of ( V) has the Gross’ property.
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