On the Gross' property

By Yukio NAGASAKA (Received June 14, 1977)

1. Introduction

We consider a meromorphic function w=f(z) in the unit disk $D=\{z \mid |z|<1\}$ and study the problem of finding a sufficient condition for f(z) to have the Gross' property. The main results are the following:

- (i) If f(z) has the radial limits $f(e^{i\theta})$ of modulus 1 for all points $e^{i\theta}$ of $\Gamma = \{z \mid |z| = 1\}$ except for a closed set of logarithmic capacity zero, then f(z) has the Gross' property except $\{w \mid |w| = 1\}$.
- (ii) If there exists a spiral path approaching Γ on which f(z) tends to infinity ∞ , then f(z) has the Gross' property.

2. The Gross' property except a closed set

Let R be an open Riemann surface and let w=f(z) be a non-constant meromorphic function on R. We denote by Φ_f the covering Riemann surface generated by the inverse function of w=f(z) over the extended w-plane S. A point of Φ_f which is not an algebraic branch point of Φ_f is called a regular point of Φ_f . Take any regular point $q_0 \in \Phi_f$ lying over the basic point $w_0 = f(z_0) \neq \infty$ and consider the longest segment \mathscr{O}_{θ} on Φ_f which starts from q_0 , consists of only regular points of Φ_f and lies over the half straight line arg $(w-w_0)=\theta$ $(0 \le \theta < 2\pi)$ on the finite w-plane. If In has finite length, either the end point of In is an algebraic branch point of Φ_f or \mathcal{L}_{θ} defines an accessible boundary point of Φ_f . The set of all algebraic branch points is countable. Let F be a closed subset of S. We denote by $S(q_0, F)$ the set of all argments θ for which \mathcal{L}_{θ} has finite length and \mathscr{L}_{θ} defines an accessible boundary point B_{θ} of Φ_f whose projection b_{θ} is a point of $S-F \cup \{\infty\}$. As a set of points, $H(q_0) = \bigcup_{0 \le \theta < 2\pi} \mathscr{L}_{\theta}$ is mapped one to one conformally onto a domain $\Omega(q_0)$ in R by $f^{-1}(w)$ and, for every $\theta \in S(q_0, F)$, \mathcal{L}_{θ} is mapped to a path L_{θ} which starts from z_0 and tends to the the ideal boundary of R.

DEFINITION. We shall say that f(z) has the Gross' property except F if the measure m of $S(q_0, F)$ equals zero for every regular point $q_0 \in \Phi_f$ whose projection is a point of $S-F \cup \{\infty\}$.

If $F=\phi$ and f(z) has the Gross' property except F, f(z) is said to have the Gross' property (cf. T. Kuroda and A. Sagawa [3]). We set $S(q_0)=S(q_0, \phi)$. W. Gross proved that every meromorphic function in the finite z-plane has the Gross' property (Gross' star theorem).

Since there exists an Evans-Selberg potential on an open Riemann surface belonging to O_G (Z. Kuramochi [2]), we have the next proposition by the same method that M. Tsuji [6] used to extend the Gross' star theorem (cf. Z. Yujobo [7] and p. 12 in K. Noshiro [4]).

PROPOSITION. (i) Let Ω be a subdomain of R with piecewise analytic relative boundary $\partial \Omega$ such that $\hat{\Omega} \in O_G$, where $\hat{\Omega}$ is the double of Ω along $\partial \Omega$. We set $S_{\mathfrak{Q}} = \{\theta \in S(q_0) | L_{\theta} \subset \Omega\}$. Then $m(S_{\mathfrak{Q}}) = 0$.

(ii) Let R be a domain in the finite z-plane and K be a compact set of logarithmic capacity zero on ∂R . We denote by S_K the set of all $\theta \in S(q_0)$ such that L_{θ} terminates at a point of K. Then $m(S_K)=0$.

3. Theorem 1

Let w=f(z) be a meromorphic function in the unit disk D. For every $e^{i\theta} \in \Gamma$, we define the radial cluster set $C_{\rho}(f, e^{i\theta})$ of f at $e^{i\theta}$ by

$$C_{\scriptscriptstyle
ho}(f,\,e^{i heta}) = igcap_{n=1}^{\infty} \overline{f(oldsymbol{
ho}_n(oldsymbol{ heta}))}\,,$$

where

$$\rho_n(\theta) = \left\{ re^{i\theta} \Big| 1 - \frac{1}{n} < r < 1 \right\}.$$

Theorem 1. Let F be a closed subset of S. If $C_{\rho}(f, e^{i\theta}) \subset F$ for every point $e^{i\theta} \in \Gamma$ except for a closed set E of logarithmic capacity zero, then f(z) has the Gross' property except F.

The result (i) in the introduction corresponds to $F = \{w | |w| = 1\}$ in this theorem.

PROOF. We set $S_n = \{\theta \in S(q_0, F) | b_\theta \in S - F_n\}$, where F_n is an $\frac{1}{n}$ -closed neighborhood of $F \cup \{\infty\}$ in the Riemann sphere S. Since $S(q_0, F) = \bigcup_n S_n$, we have only to show $m(S_n) = 0$ for every n.

We fix any n_0 and set $F_0 = F_{n_0}$ and $S_0 = S_{n_0}$ for simplicity. And we set

$$E_{\boldsymbol{n}} = \left\{ e^{i\boldsymbol{\theta}} \in \boldsymbol{\Gamma} - E \middle| \overline{f(\rho_{\boldsymbol{n}}(\boldsymbol{\theta}))} \subset F_{\mathbf{0}} \right\}.$$

Since $C_{\rho}(f, e^{i\theta}) \subset F$ for every $e^{i\theta} \in \Gamma - E$, we have $\Gamma = E = \bigcup_{n} E_{n}$. We denote by $E_{n}^{(1)}$ the subset of all points $e^{i\theta} \in E_{n}$ such that there exist two sequences

 $\{e^{i\theta_k}\}_{k=1}^{\infty}$ and $\{e^{i\theta_k'}\}_{k=1}^{\infty}$ in E_n which satisfy $\theta_k < \theta < \theta_k'$ $(k=1, 2, \cdots)$ and $\lim_{k \to \infty} \theta_k = \lim_{k \to \infty} \theta_k' = \theta$. And we set

$$E_n^{(0)} = E_n - E_n^{(1)}$$
 and $E_0 = E \cup (\bigcup_n E_n^{(0)})$.

Since $E_n^{(0)}$ is a countable set, E_0 is an F_σ -set of logarithmic capacity zero. We shall show that L_θ terminates at a point of E_0 for every $\theta \in S_0$. Fix any $\theta \in S_0$. Since \mathscr{O}_θ defines an accessible boundary point of \mathfrak{O}_f , L_θ tends to Γ . Suppose that L_θ has two cluster points α , β ($\alpha \neq \beta$) on Γ . Then the set of all cluster points of L_θ is a continuum C on Γ . Since $Cap\ E=0$, $Int(C)\cap (\Gamma-E)\neq \phi$. Take any point Γ of $Int(C)\cap (\Gamma-E)$. Then there exists a sequence $\{z_k\}_{k=1}^\infty$ on $\overline{or}\cap L_\theta$ such that $\lim_{k\to\infty}z_k=\Gamma$, where \overline{or} is the radius to Γ . Then, since $\Gamma\in \Gamma-E$, the set Γ of all cluster points of Γ is a contradiction. Hence we see that Γ 0 terminates at a point Γ 1 near Γ 2. Next, suppose Γ 3. Then Γ 4 such that Γ 5 for some Γ 6. Then there exists a sequence $\{z_k'\}_{k=1}^\infty$ 6 on Γ 7. Next, suppose Γ 8. Then Γ 9 such that Γ 9 some Γ 9. Then there exists a sequence $\{z_k'\}_{k=1}^\infty$ 9 on Γ 9 such that Γ 9 some Γ 9. Then there exists a sequence $\{z_k'\}_{k=1}^\infty$ 9 on $\{z_k'\}_{k=1}^\infty$ 9 of all cluster points of $\{f(z_k')\}_{k=1}^\infty$ 9 is contained in Γ 9. But, since $\{z_k'\}_{k=1}^\infty$ 9 all cluster points of $\{f(z_k')\}_{k=1}^\infty$ 9 is a contradiction. Hence we have Γ 9 all cluster points of $\{f(z_k')\}_{k=1}^\infty$ 9 is a contradiction. Hence we have Γ 9 all cluster points of $\{f(z_k')\}_{k=1}^\infty$ 9 is a contradiction. Hence we have Γ 9 all cluster points of $\{f(z_k')\}_{k=1}^\infty$ 9 is a contradiction.

Since E_0 is an F_{σ} -set of logarithmic capacity zero, by (ii) of Proposition, we have that f(z) has the Gross' property except F. This completes the proof.

If a bounded analytic function f(z) in D has the radial limits $f(e^{i\theta})$ of modulus 1 for all θ except for a set of measure zero, then we call f(z) a function of class (U) in the sence of Seidel. Every function of class (U) has the Iversen's property in $\{w | |w| < 1\}$ but there exists a function in class (U) which has not the Gross' property in $\{w | |w| < 1\}$ (Z. Kuramochi [1] and p. 36 in [4]). Let (U^*) be the subclass of $f \in (U)$ such that f(z) has the radial limits $f(e^{i\theta})$ of modulus 1 for all θ except for a closed set of logarithmic capacity zero.

COROLLARY. Every function of class (U^*) has the Gross' property in $\{w | |w| < 1\}$.

4. Theorem 2

Let $\sigma: z=z(t)$ $(0 \le t < \infty)$ be a piecewise analytic curve on D. If z(t) has the following properties, we use the term "spiral": |z(t)| and arg z(t) are strictly increasing, $\lim_{t\to\infty} |z(t)|=1$ and $\lim_{t\to\infty} \arg z(t)=\infty$.

Let σ be a spiral. For simplicity, we suppose $z(0) = \frac{1}{2}$ and arg z(0) = 0. We set

$$\sigma_n = \left\{ z(t) \middle| 2(n-1) \pi \le \arg z(t) < 2n\pi \right\}.$$

Let $\{J_{n,i}\}_i$ be a finite sequence of subpaths of σ_n such that $J_{n,i} \cap J_{n,j} = \phi$ $(i \neq j)$. We set $J_n = \bigcup_{i=1}^{\infty} J_n$.

Theorem 2. Let w=f(z) be a meromorphic function in D. If

$$\lim_{n\to\infty} \; \operatorname{Cap}\left(J_n\right) = 0 \qquad \text{and} \quad \lim_{\substack{z(t)\in\sigma-J\\t\to\infty}} f\!\left(z(t)\right) = \infty \;,$$

then f(z) has the Gross' property.

PROOF. We set $\Omega = D - (\sigma - J) = D - \bigcup_{n=1}^{\infty} (\sigma_n - J_n)$. Let $\hat{\Omega}$ be the double of Ω along $\sigma - J$. We shall show $\hat{\Omega} \in 0_G$.

Let I_n be the closed interval $[a_n, a_{n+1}]$, where a_n is a point of σ such that $\arg a_n = 2(n-1)\pi$ and let G_n be a subdomain of Ω whose boundary $\binom{n-1}{U}(\sigma_i - J_i) \cup \sigma_n \cup I_n$. Set $K = \left\{ z \mid |z| \leq \frac{1}{4} \right\}$. Let ω_n be the harmonic function on $G_n - K$ which is equal to zero on ∂K and to 1 on $J_n \cup I_n$ and whose normal derivative vanishes on $\bigcup_{i=1}^n (\sigma_i - J_i)$, and let ω_n' be the harmonic function on $G_n' = \{z \mid |z| < 2\} - K \cup J_n \cup I_n$ which is equal to zero on $\partial K \cup \{z \mid |z| = 2\}$ and to 1 on $J_n \cup I_n$. We denote by $D(\cdot)$ the Dirichlet integral. By Dirichlet principle, we have

$$D_{G_n-K}(\boldsymbol{\omega}_n) \leq D_{G_n'}(\boldsymbol{\omega}_n').$$

Since

$$\lim_{n\to\infty}\operatorname{Cap}\left(J_{n}\cup I_{n}\right)\leqq\lim_{n\to\infty}\operatorname{Cap}\left(J_{n}\right)+\lim_{n\to\infty}\operatorname{Cap}\left(I_{n}\right)=0\;,$$

we have $\lim_{n\to\infty} D_{G_n'}(\omega_n') = 0$. Then $\lim_{n\to\infty} D_{G_n-K}(\omega_n) = 0$ and we have $\hat{\Omega} \in O_G$. Next, we set

$$Q_n = D - \bigcup_{k=0}^{\infty} (\sigma_k - J_k).$$

Similary, we get $\hat{\Omega}_n \in \mathcal{O}_G$.

Take any regular point $q_0 \in \Phi_f$ with the projection $w_0 = f(z_0)$ and consider $S(q_0)$. We set

$$S_n = \left\{\theta \in S(q_0) | |b_\theta - w_0| < n\right\}$$

for every n. Fix any n. Since $\lim_{\substack{z(t)\in\sigma-J\\t\to\infty}} f(z(t)) = \infty$, there exists an m_0 such

that $|f(z(t))| > |w_0| + n$ for all $z(t) \in \bigcup_{m=m_0}^{\infty} (\sigma_m - J_m)$. Then we have that

$$\cup \left\{ L_{\scriptscriptstyle{\theta}} | \, \theta \in S_{\scriptscriptstyle{n}} \right\} \subset \Omega_{\scriptscriptstyle{m_{\scriptscriptstyle{0}}}} \, .$$

Since $\hat{\Omega}_{m_0} \in O_G$, by (i) of Proposition, we have $m(S_n) = 0$. Since $S(q_0) = \bigcup_{n=1}^{\infty} S_n$, we have $m(S(q_0)) = 0$. This completes the proof.

COROLLARY 1. If there exists a spiral path on which f(z) tends to infinity, then f(z) has the Gross' property.

Let (V) be the class of holomorphic and unbounded function on D with the property that it remains bounded on some spiral path in D. G. Variron proved that if f(z) is a function of (V), there exists another spiral path on which f(z) tends to infinity (cf. W. Seidel [5]). From this Variron's theorem, we have the following:

COROLLARY 2. Every function of (V) has the Gross' property.

References

- [1] Z. KURAMOCHI: On the behaviour of analytic functions on abstract Riemann surfaces, Osaka Math. J. 7 (1955), 109-127.
- [2] Z. KURAMOCHI: Evans's theorem on abstract Riemann surface with null-boundaries, Proc. Japan Acad. 32 (1956), 1-9.
- [3] T. KURODA and A. SAGAWA: Remark on the Gross property, Tohoku Math. J. 20 (1968), 394-399.
- [4] K. Noshiro: Cluster sets, Springer-Verlag, 1960.
- [5] W. SEIDEL: Holomorphic functions with spiral asymmtotic paths, Nagoya Math. J. 14 (1959), 159-171.
- [6] M. TSUJI: On the behavior of a meromorphic function in the neighborhood of a closed set of capacity zero, Proc. Japan Acad. 18 (1942), 213-219.
- [7] Z. YUJOBO: On the Riemann surface, no Green function of which exists, Mathematica Japonicae 2 (1951), 61-68.

Department of Mathematics, Hokkaido University