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On tensor products of linear operators
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Introduction

Let X and Y be Banach spaces and X\wedge\otimes_{\alpha}Y the completion of the
tensor product X\otimes Y with respect to a reasonable norm \alpha. Let A:D[A]
\subset Xarrow X and B:D[B]\subset Yarrow Y be densely defined closed linear operators in
X and Y respectively with domains D[A] and D[B] . Define their tensor
product A\otimes B by (A\otimes B)(x\otimes y)=Ax\otimes By for x\in D[A] , y\in D[B] . It is
a densely defined linear operator in X\wedge\otimes_{\alpha}Y with domain D[A\otimes B]=D[A]

\otimes D[B] .
The aim of this note is to study the closability of A\otimes B in X\otimes_{\alpha}^{\wedge}Y,

and the range and null space of its closure A\wedge\otimes_{\alpha}B if closable. The results
will amplify [11, Theorem 4. 2] and [12, Theorems 4. 4, 4. 5 and 4. 6], which
have been concerned with the problem of when A\otimes_{\alpha}B\wedge-\lambda is Fredholm or
semi-Fredholm except for \lambda=0 .

We shall use the notions of reasonable norms, \otimes -norms, (left- and
right-) injective and projective \otimes -norms in the sense of Grothendieck [6].
The greatest reasonable norm \pi is a projective \otimes -norm and the smallest
reasonable norm \epsilon an injective \otimes -norm. Schatten [14] denoted them by
\gamma and \lambda, respectively. For each \otimes norm \alpha there exist the greatest (resp.
left-, resp. right-) injective \otimes -norm which is \leq\alpha and the smallest (resp.
left-, resp. right-) projective \otimes -norm which is \geq\alpha (see [6], [1]). For other
concrete \otimes -norms see Saphar [13] and Chevet [2],

In Section 1 we state our results, first when both X and Y are Banach
spaces and next when they are Hilbert spaces. Section 2 contains two
useful lemmas on quotient mappings, which are of independent interest.
The results are proved in Section 3.

1. The Results

1. 1. The Banach space case.
Throughout, X and Y are Banach spaces. The identity operator in

a Banach space Z is denoted by the same I or sometimes by I_{Z} .
The closability. It is known that A\otimes B is closable in X\otimes_{\alpha}Y\wedge if \alpha is
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a faithful reasonable norm on X\otimes Y, that is, the natural continuous linear
mapping j_{\epsilon}^{\alpha} : X^{\wedge}\otimes_{\alpha}Yarrow X^{\wedge}\otimes_{\epsilon}Y is one-t0-0ne (see [9], [10]). We use the notion
of the (bounded) approximation property, for short, (b.)a.p. (e. g. [4,] [5]
and [6] ).

THEOREM 1. 1. Let \alpha be a uniform reasonable norm on X\otimes Y.
a) If either X or Y has the b. a.p. , then \alpha is faithful on X\otimes Y.
b) If \alpha is a left- or right-injective or an injective \otimes -norm, then \alpha is

faithful on X\otimes Y.
Therefore, in these cases, A\otimes B is closable in X\otimes_{\alpha}Y\wedge.
REMARKS 1. Observe that Theorem 1. 1 implies also the closablity of

polynomial operators associated with each polynomial P( \xi, \eta)=\sum_{fk}c_{fk}\xi^{f}\eta^{k},
provided A and B have nonempty resolvent sets (use [10, Theorem 1. 1]).

2. The greatest reasonable norm \pi is faithful on X\otimes Y if either X
or Y has only the a. p. [5, Chap. I, \S 5]; so, in this case, A\otimes B is closable
in X\wedge\otimes_{\pi}Y. However, the question is open whether A\otimes B is closable in
X\wedge\otimes_{\alpha}Y without the hypothesis of the b. a. p. or a. p. Note that Enflo [3]
has constructed Banach spaces without the a. p.

The range and null space. For Z_{1} , Z_{2} Banach spaces, the range and
null space of a linear operator (mapping) T:D[T]\subset Z_{1}arrow Z_{2} are denoted by
R[T] and N[T], respectively. A closed subspace M of a Banach space
Z is said to be complementary if there is a continuous projection of Z
onto M.

Since A and B are closed, N[A] and N[B] are closed subspaces of
X and Y, respectively. It is evident that

(1. 1) R[A\otimes B]=R[A]\otimes R[B] ,

(1.2) N[A\otimes B]=N[A]\otimes D[B]+D[A]\otimes N[B] .
R[A\hat{C_{\alpha}\cross}B] is the projection of the closure in (X\hat{C_{\alpha}\cross}Y)\cross(X\wedge\otimes_{\alpha}Y) of the
graph G(A\otimes B) of A\otimes B into the second X\wedge\otimes_{\alpha}Y and so is in general
a dense subspace of the closure \overline{R}[A\otimes B] in X\otimes_{\alpha}Y\wedge. The closure \overline{N}[A\otimes B]

in X\wedge\otimes_{\backslash }\alpha Y is obviously a subspace of N[A\wedge\otimes_{\alpha}B] .
THEOREM 1. 2. Let \alpha be a reasonable norm on X\otimes Y, and assume

A\otimes B is closable in X(.\cross\supset_{\alpha}\wedge Y. If R[A\wedge\otimes_{\alpha}B] is closed, so are both R[A] and
R[B], and

(1. 3) R [A \hat{Q}\cross_{J\alpha}B] =\overline{R}[A\otimes B]t

Further, if R[A\wedge\otimes_{\alpha}B] is complementary, so are both R[A] and R[B] .
THEOREM 1. 3. Let \alpha be a\otimes -norm, and assume A\otimes B is closable in
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X\wedge\otimes_{\alpha} Y. Suppose one of the following four conditions is satisfified:
(i) either N[A] or N[B] is of fifinite codimension;
(ii) both N[A] and N[B] are complementary;
(iii) \alpha is a right- (resp. left-) projective \otimes -norm and N[A] {resp. N[B])

is complementary ;
(iv) \alpha is a projective \otimes -norm.
Then R[A\wedge\otimes_{\alpha}B] is complementary if and only if both R[A] and R[B]

are complementary; in this case, one has (1. 3) and

(1. 4) N[A\otimes_{\alpha}B\wedge]=\overline{N}[A\otimes B] ,

and there exists a constant C>0 such that

(1. 5) ||(A\otimes B)u||_{\alpha}\geq C dist (u, N[A\otimes B]) , u\in D[A\otimes B]

In the next three theorem, note with Theorem 1. 1 that A\otimes B and
A\otimes I are closable.

THEOREM 1. 4. Let \alpha be a\otimes -norm. Suppore one of the following
two conditions is satisfified:

(i) \alpha is a right- (resp. left-) injective \otimes -norm and R[A] (resp. R[B] )
is complementary ;

(ii) \alpha is an injective \otimes -norm.
Then A\wedge\otimes_{\alpha}B is one-tO-One and has closed range if and only if both

A and B are one-tO-One and have closed range.
THEOREM 1. 5. Besides the hypothesis of Theorem 1. 3, suppose that

either X or Y and either X/N[A] or Y/N[B] have the b. a.p. Then one
has (1. 4).

THEOREM 1. 6. Let \alpha be a uniform reasonable norm on X\otimes Y. Sup-
pose Y has the b. a.p. \prime l^{\urcorner}henN[A\wedge\otimes_{\alpha}I]=\overline{N}[A\otimes I] .

REMARKS 1. The converse of Theorem 1. 2 is not true in general,
even if R[A] and R[B] are complementary. Theorem 1. 3 (resp. Theorem
1. 4) is not true in general if \alpha is an injective (resp. projective) \otimes -norm.
In fact, if A (resp. B) is a topological homomorphism of X (resp. Y) onto
itself, A\wedge\otimes.B is not necessarily a topological homomorphism of X\wedge\otimes.Y onto
itself. If A (resp. B) is a topological isomorphism of X (resp. Y) into itself,
A\wedge\otimes_{\pi}B is not necessarily a topological isomorphism of X\wedge\otimes_{\pi}Y into itself
([5, Chap. I, \S 3, p. 92] and [12, Remark 2 to Prop. 1. 2]).

2. Theorem 1. 3 is known if A and B are continuous projections
(e. g. [14, Theorem 3. 10], [8, Theorems 4. 1 and 4. 2 where read \alpha as
a \otimes -norm] and [11, Prop. 1. 5] ).
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3. We don’t know whether (1. 4) always holds for every \otimes norm \alpha.
However, the statement is not true for a general polynomial operator (see
[12, 3. 5, 3^{o}] ).

1. 2. The Hilbert space case.
Assume X and Y are Hilbert spaces. Then a rather complete result

can be obtained since a Hilbert space has the b.a.p. and every closed
subspace of it is complementary. The prehilbertian norm \sigma on X\otimes Y is
by definition the norm induced on it by the inner product (x_{1}\otimes y_{1}, x_{2}\otimes y_{2})

=(x_{1}, x_{2})(y_{1}, y_{2}) for x_{i}\in X, y_{i}\in Y, i=1,2.
THEOREM 1. 7. Let \alpha be a\otimes -norm or the prehilbertian norm. Then
a) A\otimes B is closable in X\otimes_{\alpha}Y\wedge ;
b) one always has (1. 4) ;
c) R[A\otimes_{a}B\wedge] is closed if and only if both R[A] and R[B] are closed;

in this case, one has (1. 3), (1. 4) and (1. 5).
REMARK. Theorem 1. 7 implies that for X and Y Hilbert spaces,

every \otimes -norm and the prehilbertian norm have the h- and i-properties,
which are the notions introduced in [12].

In the proofs where there might be some confusion, for a pair of
Banach spaces Z_{1} and Z_{2} , a \otimes norm \alpha and u\in Z_{1}\otimes_{\alpha}Z_{2}\wedge , we shall use the
symbol \alpha(u;Z_{1}, Z_{2}) instead of ||u||_{\alpha} .

2. Lemmas

The proof of Theorem 1. 3 uses the following lemmas.
LEMMA 2. 1. Let \alpha be a projective \otimes -norm. Then, for every pair of

Banach spaces X and Y and their respective closed subspaces M and N
with quotient mappings f:Xarrow\hat{X}=X/M and g:Yarrow\hat{Y}=Y/N, the canonical
linear mapping

(2. 1) f\otimes_{\alpha}g\wedge : X\wedge\otimes_{\alpha}Yarrow\hat{X}\otimes^{\backslash }\cdot\alpha\hat{Y}

is a surjective metric homomorphism and so induces an isometry of X\hat{c_{I\alpha}\cross}Y

/N[f\otimes_{\alpha}g]\wedge onto \grave{X}\otimes_{\alpha}\hat{Y}\wedge . N[f\hat{C_{\alpha}\cross}g] is the closure of
(2. 2) N[f\otimes g]=M\otimes Y+X\otimes N .

Lemma 2. 1 may be implicitly contained in the definition of projective
\otimes -norms [6, p. 25] ; it yields immediately the formula

(2. 3) \alpha((f\otimes_{\alpha}g)\wedge u; \hat{X},\hat{Y})=\inf\{\alpha(u-v; X, Y);v\in N[f\wedge\otimes_{\alpha}g]\} . u\in X\wedge\otimes_{\alpha}Y .

for every pair of Banach spaces X and Y and their respective closed
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subspaces M and N. However, as the assertion concerning the null space
of \cdot f\wedge\otimes_{\alpha}g does not seem to be evident except when either X or Y is of
finite dimension, we give a proof of it.

PROOF of Lemma 2. 1. By continuity of f\wedge\otimes_{\alpha}g it suffices to show that
there is a constant C>0 such that

(2. 4) \alpha((f\otimes g)u ; \hat{X},\hat{Y})\geq C^{2} inf \{\alpha(u-v;X, Y);v\in N[f\otimes g]\} , u\in X\otimes Y

To show (2.4) we have only to show both

(2. 5) \alpha((f\otimes I)u;\hat{X},Y)\geq C inf \{\alpha(u-w;X, Y);w\in M\otimes Y\} , u\in X\otimes Y.
,

and

(2. 6) \alpha((I\otimes g)v;\hat{X},\hat{Y})\geq C inf \{\alpha(v-w;\hat{X}, Y);w\in\hat{X}\otimes N\}jv\in\hat{X}\otimes Y

Note (2. 2) and that f\otimes I maps X\otimes Y onto \hat{X}\otimes Y with null space M\otimes Y.
We show (2. 5) and (2. 6), in fact, as equalities (and hence (2. 4), too)

with C=1. By the property of \otimes -norms ([6, p. 11] or [1, p. 162]),

\alpha((f\otimes I)u;\hat{X}, Y)

= \inf\{\alpha ((f\otimes I)u;\hat{E}, F) ; \hat{E}\in \mathscr{F}(\hat{X}), F\in e^{}\swarrow(Y), B\otimes F\ni(f\otimes I)u\} .

Here e\mathscr{F}(Z) denotes the family of all finite-dimensional subspaces of a Ba-
nach space Z. If \hat{E}\in \mathscr{F}(\hat{X}) set E=f^{(-1)}(\hat{E}). Then E is a closed subspace
of X, and M is a closed subspace of E with finite codimension. We have
E=E/M. The restriction f_{E} of f to E is the canonical quotient mapping
of E onto E. By the left-projectivity of \alpha, f_{E}\wedge\otimes_{\alpha}I_{F} is a metric homomor-
phism of E\wedge\otimes_{\alpha}F onto \hat{E}\otimes_{\alpha}F\wedge and so induces an isometry of E\otimes_{\alpha}F\wedge/N

[f_{E}\otimes_{\alpha}^{\wedge}I_{F}] onto B\wedge\otimes_{\alpha}F. Note that E\wedge\otimes_{\alpha}F=E\otimes F and E\wedge\otimes_{\alpha}F=\hat{E}\otimes F, and so

N[f_{E}\wedge\otimes_{\alpha}I_{F}]=N[f_{E}\otimes I_{F}]=M\otimes F ,

because F is of finite dimension. Consequently, we have

\alpha((f\otimes I)u;R, F)

\geq\inf\{\alpha(u-w;E, F);w\in M\otimes F\}

= \inf_{w\epsilon M\otimes F}\inf_{G\in Z(E),G\otimes Fu-w},\alpha(u-w;G, F)

\geq\inf_{w\epsilon M\otimes Y}\inf_{G\epsilon \mathscr{F}(X),H\in \mathscr{F}(Y),G\otimes H\ni u-w}\alpha(u-w ; G, H)

= \inf\{\alpha(u-w;X, Y);w\in M\otimes Y\}1
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Thus we obtain altogether the inequality (2. 5) with C=1. Once this is
established, it is easy to see with (2. 3) that it is actually equality.

Similarly, the right-projectivity of \alpha proves (2. 6) as equality with
C=1. Q. E. D.

Lemma 2. 2. Let \alpha be a\otimes -norm. Let M and N be closed subspaces
of X and Y with quotient mappings f:Xarrow\hat{X}=X/M and g:Yarrow\hat{Y}=Y/N,
and suppose one of the following three conditions is satisfified:

(i) either M or N is of fifinite codimension;
(ii) both M and ’N are complementary;
(iii) \alpha is a right- (resp. left-) projective \otimes -norm and M (resp. N) is

complementary.
Then the canonical linear mapping (2. 1) is a surjective topological

homomorphism and so induces a topological isomorphism of X\wedge\otimes_{\alpha}Y/N[f\wedge\otimes_{\alpha}g]

onto \hat{X}\otimes_{\alpha}\hat{Y}\wedge N[f\otimes_{\alpha}^{\wedge}g] is the closure of (2. 2).

PROOF. We establish (2. 4) in each of the three cases.
(i) Assume that codim M<\infty , so that r=\dim\hat{X}=\infty . Choose a se-

quence \{e_{i}\}_{i=1}^{r} in X of linearly independent elements such that \{f(e_{i})\}_{i=1}^{r}

forms a normalized basis of \hat{X}. Let u\in X\otimes Y. There is a sequence \{y_{i}\}_{i=1}^{r}

in Y such that
(f \otimes g)u=\sum_{i=1}^{r}f(e_{i})\otimes g(y_{i}) .

Since dim \hat{X}<\infty , all \otimes -norms on \hat{X}\otimes\hat{Y} are equivalent, and \hat{X}\otimes_{\alpha}\hat{Y}\wedge=

\hat{X}\otimes\hat{Y} . Therefore \alpha((f\otimes g)u;\hat{X},\hat{Y}) is equivalent to \epsilon((f\otimes g)u;\hat{X},\hat{Y}) and
hence to

\sum_{i=1}^{r}||g(y_{i})||=\inf\{\sum_{i=1}^{r}||y_{i}+z_{i}||;z_{i}\in N[g] , i=1,2, \cdots , r\}\sim

which is equivalent to

inf \{\alpha(’\sum_{i=1}^{r}e_{i}\otimes(y_{i}+z_{i});X, Y) ; z_{i}\in N[g] , i=1,2, \cdots , r\}

\geq\inf\{\alpha(u-v ; X, Y);v\in N[f\otimes g]\}

This establishes (2. 4).
(ii) In this case, we can decompose X and Y into the topological

direct sums X=M\oplus X_{0} and Y=N\oplus Y_{0} . Consequently, X\otimes Y is also de-
composed into the topological direct sum

X\otimes Y=(M\otimes N)\oplus(M\otimes Y_{0})\oplus(X_{0}\otimes N)\oplus(X_{0}\otimes Y_{0})

under the norm \alpha . Denote the projection of X (resp. Y) onto M (resp. N)
along X_{0} (resp. Y_{0}) by P (resp. Q). Then the restriction f_{0} (resp. g_{0}) of f
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(resp. g) to X_{0} (resp. Y_{0}) is a topological isomorphism of X_{0} (resp. Y_{0}) onto
\hat{X} (resp. \hat{Y} ). Since \alpha is a \otimes -norm, we have for u\in X\otimes Y

\alpha([(I-P)\otimes(I-Q)]u;X_{0}, Y_{0})

=\alpha((f_{0}^{-1}\otimes g_{0}^{-1})(f_{0}\otimes g_{0})[(I-P)\otimes(I-Q)]u;X_{0}, Y_{0})

\leq||f_{0}^{-1}||||g_{0}^{-1}||\alpha((f_{0}\otimes g_{0})[(I-P)\otimes(I-Q)]u;\hat{X},\hat{Y})

=||f_{0}^{-1}||||g_{0}^{-1}||\alpha((f\otimes g)u;\hat{X},\hat{Y}) .

On the other hand, \alpha([(I-P)\otimes(I-Q)]u;X_{0}, Y_{0}) is equivalent to \alpha([(I-P)

\otimes(I-Q)]u ; X, Y)(e. g. [11, Prop. 1. 5]), which is in turn greater than or
equal to the right-hand side of (2. 4) with the constant C^{2} removed.

(iii) Assume that \alpha is a left-projective \otimes -norm and N is complemen-
tary. By the same proof as in the proof of Lemma 2. 1, the left-projecti-
vity of \alpha implies (2. 5). (2. 6) can be shown in the same way as in (ii)
above. This proves (2. 4). Q. E. D.

3. Proofs of Theorems

PROOF of THEOREM 1. 1. a) Suppose Y has the b.a.p. Let ue X%aY

and j_{\epsilon}^{\alpha}(u)=0 . We show u=0. Choose a sequence \{u_{n}\}_{n=1}^{\infty} in X\otimes Y which
converges to u in X\otimes_{\alpha}Y\wedge. Each u_{r\iota} has a representation

(3. 1) u_{n}= \sum_{i=1}^{r_{n}}x_{i}^{(n)}\otimes y_{i}^{(n)}’
’

where we may assume that the sequence \{y_{i}^{(n)}\}_{i=1}^{r_{n}}\subset Y is linearly independent
and the sequence \{x_{i}^{(n)}\}_{i=1}^{r_{n}}\subset X consists of linearly independent unit vectors
such that there is a sequence \{f_{i}^{(n)}\}_{i=1}^{r_{n}} of unit vectors in X’, the topological
dual space of X, with \langle x_{i}^{(n)}, f_{j}^{(n)}\rangle=\delta_{ij} , i,j=1, \cdots , r_{n} . Set

K=\{\langle u_{n}, x’\rangle_{X} ; x’\in X’ , ||x’||\leq 1 , n=1,2, \cdots\} ,

with \langle u_{n}, x’\rangle_{X}=\sum_{i=1}^{r_{n}}\langle x_{i}^{(n)}, x’\rangle y_{i}^{(n)} , x’\in X’ . Note that K is relatively com-
pact in Y(e.g. [7]) and each y_{i}^{(n)} belongs to K.

By the b.a.p. of Y, there exists a uniformly bounded sequence \{T_{l}\}_{l=1}^{\infty}

of bounded linear operators on Y of finite rank such that (T_{l}-I)yarrow 0

uniformly on K as larrow\infty . By uniformness of \alpha, ||I\otimes^{\wedge}

,
\alpha lT||=||T_{l}||\leq\lambda, l=

1, 2, \cdots . Set v_{l}=(I\wedge\otimes_{\alpha}T_{l})u . We show that v_{l}=0 for all l and v_{l}arrow u in
X\otimes_{\backslash }\alpha Y\wedge as larrow\infty . In fact, v_{l}\in X\otimes Y and by continuity,

j_{\epsilon}^{\alpha}(v_{l})=j^{\alpha}.((I\otimes_{\alpha}T_{l}\wedge)u)=(I\wedge\cross_{[mathring]_{J}\epsilon}T_{l})(j^{\alpha}.(u))=0\tau
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Since j_{*}^{\alpha} is the identity mapping on X\otimes Y, we have v_{l}=0 . For each n,

||v_{l}-u||_{\alpha}\leq||(I\wedge\otimes_{\alpha}T_{l})(u-u_{n})||_{\alpha}+||(I\otimes_{\alpha}T_{l}\wedge)u_{n}-u_{n}||_{\alpha}+||u_{n}-u||_{\alpha}

\leq(\lambda+1)||u-u_{n}||_{\alpha}+\sum_{i=1}^{r_{n}}||x_{i}^{(n)}||||(T_{l}-I)y_{i}^{(n)}|| .
Since y_{i}^{(n)}\in K, we obtain lim sup larrow\infty||v_{l}-u||_{\alpha}\leq(\lambda+1)||u-u_{n}||_{\alpha} . On tending
narrow\infty , we have v_{l}arrow u in X\wedge\otimes_{\alpha}Y as larrow\infty .

b) We have only to consider the case where \alpha is a left-injective \otimes-

no r Let U^{0} be the closed unit ball of X’ equipped with the weak*
topology. U^{0} is then compact. Let C(U^{0}) be the Banach space of the
continuous functions on U^{0} and let j:Xarrow C(U^{0}) be the canonical injection.
Then the following diagram is commutative:

j\hat{C_{\alpha}\cross},\prime I\downarrow X\wedge\otimes_{\alpha}Yi^{j^{\alpha}}

X_{(.\otimes}^{\wedge}.Y\downarrow j\otimes.I\wedge

)1

C(U^{0})\otimes_{\alpha}Y’\overline{J^{\alpha}.}C(U^{0})\otimes_{*}Y\wedge

Both j\otimes_{\alpha}\wedge I and j\otimes.I\wedge are isometries since both \alpha and \epsilon are left-injective
\otimes -norms. The natural continuous linear mapping J_{*}^{\alpha} of C(U^{0})\otimes_{\alpha}Y\wedge into
C(U^{0})\hat{O}\cross_{J}.Y is by a) one-t0-0ne, because C(U^{0}) has the b.a.p. It follows
that the natural continuous linear mapping j_{\epsilon}^{\alpha} of X\wedge\otimes_{\alpha}Y into X\wedge\otimes_{-*}Y is
also one-t0-0ne, that is, \alpha is faithful on X\otimes Y. Q. E. D.

PROOF of THEOREM 1. 2. We may assume that neither A\subset O nor
B\subset O. Therefore R[B]\pm\{0\} and R[B’]\neq\{0\} , where B’ is the adjoint of
B. By closedness of B, \langle Y, D[B’]\rangle forms a dual system. Apply the Hahn-
Banach theorem to choose y_{0}\in D[B] and y_{0}’\in D[B’] with ||By_{0}||=\langle By_{0}, y_{0}’\rangle

=\langle y_{0}, B’y_{0}\rangle=1 .
To show the first half of the theorem, assume R[A\otimes_{a}B\wedge] is closed.

Then there exists a constant C>0 such that

||(A\otimes_{\alpha}B\wedge)u||_{\alpha}\geq C dist (u, N[A\otimes_{\alpha}B\wedge]) , u\in D [A \hat{C_{\alpha}\cross}B]

Hence, for x\in D[A] ,

||Ax||=||Ax||||By_{0}||=||Ax\otimes By_{0}||_{\alpha}=||(A\otimes_{\alpha}^{\wedge}B)(x\otimes y_{0})||_{\alpha}

\geq C inf \{||x\otimes y_{0}-v||_{\alpha} ; v\in N[A\otimes_{\alpha}B]

\geq C inf \{||x\otimes y_{0}-j^{\alpha}.(v)||_{\epsilon} ; v\subsetarrow N[A\otimes_{\alpha}B\wedge]\}

Here we have used the fact that \epsilon\leq\alpha. If j_{\text{\’{e}}}^{\alpha}(v)= \sum_{i=1}^{\infty}x_{i}\otimes y_{i} , we set
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\langle^{l}j^{\alpha}.(v), y’\rangle_{Y}=\sum_{i=1}^{\infty}\langle y_{i}, y’\rangle x_{i} .

Then
||Ax|| \geq C\inf_{v\epsilon N[A\otimes_{\alpha}B]}\wedge\sup_{y’\in Y’,||y_{\mathfrak{l}}^{\prime 1}|=1||\langle y_{0},y’\rangle x-\langle j_{\epsilon}^{\alpha}(v),y’\rangle_{Y}||}

\geq C_{1} inf \{||\langle y_{0}, B’y_{0}\rangle x-\langle j_{\epsilon}^{\alpha}(v), B’y_{0}\rangle_{Y}||;v\in N[A\hat{O}\cross_{\alpha},B]\}

\geq C_{1} inf \{||x-z|| ; z\in N[A]\}

=C_{1} dist (x, N[A])., C_{1}=C||B’y_{\acute{0}}||^{-1} .

Here the last inequality above is due to the fact that \langle j_{*}^{\alpha}(v), B’y_{0}\rangle_{Y} belongs
to N[A] ; to see this we have only to note that D[A’] is total by closed-
ness of A and for x’\in D[A’]

0=\langle(A\otimes_{\alpha}B\wedge)v, x’\otimes y_{0}’\rangle=\langle v, A’x’\otimes B’y_{0}\rangle

=\langle j^{\alpha}.(v), A’x’\otimes B’y_{0}\rangle=\langle\langle j^{\alpha}.(v), B’y_{0}\rangle_{Y}, A’x’\rangle|

=\langle A\langle j^{\alpha}.(v), B’y_{0}\rangle_{Y}, x’\rangle

This proves closedness of R[A]. Similarly, R[B] is closed.
Next, we show the second half. Assume R[A\otimes_{\alpha}B\wedge] is complementary.

Then there exists a continuous projection R of X\hat{\cap\cross}Y\alpha onto R[A\otimes_{\alpha}B\wedge] .
Set z_{0}=By_{0} . Then X\otimes[z_{0}] is a closed subspace of X\wedge\otimes_{\alpha}Y which is is0-
metric to X. R[A]\otimes[z_{0}] is a closed subspace of X\otimes[z_{0}] . Consider the
linear mapping Q of X \bigotimes_{\alpha}’.Y onto X\otimes[z_{0}] defined by

Qu=\langle j_{\epsilon}^{\alpha}(u), y_{0}’\rangle_{Y}\otimes z_{0} , u\in X\hat{\subset}.\cross 3_{\alpha}^{Y}

Then Q is a continuous projection with ||Q||\leq||y_{0}’|| , since Q(x\otimes z_{0})=x\otimes z_{0}

for every x\in X and

||Qu||_{\alpha}=||\langle j^{a}.(u), y_{0}’\rangle_{Y}||||z_{0}||\leq||j_{*}^{\alpha}(u)||.||y_{0}’||\leq||y_{0}’||||u||_{\alpha}(

Set P=QR. Then P is a continuous projection of X^{\wedge}\otimes_{\alpha}Y onto R[A]\otimes[z_{0}] ,

which obviously implies that R[A] is complementary. In fact, it suffices
to check P is a projection. If u\in X\wedge\otimes_{\alpha}Y then Ru=(A\otimes_{\alpha}B\wedge)w for some
w\in D[A\hat{\circ}\cross_{-\alpha}B] . Then

Pu=Q(Ru)=Q((A\wedge\otimes_{\alpha}B)w)

=\langle j_{\text{\’{e}}}^{\alpha}((A\wedge\otimes_{\alpha}B)w), y_{0}’\rangle_{Y}\otimes z_{0}’\backslash
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=A_{\backslash }^{\nearrow}j^{\alpha}.(w), B’y_{\acute{0}}\rangle_{Y}\otimes By_{0}

=(A_{\hat{O}\alpha}\cross B)(\langle j_{\text{\’{e}}}^{\alpha}(w), B’y_{0}\rangle_{Y}\otimes y_{0}) ,

which belongs to R[A\otimes_{\alpha}B\wedge] , and hence P^{2}u=Pu . Thus P is a projection.
Similarly, R[B] is complementary. Q. E. D.

PROOF of THEOREM 1. 3. The one direction follows from Theorem
1. 2. To show the other direction we have only to establish (1. 5), assum-
ing both R[A] and R[B] complementary. In fact, in view of the theorem
of bipolars, (1. 5) yields (1. 3) and (1. 4) ; by [11, Prop. 1. 5], (1. 3) yields
that R[A\otimes_{\alpha}B\wedge] is complementary.

Now, to establish (1. 5) let u\in D[A\otimes B] . Set \hat{X}=X/N[A] and \hat{Y}=

Y/N[B] . Let f:Xarrow\hat{X} and g:Yarrow\hat{Y} be the quotient mappings. Define
a linear operator \hat{A} : D[\hat{A}]\subset\hat{X}arrow X. The domain D[\hat{A}\rceil is the space of all
\hat{x}\in\hat{X} such that every x\in\hat{x} belongs to D[A] and \hat{A}\hat{x}=Ax. \hat{A} is densely
defined and closed. It has bounded inverse since R[\^A]=R[A] is closed.
Similarly, define a closed linear operator \hat{B} : D[\hat{B}]\supset\hat{Y}arrow Y with B. \hat{A}^{-1} is
a bounded linear operator of R[A] into \hat{X} and \hat{B}^{-1} of R[B] into \hat{Y} It is
readily seen that fD[A]=D[\^A] and gD[B]=D[\hat{B}] . As \alpha is a \otimes -norm,
we have

\alpha ((fC\cross g)u ; \hat{X},\hat{Y})=\alpha((\hat{A}^{-1}\otimes\hat{B}^{-1})(\hat{A}\otimes\hat{B})(f\otimes g)u,\hat{X},\hat{Y})

=\alpha((\hat{A}^{-1}\otimes\hat{B}^{-1})(A\otimes B)u;\hat{X},\hat{Y})

\leq||\hat{A}^{-1}||||\hat{B}^{-1}||\alpha((A\otimes B)u;R[A], R[B])

Since both R[A] and R[B] are complementary, \alpha((A\otimes B)u;R[A], R[B])

is equivalent to \alpha((A\otimes B)u ; X, Y) (e.g. [11, Prop. 1. 5]). On the other
hand, both D[A] and D[B] are dense and so N[A\otimes B] is dense in N[f\otimes g] .
Consequently, N[f_{\backslash }\wedge\otimes_{\alpha}g] is, by Lemmas 2. 1 and 2. 2, the closure of N[A\otimes B]

in X\wedge\otimes_{\alpha}Y. By the same lemmas again, f\wedge\otimes_{\alpha}g is a topological homomor-
phism of X\wedge\cap\cross_{J\alpha}Y onto \hat{X}(\cross\supset_{\alpha}\hat{Y}\wedge r Hence \alpha((f\otimes g)u;\hat{X},\hat{Y}) is equivalent to
dist (u, N[A\otimes B]) in X\hat{\sigma,\cross,}Y\alpha. This establishes (1. 5). Q. E. D.

PROOF of THEOREM 1. 4. The one direction follows from Theorem
1. 2. We show the other direction. Since \alpha is a \otimes -norm and A^{-1} is
a bounded linear operator of R[A] into X and B^{-1} of R[B] into Y, we
have for u\in D[A\otimes B]

\alpha(u;X, Y)=\alpha((A^{-1}\otimes B^{-1})(A\otimes B)u;X, Y)

\leq||A^{-1}||||B^{-1}||\alpha ((A\otimes B)u;R[A] , R[B]),
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which is equivalent to ||A^{-1}||||B^{-1}||\alpha((A\otimes B)u ; X, Y) by the hypothesis
(i) or (ii). Hence follows that A\otimes_{\backslash }\alpha B\wedge is one-t0-0ne and has closed range.

Q. E. D.

PROOF of THEOREM 1. 5. We use the same notations as in the proof
of Theorem 1. 3. Analogous arguments used in the proof of Theorem 1. 1
utilizing the b.a.p. of X or Y show that \hat{A}\otimes\acute{\grave{B}} is a densely defined, closable
linear operator of D[\hat{A}]\otimes D[\hat{B}]\subset\hat{X}\otimes_{\alpha}\hat{Y}\wedge into X\wedge\otimes_{\alpha}Y. Denote its closure
by \hat{A}\otimes_{\alpha}\hat{B}\wedge . Then it is easy to verify that

(A\otimes_{\alpha}B\wedge)u=(\hat{A}\otimes_{\alpha}\hat{B})\wedge(f\wedge\otimes_{\alpha}g)u, u\in D[A\otimes_{\alpha}B\wedge] .
\hat{A} and \hat{B} are one-t0-0ne, and so their adjoints (\text{\^{A}})’ and (\hat{B})’ have dense
range in (\hat{X})’ and (\hat{Y})’ , respectively. By assumption and Theorem 1. 1, \alpha

is faithful on \hat{X}\otimes\hat{Y}t Therefore, R[(\hat{A})’]\otimes R[(\hat{B})’] and hence R[(\hat{A}\otimes_{\alpha}\hat{B})’\wedge]

is dense in (\hat{X}\otimes_{\alpha}\hat{Y}\wedge)’ in the weak topology defined by the dual system
\langle\hat{X}.\hat{\cap\cross-}a \hat{Y}, (\hat{X}.\hat{O_{\vee}\cross}\hat{Y})’\alpha\rangle . It follows that \hat{A}\bigotimes_{\alpha}^{\backslash }’\hat{B} is one-t0-0ne, and

N[A\otimes_{\alpha}B\wedge]=N[f\wedge\otimes_{\alpha}g]\cap D[A\otimes_{\alpha}B\wedge]=\overline{N}[A\otimes B]

Q. E. D.

PROOF of THEOREM 1.6. The proof is analogous to the proof of
Theorem 1. 1. a). Let u\in N[A\otimes_{\alpha}I\wedge] . We must show that u\in\overline{N}[A\otimes I] .

Choose a sequence \langle u_{n}\}_{n=1}^{\infty} in D[A]\otimes Y which converges to u in X\wedge\otimes_{\alpha}Y.
Each u_{n} has a representation (3. 1); in this case, \{x_{i}^{(n)}\}_{i=1}^{r_{n}}\subset D[A] . With
the same K, choose the same sequence \{T_{l}\}_{l=1}^{\infty} as before. Set v_{l}=(I\hat{C_{\alpha}\cross}T_{l})u .
The same argument shows that v_{l}\in N[A]\otimes Y for all l and v_{l}arrow u in X\wedge\otimes_{\alpha}Y

as larrow\infty . Q. E. D.

PROOF of THEOREM 1. 7. a) From Theorem 1. 1.
b) From Theorem 1. 5. c) From Theorem 1. 3. Q. E. D.
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