On the equilibrium existence in abstract economies

By Kaneyuki Yamamoto

(Received February 24, 1978)

§ 1. Introduction

The purpose of the present paper is to extend earlier equilibrium existence theorems for economies with finitely many agents and with finitedimensional commodity spaces (see [1] and [8]) to the case of infinite-dimensional commodity spaces. The utilization of Δ or Δ_{0}, whose existence in the infinite-dimensional space was shown in [12], as the set of price systems is indispensable when it is intended to guarantee the existence of equilibrium for generalized economies. The extension also concerns the recent results to eliminate unnecessary assumptions on consumers' preferences for the proof of equilibrium existence ([4], [6], [9], [10], [11]).

After summarizing the useful auxiliary theorems concerning semi-continuous set-valued mappings in $\S 2$, three types of economies are dealt with in the last three sections of the present paper, respectively. Individual preferences are given in the following three ways: (1) by the utility functions, (2) by the binary relations and (3) by the preference mappings. The present analysis is limited to the pure exchange model only for the sake of conciseness and clarity.

§ 2. Auxiliary theorem concerning semi-continuous set-valued mappings.

Let F be a set-valued mapping assigning to each $x \in X_{1}$ a subset $F(x)$ of X_{2} where X_{1} and X_{2} are topological spaces. F is called lower semi-continuous (briefly l. s. c.) at $x_{0} \in X_{1}$, if for each open set G meeting $F\left(x_{0}\right)$ there exists a neighbourhood $V\left(x_{0}\right)$ of x_{0} such that $F(x) \cap G \neq \phi$ for all $x \in V\left(x_{0}\right)$. F is called upper semi-continuous (briefly u.s.c.) at $x_{0} \in X_{1}$, if for each open set $G \supset F\left(x_{0}\right)$ there exists a neighbourhood $V\left(x_{0}\right)$ of x_{0} such that $F(x) \subset G$ for all $x \in V\left(x_{0}\right) . \quad F$ is called lower semi-continuous in X_{1} (briefiy l.s.c. in X_{1}), if it is lower semi-continuous at each point of $X_{1} . \quad F$ is a called upper semi-continuous in X_{1} (briefly u.s.c. in X_{1}), if it is upper semi-continuous at each point of X_{1} and the set $F(x)$ is compact for each $x \in X_{1}$. If F is both 1.s.c. in X_{1} and u.s.c. in X_{1}, then it is called continuous in X_{1}. F
is called closed, if the graph of F is closed in the product space $X_{1} \times X_{2}$ endowed with the product topology.

The following lemmas $2.1-2.6$ are useful for the later proof of the semi-continuity of the total demand functions.

Lemma 2.1. Let F_{1} be an u.s.c. mapping of X_{1} into X_{2} and F_{2} be an u.s.c. mapping of X_{2} into X_{3}. Then the composition product $F=F_{2} F_{1}$ of F_{1} and F_{2} is u.s.c. in X_{1}.

Lemma 2.2. Let F_{i} be an u.s.c. mapping of a topological space X_{0} into a topological space $X_{i}(i=1,2, \cdots, n)$. Then the Cartesian product $F=$ $\prod_{i=1}^{n} F_{i}$ of $F_{1}, F_{2}, \cdots, F_{n}$ is an u.s.c. mapping of X_{0} into $\prod_{i=1}^{n} X_{i}$.

Lemma 2.3. Let F_{i} be an u.s.c. mapping of a topological space X_{i} into a topological space $Y_{i}(i=1,2)$. Then $F=F_{1} \times F_{2}$ is u.s.c. in $X_{1} \times X_{2}$, where F is a mapping of $X_{1} \times X_{2}$ into $Y_{1} \times Y_{2}$ such that $F\left(x_{1}, x_{2}\right)=F\left(x_{1}\right) \times$ $F\left(x_{2}\right)$ for all $\left(x_{1}, x_{2}\right) \in X_{1} \times X_{2}$.

Lemma 2.4. Let F_{1} be an u.s.c. mapping of X_{1} into X_{2} and F_{2} be a closed mapping of X_{1} into X_{2}. Then the mapping $F=F_{1} \cap F_{2}$ is u.s.c. in X_{1}, where F is a mapping of X_{1} into X_{2} such that $F(x)=F_{1}(x) \cap F_{2}(x)$ for each $x \in X_{1}$.

Lemma 2.5. Let X_{2} be compact. Then a mapping $F: X_{1} \rightarrow X_{2}$ is u.s.c., if and only if it is closed.

Lemma 2.6. A mapping $F: X_{1} \rightarrow X_{2}$ is l.s.c. if the graph of F is open in $X_{1} \times X_{2}$.

Lemma 2.7. ($K y$ Fan) Let E be a non-empty, compact and convex subset of a locally convex Hausdorff linear topological space X and Φ : $E \rightarrow E$ be an u.s.c. set-valued mapping such that the set $\Phi(x)$ is a nonempty, closed and convex subset of E for all $x \in E$. Then there exists a point $\bar{x} \in E$ such that $\bar{x} \in \Phi(\bar{x})$. [2]

Lemma 2.8. (An extension of Knaster, Kuratowski, Mazurkiewicz Theorem [5]). Let E be a non-empty subset of a Hausdorff linear topological space X. To each $x \in E$, let a closed set $\psi(x)$ in X satisfy the following conditions:
(1) the convex hull of any finite subset $\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ of E is contained in $\bigcup_{i=1}^{n} \psi\left(x_{i}\right)$,
(2) $\psi(x)$ is compact for at least one $x \in E$.

Then $\bigcap_{x \in E} \psi(x) \neq \phi$.

Lemma 2.9. Given $E=\prod_{i=1}^{n} E_{i}$, where E_{i} is a non-empty, compact and convex subset of a separable Banach space $X_{i}(i=1,2, \cdots, n)$, let $\psi_{i}: E \rightarrow E_{i}$ be a set-valued mapping satisfying:
(1) the graph of ψ_{i} is open in $E \times E_{i}$,
(2) the set $\psi_{i}(x)$ is convex or empty for each $x \in E$.

Then there exists $\bar{x}=\left(\bar{x}^{1}, \bar{x}^{2}, \cdots, \bar{x}^{n}\right) \in E$ such that either $\bar{x}^{i} \in \psi_{i}(\bar{x})$ or $\psi_{i}(\bar{x})$ $=\phi$ for each $i=1,2, \cdots, n$.

Remark. Let $\psi_{i D_{i}}$ denote the restriction of ψ_{i} to D_{i}, where $D_{i}=\{x$: $\left.x \in E, \phi_{i}(x) \neq \phi\right\}$. A continuous function $f: D_{i} \rightarrow E_{i}$ is called a continuous selection for $\psi_{i D_{i}}$, if $f(x) \in \psi_{i D_{i}}(x)$ for every $x \in D_{i}$. The following Michael's theorem is used in the proof of lemma 2.9.

Theorem. Let X_{1} be a perfectly normal topological space and X_{2} be a separable Banach space. Let $\psi: X_{1} \rightarrow X_{2}$ be a lower semi-continuous setvalued mapping such that the set $\psi\left(x_{1}\right)$ belongs to the class $\mathfrak{D}\left(X_{2}\right)$ for all $x_{1} \in X_{1}$. Then ψ admits a continuous selection.

For the definition of the class $\mathfrak{D}\left(X_{2}\right)$ and the proof of this theorem see [7] p. p. 372-373.

Proof of Lemma 2. 9.
Since every metric space is perfectly normal, E is perfectly normal. It follows from (1) that D_{i} is open in E and the graph of $\psi_{i D_{i}}$ is also open in $D_{i} \times E_{i}$. By making use of lemma 2.6, $\psi_{i D_{i}}$ is l. s.c. in D_{i}. The set $\psi_{i D_{i}}$ $\left(x_{1}\right)$ is open in E_{i} for all $x_{1} \in D_{i}$. Hence $\psi_{i D_{i}}$ satisfies all the assumptions of the above theorem. Therefore $\psi_{i D_{i}}$ admits a continuous selection $f_{i}: D_{i} \rightarrow E_{i}$.

Next, define the mapping $\Phi_{i}: E \rightarrow E_{i}$ by $\Phi_{i}(x)=f_{i}(x)$ if $x \in D_{i}$, and $\Phi_{i}(x)$ $=E_{i}$ otherwise. Then the set $\Phi_{i}(x)$ is a non-empty, closed and convex subset of E_{i} for each $x \in E$. Since D_{i} is open, Φ_{i} is u.s.c. in E. Define $\Phi: E \rightarrow E$ by $\Phi=\prod_{i=1}^{n} \Phi_{i}$. By making use of lemma 2.7, there exists $\bar{x}=\left(\bar{x}^{1}, \bar{x}^{2}, \cdots, \bar{x}^{n}\right) \in E$ with $\bar{x} \in \Phi(\bar{x}) . \quad \bar{x} \in \Phi(\bar{x})$ means that $\bar{x}^{i} \in \Phi_{i}(\bar{x})$ for all i. If $\bar{x} \in D_{i}$, then $\bar{x}^{i}=f_{i}$ $(\bar{x}) \in \psi_{i}(\bar{x})$. Otherwise $\psi_{i}(\bar{x})=\phi$.

§3. Preliminaries on the description of abstract economies.

In the sequel X denotes a locally convex real Hausdorff linear topological space, and its topological dual X^{*} is assumed to be equipped with the strong topology. Let K be a closed proper cone with vertex θ and K^{*} be its dual cone with vertex θ^{*}, where θ and θ^{*} denote the zero element of X and X^{*}, respectively. It is assumed that at least one of the following three cases occur :
(α) there exists a non-empty, strongly compact and convex subset Δ of K^{*} such that $\theta^{*} \notin \Delta$ and $x^{*}(x) \geqq 0$ for all $x^{*} \in \Delta$ doesn't always imply $x \in K$;
(β) there exists a non-empty strongly compact and convex subset Δ of K^{*} such that $\theta^{*} \notin \Delta$ and $x^{*}(x) \geqq 0$ for all $x^{*} \in \Delta$ implies $x \in K$;
(γ) there exists a non-empty, strongly compact and convex subset Δ_{0} of a proper subcone $K_{0}^{*} \subset K^{*}$ such that $\theta^{*} \notin \Delta_{0}$ and $x^{*}(x) \geqq 0$ for all $x^{*} \in \Delta_{0}$ implies $x \in K_{0}$.

In [12] it is shown that this assumption does not always violate the hypothesis that the space X and the linear subspace $K_{0}^{*}-K_{0}^{*}$ (or $K^{*}-K^{*}$) are infinite-dimensional.
C denotes K and K_{0} in the case (α) or (β) and in the case (γ), respectively. The partial order \leqq in X is introduced by C, i. e., $x \leqq y$ in case $x-y \in C$.

Similarly P is ${ }^{c}$ reserved for Δ and Δ_{0} in the case (α) or (β) and in the case (γ), respectively, and its typical element is writien as p instead of x^{*}.
$C_{i}(i=1,2, \cdots, m)$ denotes a non-empty, compact and convex subset of C which contains θ and ξ^{i} satisfying $p\left(\xi^{i}\right)>0$ for all $p \in P$.

§ 4. Economies with utility functions.

The following definitions are intended to describe a pure exchang economy, in which individual preference relations are given by utility functions:

Definition 4.1. A set of m ordered triples $\left\{\left(C_{1}, \xi^{1}, u_{1}\right),\left(C_{2}, \xi^{2}, u_{2}\right), \cdots\right.$, $\left.\left(C_{m}, \xi^{n}, u_{m}\right)\right\}$, denoted by $\left\{\left(C_{i}, \xi^{i}, u_{i}\right)\right\}_{i=1}^{m}$, is called an economy with utility functions, where $u_{i}(i=1,2, \cdots, m)$ is a continous real-valued function on C. C_{i}, ξ^{i} and u_{i} are called a commodity set, an initial holding and utility function of the economic agent i, respectively.

Definition 4.2. A set-valued mapping $F_{i}: P \rightarrow C_{i}$, defined by $F_{i}(p)=$ $\left\{x^{i}: x^{i} \in C_{i}, p\left(x^{i}\right) \leqq p\left(\xi^{i}\right)\right\}$ for all $p \in P$, is called a budget constraint mapping.

Definition 4.3. A set-valued mapping $D_{i}: P \rightarrow C_{i}$, defined by

$$
D_{i}(p)=\left\{x^{i}: x^{i} \in C_{i}, u_{i}\left(x^{i}\right)=\max _{y^{i} \in F_{i}(p)} u_{i}\left(y^{i}\right)\right\}
$$

for all $p \in P$, is called a demand function of the agent i.
A set-valued mapping $D: P \rightarrow C_{0}=\sum_{i=1}^{m} C_{i}$, defined by

$$
D(p)=\sum_{i=1}^{m} D_{i}(p)=\left\{x: x \in C_{0}, x=\sum_{i=1}^{m} x^{i}, x^{i} \in D_{i}(p)\right\}
$$

for all $p \in P$, is called a total demand function of the economy $\left\{\left(C_{i}, \xi^{i}, u_{i}\right)\right\}_{i=1}^{m} \cdot$
DEFINITION 4.4. $\left(\bar{x}^{1}, \bar{x}^{2}, \cdots, \bar{x}^{m}, \bar{p}\right) \in C_{1} \times C_{2} \times \cdots \times C_{m} \times P$ is called an equi-
librium (a quasi-equilibrium) for the economy $\left\{\left(C_{i}, \xi^{i}, u_{i}\right)\right\}_{i=1}^{m}$ with respect to C and P, if $\bar{x}^{i} \in D_{i}(\bar{p})$ for each $i=1,2, \cdots, m$ and $\sum_{i=1}^{m} \bar{x}^{i} \leqq \xi=\sum_{i=1}^{m} \xi^{i}\left(p\left(\sum_{i=1}^{m} \bar{x}^{i}\right) \leqq p(\xi)\right.$ for all $p \in P$).

The notion of quasi-equilibrium is necessary only when C is taken as K in the case (α) of §3. The expression "with respect to C and P " may be omitted without confusions in the sequel. When there exists an equilibrium (quasi-equilibrium) for the economy, the economy is called to have an equilibrium (quasi-equilibrium). It is noteworthy that the existence of an equilibrium is equivalent to $\xi \in D(\bar{p})+C$ for some $\bar{p} \in P$.

It plays an important role for the proof of the equilibrium existence that F_{i} is continuous in P. In other words, it guarantees the equilibrium existence that the budget constraint set satisfying the Walras law in the weak sense varies continuously as p varies.

Theorem 4.1. F_{i} is continuous in P.
Proof. i) Let $F_{i}(V)$ denote in general $\bigcup_{p \in V} F_{i}(p)$ for $V \subset P$ and \mathfrak{B} the fundamental (strong) neighbourhood system of $p_{0} \in P$. Then it can be shown that $F_{i}\left(p_{0}\right)=\bigcap_{V \in \mathcal{B}}\left(F_{i}(V)\right)^{-}$. Here $\left(F_{i}(V)\right)^{-}$denotes the closure of the set $F_{i}(V)$.

First $F_{i}\left(p_{0}\right) \subset \bigcap_{V \in \mathbb{B}}\left(F_{i}(V)\right)^{-}$. Next let $x_{1} \notin F_{i}\left(p_{0}\right)$ and $x_{1} \in C_{i}$. Then $p_{0}\left(x_{1}\right)>$ $p_{0}\left(\xi^{i}\right)$. Put $p_{0}\left(x_{1}\right)-p_{0}\left(\xi^{i}\right)=\varepsilon$. Since p_{0} is continuous, there exists a neighbourhood $U\left(x_{1}\right)$ of x_{1} such that $\left|p_{0}\left(x_{2}\right)-p_{0}\left(x_{1}\right)\right|<\frac{\varepsilon}{3}$ for all $x_{2} \in U\left(x_{1}\right)$. On the other hand, there exists a neighbourhood $V_{1}\left(p_{0}\right)$ of p_{0} such that $\mid p\left(\xi^{i}\right)-$ $p_{0}\left(\xi^{i}\right) \left\lvert\,<\frac{\varepsilon}{3}\right.$ and $\left|p\left(x_{2}\right)-p_{0}\left(x_{2}\right)\right|<\frac{\varepsilon}{3}$ for all $p \in V_{1}\left(p_{0}\right)$ and all $x_{2} \in U\left(x_{1}\right)$. Then $x_{2} \in U\left(x_{1}\right)$ and $p \in V_{1}\left(p_{0}\right)$ together imply $p\left(\xi^{i}\right)<p_{0}\left(\xi^{i}\right)+\frac{\varepsilon}{3}<p_{0}\left(x_{2}\right)-\frac{\varepsilon}{3}<p\left(x_{2}\right)$, which shows $x_{2} \notin F_{i}\left(V_{1}\right)$. Hence $U\left(x_{1}\right) \cap F_{i}\left(V_{1}\right)=\phi$, and so $x_{1} \notin \bigcap_{V \in \mathcal{B}}\left(F_{i}(V)\right)^{-}$. Thus it has been shown $F_{i}\left(p_{0}\right) \supset \bigcap_{D \in E}\left(F_{i}(V)\right)^{-}$.
ii) Let $p_{0} \in P$ and G be an open set in C_{i} such that $G \supset F_{i}\left(p_{0}\right)$. By making use of the result of i), $F_{i}\left(p_{0}\right)=\bigcap_{V \in \mathcal{B}}\left(F_{i}(V)\right)^{-}$. Putting $H=C_{i} \cap G^{c}, H \cap$ $\left(\cap_{V \in \mathcal{B}}\left(F_{i}(V)^{-}\right)=\phi . \quad\left(G^{c}\right.\right.$ denotes in general the complement of $\left.G\right)$. Since C_{i} is compact, there exist $V_{1}, V_{2}, \cdots, V_{n} \in \mathfrak{B}$ such that $H \cap\left(\bigcap_{j=1}^{n}\left(F_{i}\left(V_{j}\right)\right)^{-}\right)=\phi$. Then $F_{i}\left(\bigcap_{j=1}^{n} V_{j}\right) \subset G$. Thus there exists a neighbourhood $V_{0}=\bigcap_{j=1}^{n} V_{j}$ of p_{0} such that $F_{i}\left(V_{0}\right) \subset G$. Combining with the fact that the set $F_{i}\left(p_{0}\right)$ is compact, this shows that F_{i} is u.s.c. at p_{0}. Since p_{0} is any point of P, F_{i} is u.s.c. in P.
iii) Let $p_{0} \in P$ and G be an open set in C_{i} such that $G \cap F_{i}\left(p_{0}\right) \neq \phi$. Then $p_{0}\left(x_{1}\right) \leqq p_{0}\left(\xi^{i}\right)$ for some $x_{1} \in G$. First consider the case when $p_{0}\left(x_{1}\right)<p_{0}\left(\xi^{i}\right)$. Putting $p_{0}\left(\xi^{i}\right)-p_{0}\left(x_{1}\right)=\varepsilon$, there exists a neighbourhood $U_{0}\left(p_{0}\right)$ of p_{0} such that $\left|p\left(x_{1}\right)-p_{0}\left(x_{1}\right)\right|<\frac{\varepsilon}{3}$ and $\left|p\left(\xi^{i}\right)-p_{0}\left(\xi^{i}\right)\right|<\frac{\varepsilon}{3}$ for all $p \in U_{0}\left(p_{0}\right)$. Then $p \in U_{0}\left(p_{0}\right)$ implies $p\left(x_{1}\right)<p\left(\xi^{i}\right)$. Hence $x_{1} \in F_{i}(p)$. Thus there exists a neighbourhood $U_{0}\left(p_{0}\right)$ of p_{0} such that $F_{i}(p) \cap G \neq \phi$ for all $p \in U_{0}\left(p_{0}\right)$, and hence F_{i} is l.s.c. at p_{0}.

Next consider the case when $p_{0}\left(x_{1}\right)=p_{0}\left(\xi^{i}\right)$. Since G is open in C_{i}, there exists λ such that $\lambda x_{1} \in G \cap C_{i}$ and $0<\lambda<1$. Then $p_{0}\left(\lambda x_{1}\right)<p_{0}\left(\xi^{i}\right)$ and $\lambda x_{1} \in G \cap F_{i}\left(p_{0}\right)$. Using λx_{1} instead of x_{1} in the above proof of the case when $p_{0}\left(x_{1}\right)<p_{0}\left(\xi^{i}\right)$, it can be shown that F_{i} is l. s. c. at p_{0}. Since p_{0} is any point of P, F_{i} is l.s.c. in P.

Remark. It plays a crucial roll that the topology of X^{*} is strong. If $\theta^{*} \in P$ and $F_{i}\left(\theta^{*}\right)=C_{i}$, then F_{i} is u.s.c. at θ^{*}. But F_{i} is l.s.c. at θ^{*} if and only if F_{i} is a constant set-valued mapping.

Corollary 4.1. D_{i} is u.s.c. in P.
Proof. Define the real-valued function $\psi_{i}: P \rightarrow R$ by $\psi_{i}(p)=\max _{y^{i} \in F_{i}(p)} u_{i}\left(y^{i}\right)$. Then, since F_{i} is continuous in P, ψ_{i} is continuous in P. The set-valued mapping $D_{i}^{*}: P \rightarrow C_{i}$, defined by $D_{i}^{*}(p)=\left\{x: x \in C_{i}, \psi_{i}(p)-u_{i}(x) \leqq 0\right\}$ for all $p \in P$, is closed, since ψ_{i} is continuous. By making use of lemma 2.4, $D_{i}=$ $F_{i} \cap D_{i}^{*}$ is u.s.c. in P.

THEOREM 4.2. The economy $\left\{\left(C_{i}, \xi^{i}, u_{i}\right)\right\}_{i=1}^{m}$ has a quasi-equilibrium in the case (α), and it has an equilibrium in the case (β) or (γ).

Proof. Consider a price manipulating function, i. e., a set-valued mapping $M: C_{0} \rightarrow P$ defined by $M(x)=\left\{p: p \in P, p(x-\xi)=\max _{q \in P} q(x-\xi)\right\}$ for all $x \in C_{0}$. Since $X^{*} \supset P$ is assumed to be endowed with the strong topology, $q(x-\xi)$ is a continuous bilinear function on $C_{0} \times P$. Hence the function M^{*}, defined by $M^{*}(x)=\max _{q \in P} q(x-\xi)$ for all $x \in C_{0}$, is continuous in C_{0}. Therefore, the graph of $M\left\{(x, p): M^{*}(x)-p(x-\xi) \leqq 0\right\}$ is closed in $C_{0} \times P$. Thus M is a closed mapping. Since P is compact, M is u.s.c. in C_{0} by making use of lemma 2.5.

Since the mapping D is a composition product $L D^{0}$ of D^{0} and L, where $D^{0}=\prod_{i=1}^{m} D_{i}$ and $L: C_{1} \times C_{2} \times \cdots \times C_{m} \rightarrow C_{0}$ is defined by $L\left(x^{1}, x^{2}, \cdots, x^{m}\right)=\sum_{i=1}^{m} x^{i}$ for $\left(x^{1}, x^{2}, \cdots, x^{m}\right) \in C_{1} \times C_{2} \times \cdots \times C_{m}, D$ is u.s.c. in P by making use of lemma 2.1 and 2.2. Finally the mapping $D \times M: C_{0} \times P \rightarrow C_{0} \times P$ is u.s.c. in $C_{0} \times P$ by making use of lemma 2.3 .
$C_{0} \times P$ is convex and compact in a locally convex Hanusdorff linear topological space $X \times X^{*}$, and the set $D(p) \times M(x)$ is non-empty, convex and closed in $C_{0} \times P$. By making use of lemma 2.7, there exists $(\bar{x}, \bar{p}) \in C_{0} \times P$ such that $(\bar{x}, \bar{p}) \in D(\bar{p}) \times M(\bar{x})$. For this (\bar{x}, \bar{p}), there exists $\bar{x}^{i} \in D_{i}(\bar{p})$ for each $i=1,2, \cdots, m$ such that $\bar{x}=\sum_{i=1}^{m} \bar{x}^{i}$ and $\bar{p}(\bar{x}-\xi)=\max _{q \in P} q(\bar{x}-\xi)$. Since $\bar{p}\left(\bar{x}^{i}\right) \leqq$ $\bar{p}\left(\xi^{i}\right)$ for all $i, \bar{p}(\bar{x}) \leqq \bar{p}(\xi)$. Consequently $p(\xi-\bar{x}) \geqq 0$ for all $p \in P$. In the case (α), this shows that ($\bar{x}^{1}, \bar{x}^{2}, \cdots, \bar{x}^{m}, \bar{p}$) is a quasi-equilibrium. In the case (β) or (γ), this shows $\xi-\bar{x} \in C$ and hence $\xi \in D(\bar{p})+C$, which is equivalent to the existence of an equilibrium.

§ 5. Economies with preference orders.

Definition 5.1. A set of m ordered triples $\left\{\left(C_{i}, \xi^{i}, \underset{i}{\gtrsim}\right)\right\}_{i=1}^{m}$ is called an economy with preference orders, where $\underset{i}{\grave{\pi}}$, called a preference order of the agent i, is a binary relation on C such that $x \gtrsim \underset{i}{ } y$ or $y \gtrsim x$ for any $x, y \in C$.
 and $y \in B$. Particular cases of preference intervals in C are defined as follows : $C_{i}^{-}(x)=\left\{x^{\prime}: x^{\prime} \in C_{i}, x^{\prime} \underset{i}{ } x\right\}$ and $C_{i}(x)=\left\{x^{\prime}: x^{\prime} \in C_{i}, x^{\prime}>x\right\}$.

Definition 5.2. A set-valued mapping $\tilde{D}_{i}: P \rightarrow C_{i}$, defined by $\tilde{D}_{i}(p)=$ $\left\{x: x \in F_{i}(p), x \underset{i}{ } x^{\prime}\right.$ for all $\left.x^{\prime} \in F_{i}(p)\right\}$ for all $p \in P$, is called a demand function of the agent i (in terms of the preference order).

A set-valued mapping $\tilde{D}: P \rightarrow C_{0}$, defined by

$$
\tilde{D}(p)=\left\{x: x \in C_{0}, x=\sum_{i=1}^{m} x^{i}, x^{i} \in \tilde{D}_{i}(p) \quad(i=1,2, \cdots, m)\right\}
$$

for all $p \in P$, is called a total demand function of the economy $\left\{\left(C_{i}, \xi^{i}\right.\right.$, $\underset{i}{\gtrsim})\}_{i=1}^{m}$.

DEFINITION 5. 3. $\left(\bar{x}^{1}, \bar{x}^{2}, \cdots, \bar{x}^{m}, \bar{p}\right) \in C_{1} \times C_{2} \times \cdots \times C_{m} \times P$ is called an equilibrium (a quasi-equilibrium) for the economy $\left\{\left(C_{i}, \xi^{i}, ~ \gtrsim{\underset{i}{i}}^{l}\right\}_{i=1}^{m}\right.$, if $\bar{x}^{i} \in \tilde{D}_{i}(\bar{p})$ $(i=1,2, \cdots, m)$ and $\sum_{i=1}^{m} \bar{x}^{i} \leqq \xi\left(p\left(\sum_{i=1}^{m} \bar{x}\right) \leqq p(\xi)\right.$ for all $\left.p \in P\right)$.

THEOREM 5.1. Let $C_{i}^{-}(x)$ be closed in C_{i} and $C_{i}(x)$ be convex for all $x \in C_{i}$. Then $\tilde{D}_{i}(p) \neq \phi$.

Proof. Let $p \in P, E=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\} \subset F_{i}(p)$ and $\phi\left(x_{t}\right)=C_{i}^{-}\left(x_{t}\right) \cap \operatorname{conv}(E)$, where $\operatorname{conv}(E)$ denotes the convex hull of E. Then the set $\psi\left(x_{t}\right)$ is closed in C_{i}. It can be shown that $\operatorname{conv}\left(\left\{x_{t_{1}}, x_{t_{2}}, \cdots, x_{t_{k}}\right\}\right) \subset \bigcup_{j=1}^{k} \phi\left(x_{t_{k}}\right)$ for any subset
$\left\{x_{t_{1}}, x_{t_{2}}, \cdots, x_{t_{k}}\right\}$ of E. Suppose the contrary. Then there exists y such that $y \in \operatorname{conv}\left(\left\{x_{t_{1}}, x_{t_{2}}, \cdots, x_{t_{k}}\right\}\right)$ and $y \notin \psi\left(x_{t_{j}}\right)$ for $j=1,2, \cdots, k$. $y \notin \psi\left(x_{t_{j}}\right)$ implies $y \notin C_{i}^{-}\left(x_{t_{j}}\right)$, i. e., $\left.x_{t_{j}}\right\rangle_{i} y$ for all $j=1,2, \cdots, k$. Since $C_{i}(y)$ is convex, $\operatorname{conv}\left(\left\{x_{t_{1}}\right.\right.$, $\left.\left.x_{t_{2}}, \cdots, x_{t_{k}}\right\}\right) \subset C_{i}(y)$. Hence $y \in C_{i}(y)$, which is a contradiction.

By making use of lemma 2.8, $\bigcap_{t=1}^{n} \psi\left(x_{t}\right) \neq \phi$. On the other hand, since $F_{i}(p)$ is convex, $\bigcap_{t=1}^{n}\left(C_{i}^{-}\left(x_{i}\right) \cap F_{i}(p)\right) \neq \phi$. Because of the compactness of $F_{i}(p)$, this shows that $\bigcap_{x \in F_{i}(p)}\left(C_{i}^{-}(x) \cap F_{i}(p)\right) \neq \phi . \quad$ Let $x^{\prime} \in \bigcap_{x \in F_{i}(p)}\left(C_{i}^{-}(x) \cap F_{i}(p)\right)$, then $x^{\prime} \in$ $\tilde{D}_{i}(p)$.

Theorem 5. 2. Let $\tilde{D}_{i}(p) \neq \phi$ for all $p \in P$. Assume that $\left.x\right\rangle_{i} y$ for $x, y \in C_{i}$ implies $U(x)>V(y)$ for a neighbourhood $U(x)$ of x and a neighbourhood $V(y)$ of y. Then \tilde{D}_{i} is u.s.c. in P.

Proof. Consider the set-valued mapping $G_{i}: P \rightarrow C_{i}$ defined by $G_{i}(p)=$ $\left\{x: x \in C_{i}, x \gtrsim \underset{i}{\gtrless} y\right.$ for all $\left.y \in F_{i}(p)\right\}$ for all $p \in P$. Let $p_{0} \in P, x_{1} \in C_{i}$ and $x_{1} \notin$ $G_{i}\left(p_{0}\right)$. Then $x^{\prime} \succ_{i} x_{1}$ for some $x^{\prime} \in F_{i}\left(p_{0}\right)$, and so there exist a neighbourhood $U\left(x^{\prime}\right)$ of x^{\prime} and a neighbourhood $V\left(x_{1}\right)$ of x_{1} such that $\left.U\left(x^{\prime}\right)\right\rangle_{i} V\left(x_{1}\right)$. On the other hand, since $U\left(x^{\prime}\right) \cap F_{i}\left(p_{0}\right) \neq \phi$, because of the lower semi-continuity of F_{i}, there exists a negihbourhood $W\left(p_{0}\right)$ of p_{0} such that $F_{i}(p) \cap$ $U\left(x^{\prime}\right) \neq \phi$ for all $p \in W\left(p_{0}\right)$. Let $x^{\prime \prime} \in F_{i}(p) \cap U\left(x^{\prime}\right)$. Then $\left.x^{\prime \prime}\right\rangle_{i} V\left(x_{1}\right)$ for $x^{\prime \prime} \in F_{i}(p)$. Hence $V\left(x_{1}\right) \cap G_{i}(p)=\phi$. Thus it can be shown that the graph of G_{i} is closed. Finally, since $\tilde{D}_{i}=F_{i} \cap G_{i}$, by making use of lemma 2.4, \tilde{D}_{i} is u.s.c. in P.

By utilizing the upper semi-continuity of $\tilde{D}_{i}(p)$, which is the crucial part of the equilibrium existence proof, the proof of the following theorem is similar to that of theorem 4.2.

THEOREM 5. 3. Let the binary relation $\underset{i}{\gtrsim}$ on C satisfy the following conditions : (1) $x \underset{i}{\gtrsim} y$ or $y \underset{i}{\gtrsim} x$ for any $x, y \in C$, (2) $C_{i}^{-}(x)$ is closed in C_{i} for all $x \in C_{i}$, (3) $C_{i}(x)$ is convex for all $x \in C_{i}$, (4) $x>_{i} y$ for $x, y \in C_{i}$ implies $U(x){\underset{i}{ }}_{\rangle_{i}} V(y)$ for a neighbourhood $U(x)$ of x and a neighbourhood $V(y)$ of y.

Then the economy $\left\{\left(C_{i}, \xi^{i}, \underset{\boldsymbol{i}}{ }\right)\right\}_{i=1}^{m}$ has an equilibrium in the case (β) or (γ), and it has a quasi-equilibrium in the case (α).

§ 6. Economies with preference mappings.

Put $n=m+1, C_{n}=P$ and $C^{*}=\prod_{j=1}^{n} C_{j}$.
Definition 6.1. A set of m ordered triples $\left\{\left(C_{i}, F_{i}, \pi_{i}\right)\right\}_{i=1}^{m}$ is called an economy with preference mappings, where $\pi_{i}(i=1,2, \cdots, m)$ is a set-valued mapping of C^{*} into C_{i} and is called a preference mapping of the agent i.

Definition 6.2. $(\bar{x}, \bar{p})=\left(\bar{x}^{1}, \bar{x}^{2}, \cdots, \bar{x}^{m}, \bar{p}\right) \in C^{*}$ is called an equilibrium (quasi-equilibrium) for the economy $\left\{\left(C_{i}, F_{i}, \pi_{i}\right)\right\}_{i=1}^{m}$, if $\sum_{i=1}^{m} \bar{x}^{i} \leqq \xi\left(p\left(\sum_{i=1}^{m} \bar{x}^{i}\right) \leqq p(\xi)\right.$ for all $p \in P)$ and, for each $i=1,2, \cdots, m, \bar{x}^{i} \in F_{i}(\bar{p})$ and $F_{i}(\bar{p}) \cap \pi_{i}(\bar{x}, \bar{p})=\phi$.

Theorem 6.1. Let the underlying space X be a separable Banach space and π_{i} satisfy, for each $i=1,2, \cdots, m$, (1) the mapping π_{i} has an open graph in $C^{*} \times C_{i}$ and (2) for each $(x, p) \in C^{*}, \pi_{i}(x, p)$ is non-empty, convex and $x^{i} \notin \pi_{i}(x, p)$, where $x=\left(x^{1}, x^{2}, \cdots, x^{m}\right) \in C_{1} \times C_{2} \times \cdots \times C_{m}$.

Then the economy $\left\{\left(C_{i}, F_{i}, \pi_{i}\right)\right\}_{i=1}^{m}$ has an equilibrium in the case (β) or (γ), and has a quasi-equilibrium in the case (α).

Proof. Define $F_{i}^{*}: P \rightarrow C_{i}(i=1,2, \cdots, m)$ by $F_{i}^{*}(p)=\left\{x^{\prime i}: x^{\prime i} \in C_{i}, p\left(x^{\prime i}\right)\right.$ $\left.<p\left(\xi^{i}\right)\right\}$ for all $p \in P$. Then $F_{i}^{*}(p)$ is non-empty, and F_{i}^{*} has an open graph in $P \times C_{i}$. By utilizing these F_{i}^{*}, define the mapping $\psi_{i}: C^{*} \rightarrow C_{i}$ as follows: $\psi_{i}(x, p)=F_{i}^{*}(p)$ if $p\left(x^{i}\right)>p\left(\xi^{i}\right) ; \psi_{i}(x, p)=F_{i}^{*}(p) \cap \pi_{i}(x, p)$ if $p\left(x^{i}\right) \leqq p\left(\xi^{i}\right)$, where $x=\left(x^{1}, x^{2}, \cdots, x^{m}\right) \in \prod_{i=1}^{m} C_{i}$ and $p \in C_{n}$. Furthermore define the mapping ψ_{n} : $C^{*} \rightarrow C_{n}(=p)$ by $\psi_{n}(x, p)=\left\{q: q \in P, q\left(\sum_{i=1}^{m} x^{i}-\xi\right)>p\left(\sum_{i=1}^{m} x^{i}-\xi\right)\right\}$ for $(x, p)=\left(x^{1}\right.$, $\left.x^{2}, \cdots, x^{m}, p\right) \in C^{*}$. Then ψ_{n} has an open graph in $C^{*} \times C_{n}$ and the set $\psi_{n}(x, p)$ is convex. The graph of $\psi_{i}(i=1,2, \cdots, m)$ coincides with the set $\left(G_{i} \cap H_{i}\right) \cup\left(H_{i} \cap K_{i} \cap G_{i}^{c}\right)$, where

$$
\begin{aligned}
& G_{i}=\left\{\left(x, p, x^{\prime i}\right):(x, p) \in C^{*}, x^{\prime i} \in C_{i} \quad \text { and } \quad p\left(x^{i}\right)>p\left(\xi^{i}\right)\right\}, \\
& H_{i}=\left\{\left(x, p, x^{\prime i}\right):(x, p) \in C^{*}, x^{\prime i} \in C_{i} \quad \text { and } \quad p\left(x^{\prime i}\right)<p\left(\xi^{i}\right)\right\}
\end{aligned}
$$

and

$$
K_{i}=\left\{\left(x, p, x^{\prime i}\right):\langle x, p) \in C^{*}, x^{\prime i} \in C_{i} \quad \text { and } \quad x^{\prime i} \in \pi_{i}(x, p)\right\} .
$$

Since $\left(G_{i} \cap H_{i}\right) \cup\left(H_{i} \cap K_{i} \cap G_{i}^{i}\right)=\left(G_{i} \cap H_{i}\right) \cup\left(H_{i} \cap K_{i}\right)$ and G_{i}, H_{i} and K_{i} are open in $C^{*} \times C_{i}$, the graph of ψ_{i} is also open in $C^{*} \times C_{i}$. By making use of lemma 2.9, there exists $(\bar{x}, \bar{p}) \in C^{*}$ such that for each $i=1,2, \cdots, m \bar{x}^{i} \in$
$\psi_{i}(\bar{x}, \bar{p})$ or $\psi_{i}(\bar{x}, \bar{p})=\phi$ and for $\psi_{n} \bar{p} \in \psi_{n}(\bar{x}, \bar{p})$ or $\psi_{n}(\bar{x}, \bar{p})=\phi$. Since $\bar{x}_{i} \notin$ $\psi_{i}(\bar{x}, \bar{p})$ for $i=1,2, \cdots, m$ and $\bar{p} \notin \psi_{n}(\bar{x}, \bar{p}), \psi_{i}(\bar{x}, \bar{p})=\phi$ for $i=1,2, \cdots, n$.

Since it is easy to show that $\bar{x}^{i} \in F_{i}(\bar{p})$ and $\sum_{i=1}^{n} \bar{x}^{i} \leqq \xi\left(\right.$ or $p\left(\sum_{i=1}^{n} \bar{x}^{i}\right) \leqq p(\xi)$ for all $p \in P$), it remains to show that $F_{i}(\bar{p}) \cap \pi_{i}(\bar{x}, \bar{p})=\phi$ for all $i=1,2, \cdots, m$. Contrary to this, suppose that there exists an $x^{i} \in F_{i}(\bar{p}) \cap \pi_{i}(\bar{x}, \bar{p})$ for some i. It follows from $F_{i}^{*}(\bar{p}) \neq \phi$ that $\bar{p}\left(x^{\prime i}\right)<\bar{p}\left(\xi^{i}\right)$ for some $x^{\prime i} \in C_{i}$. Since the graph of π_{i} is open in $C^{*} \times C_{i}$ and $x^{i} \in \pi_{i}(\bar{x}, \bar{p}), x^{\prime \prime i}=\lambda x^{\prime i}+(1-\lambda) x^{i} \in \pi_{i}(\bar{x}, \bar{p})$ for sufficiently small λ with $0<\lambda<1$. For this $x^{\prime \prime i}, \bar{p}\left(x^{\prime \prime i}\right)<\bar{p}\left(\xi^{i}\right)$. Hence $x^{\prime \prime i} \in$ $F_{i}^{*}(\bar{p}) \cap \pi_{i}(\bar{x}, \bar{p})=\phi_{i}(\bar{x}, \bar{p})$, which is a contradiction.

Theorem 6.2. Let the underlying space X be a separable Banach space and π_{i} satisfy, for each $i=1,2, \cdots, m$, (1) the mapping $\pi_{i}: C^{*} \rightarrow C_{i}$ has an open graph in $C^{*} \times C_{i}$ and $\left(2^{\prime}\right)$ for each $(x, p) \in C^{*}, \pi_{i}(x, p)$ is non-empty and $x^{i} \notin \operatorname{conv}\left(\pi_{i}(x, p)\right)$. Then the same conclusion as in theorem 6.1 holds.

The theorem in the form of the generalized n-person game is as follows :
Theorem 6.3. Let X be a Banach space. For each i, E_{i} be a nonempty, compact and convex subset of $X, \Phi_{i}: E=\prod_{i=1}^{n} E_{i} \rightarrow E_{i}$ be a continuous set-valued mapping such that $\Phi_{i}(x)$ is non-empty, compact and convex for each $x \in E$ and $\pi_{i}: E \rightarrow E_{i}$ be a set-valued mapping such that the graph of π_{i} is open in $E \times E_{i}$ and $x^{i} \notin\left(\operatorname{conv}\left(\pi_{i}(x)\right)\right)^{-}$for each $x \in E$, where $x=\left(x^{1}\right.$, $\left.x^{2}, \cdots, x^{n}\right) \in E$.

Then there exists an $\bar{x}=\left(\bar{x}^{1}, \bar{x}^{2}, \cdots, \bar{x}^{n}\right) \in E$ satisfying, for each $i, \bar{x}^{i} \in \Phi_{i}(\bar{x})$ and $\pi_{i}(\bar{x}) \cap \Phi_{i}(\bar{x})=\phi$.

Proof. By using the norm metric in $E \times E_{i}$, define the numerical function $d_{i}: E \times E_{i} \rightarrow R$ so that $d_{i}\left(x, x^{\prime i}\right)$ is the distance between $\left(x, x^{\prime i}\right)$ and the complement of the graph of π_{i} for each $\left(x, x^{\prime i}\right) \in E \times E_{i}$. Then d_{i} is continuous, and $d_{i}\left(x, x^{\prime i}\right)>0$ if and only if $x^{\prime i} \in \pi_{i}(x)$. Define the mapping G_{i} : $E \rightarrow E_{i}$ by $G_{i}(x)=\left\{x^{\prime \prime i}: x^{\prime \prime} \in \Phi_{i}(x), d_{i}\left(x, x^{\prime \prime i}\right)=\max _{x^{\prime i} \in \oplus_{i}(x)} d_{i}\left(x, x^{\prime i}\right)\right\}$ for all $x \in E$. By making use of the similar argument in the proof of corollary 4.1, $G_{i}(x)$ is shown to be u.s.c. in E. Furthermore define the mapping $H: E \rightarrow E$ by $H(x)=\prod_{i=1}^{n}\left(\operatorname{conv}\left(G_{i}(x)\right)\right)^{-}$. Then H is u. s. c. in E. Hence, by making use of lemma 2.7, there exists $\bar{x} \in E$ such that $\bar{x} \in H(\bar{x})$. Since $\bar{x}^{i} \in\left(\operatorname{conv}\left(G_{i}(\bar{x})\right)^{-}\right.$ $\subset \Phi_{i}(\bar{x})$, it remains to prove that $\pi_{i}(\bar{x}) \cap \Phi_{i}(\bar{x})=\phi$. Contrary to this, suppose that $x^{\prime i} \in \pi_{i}(\bar{x}) \cap \Phi_{i}(\bar{x})$ for some $x^{\prime i}$. Then $d_{i}\left(\bar{x}, x^{\prime i}\right)>0$ and $x^{\prime i} \in \Phi_{i}(\bar{x})$. Hence $d_{i}\left(\bar{x}, x^{\prime \prime}\right)>0$ for all $x^{\prime \prime i} \in G_{i}(\bar{x})$, i. e., $G_{i}(\bar{x}) \subset \pi_{i}(\bar{x})$. Thus $\bar{x}^{i} \in\left(\operatorname{conv}\left(G_{i}(\bar{x})\right)^{-} \subset\right.$ $\left(\operatorname{conv}\left(\pi_{i}(\bar{x})\right)\right)^{-}$, which is a contradiction.

Remark. If X is finite-dimensional, then the convex hull of a compact set is compact. Hence theorem 6.3 holds under the weaker assumption $x^{i} \notin \operatorname{conv}\left(\pi_{i}(x)\right)$ than the assumption $x^{i} \notin\left(\operatorname{conv}\left(\pi_{i}(x)\right)^{-}\right.$. Furthermore, if $\pi_{i}(x)$ is assumed to be convex, then the assumption $x^{i} \notin\left(\operatorname{conv} \pi_{i}(x)\right)$ is equivalent to $x^{i} \notin \pi_{i}(x)$. Hence theorem 6.3 gives another simpler proof of theorem 6.1 and theorem 6.2 in the finite-dimensional case. In fact, for each $i=1,2, \cdots, m$, let $E_{i}=C_{i}, \Phi_{i}=F_{i}$ and π_{i} satisfy the same assumptions as in theorem 6.1 (6.2), then the economy $\left\{\left(C_{i}, F_{i}, \pi_{i}\right)\right\}_{i=1}^{m}$ in theorem 6.1 (6.2) is converted into a generalized n-person game in theorem 6.3.

References

[1] K. J. Arrow and F. H. Hahn: General competitive analysis, Holden-Day, Inc., San Francisco (1971).
[2] K. FAN: Fixed-point and minimax theorems in locally convex topological linear spaces, Proc. Acad. Sci. U.S.A. 38 (1952), 121-126.
[3] K. FAN: A generalization of Tychonoff's fixed point theorem, Math. Ann. 142 (1961), 305-310.
[4] D. Gale and A. Mas-collel: An equilibrium existence theorem for a general model without ordered preferences, J. Math. Econ. 2 (1975), 9-16.
[5] B. Knaster, C. Kuratowski und S. Mazurkiewicz: Ein Beweis des Fixpunktsatzes für n-dimensionale Simplexe, Fund. Math. 14 (1931), 132-137.
[6] A. Mas-Collel: An equilibrium existence theorem without complete or transitive preferences, J. Math. Econ. 1 (1974), 237-246.
[7] E. Michael: Continuous selections I, Ann. of Math. 63 (1956), 361-382.
[8] H. Nikaido: Convex structures and economic theory, Academic Press, New York (1968).
[9] W. Shafer and H. Sonnenschein: Equilibrium in abstract economies without ordered preferences, J. Math. Econ. 2 (1975), 345-348.
[10] W. SHAFER: Equilibrium in economies without ordered preferences of free disposal, J. Math. Econ. 3 (1976), 135-137.
[11] H. Sonnenschein: Demand theory without transitive preferences, with applications to the theory of competitive equilibrium in J. Chipman et al., eds. Preference, utility and demand, Harcourt Brace Tovanovich, New York (1971), 215-223.
[12] K. Yamamoto: On the compact convex base of a dual cone, to appear in Hokkaido Math. J.

Department of Mathematics
Hokkaido University

