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\S 1. Introduction

The purpose of the present paper is to extend earlier equilibrium ex-
istence theorems for economies with finitely many agents and with finite-
dimensional commodity spaces (see [1] and [8]) to the case of infinite-dimen-
sional commodity spaces. The utilization of \Delta or \Delta_{0} , whose existence in the
infinite-dimensional space was shown in [12], as the set of price systems is
indispensable when it is intended to guarantee the existence of equilibrium
for generalized economies. The extension also concerns the recent results
to eliminate unnecessary assumptions on consumers’ preferences for the proof
of equilibrium existence ([4], [6], [9], [10], [11]).

After summarizing the useful auxiliary theorems concerning semi-con-
tinuous set-valued mappings in \S 2, three types of economies are dealt with
in the last three sections of the present paper, respectively. Individual pre-
ferences are given in the following three ways: (1) by the utility functions,
(2) by the binary relations and (3) by the preference mappings. The present
analysis is limited to the pure exchange model only for the sake of con-
ciseness and clarity.

\S 2. Auxiliary theorem concerning semi-continuous set-valued
mappings.

Let F be a set-valued mapping assigning to each x\in X_{1} a subset F(x)
of X_{2} where X_{1} and X_{2} are topological spaces. F is called lower semi-con-
tinuous (briefly 1. s . c.) at x_{0}\in X_{1} , if for each open set G meeting F(x_{0}) there
exists a neighbourhood V(x_{0}) of x_{0} such that F(x)\cap G\neq\phi for all x\in V(x_{0}) .
F is called upper semi-continuous (briefly u. s . c.) at x_{0}\in X_{1} , if for each open
set G\supset F(x_{0}) there exists a neighbourhood V(x_{0}) of x_{0} such that F(x)\subset G

for all x\in V(x_{0}) . F is called lower semi-continuous in X_{1} (briefly 1. s . c . in
X_{1}\rangle , if it is lower semi-continuous at each point of X_{1} . F is a called upper
semi-continuous in X_{1} (briefly u. s . c . in X_{1}), if it is upper semi-continuous
at each point of X_{1} and the set F(x) is compact for each x\in X_{1} . If F is
both 1. s . c . in X_{1} and u. s . c . in X_{1} , then it is called continuous in X_{1} . F
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is called closed, if the graph of F is closed in the product space X_{1}\cross X_{2}

endowed with the product topology.
The following lemmas 2. 1-2. 6 are useful for the later proof of the

semi-continuity of the total demand functions.
Lemma 2. 1. Let F_{1} be an u. s. c. mapping of X_{1} into X_{2} and F_{2} be

an u. s. c. mapping of X_{2} into X_{3} . Then the composition product F=F_{2}F_{1}

of F_{1} and F_{2} is u. s. c. in X_{1} .
Lemma 2. 2. Let F_{i} be an u. s . c. mapping of a topological space X_{0}

into a topological space X_{i}(i=1,2, \cdots, n) . Then the Cartesian product F=
\prod_{i=1}^{n}F_{i} of F_{1} , F_{2}, \cdots , F_{n} is an u. s . c. mapping of X_{0} into \prod_{i=1}^{n}X_{i} .

Lemma 2. 3. Let F_{i} be an u . s . c. mapping of a topological space X_{i}

into a topological space Y_{i}(i=1,2) . Then F=F_{1}\cross F_{2} is u . s . c. in X_{1}\cross X_{2},
where F is a mapping of X_{1}\cross X_{2} into Y_{1}\cross Y_{2} such that F(x_{1}, x_{2})=F(x_{1})\cross

F(x_{2}) for all (x_{1}, x_{2})\in X_{1}\cross X_{2} .
Lemma 2. 4. Let F_{1} be an u. s . c. mapping of X_{1} into X_{2} and F_{2} be

a closed mapping of X_{1} into X_{2} . Then the mapping F=F_{1}\cap F_{2} is u . s. c.
in X_{1} , where F is a mapping of X_{1} into X_{2} such that F(x)=F_{1}(x)\cap F_{2}(x)

for each x\in X_{1} .
Lemma 2. 5. Let X_{2} be compact. Then a mapping F:X_{1}arrow X_{2} is u . s. c.

if and only if it is closed.

Lemma 2. 6. A mapping F:X_{1}arrow X_{2} is 1. s . c . if the graph of F is open
in X_{1}\cross X_{2} .

LEMMA 2.7. (Ky Fan) Let E be a non-empty, compact and convex
subset of a locally convex Hausdorff linear topological space X and \Phi :
Earrow E be an u. s. c. set-valued mapping such that the set \Phi(x) is a non-
empty, closed and convex subset of E for all x\in E. Then there exists a
point \overline{x}\in E such that \overline{x}\in\Phi(\overline{x}) . [2]

Lemma 2. 8. (An extension of Knaster, Kuratowski, Mazurkiexvicz
Theorem [5] ) . Let E be a non-empty subset of a Hausdorff linear topological
space X. To each x\in E, let a closed set \psi(x) in X satisfy the following
conditions :

(1) the convex hull of any fifinite subset \{x_{1}, x_{2}, \cdots, x_{n}\} of E is contained

in \bigcup_{i=1}^{n}\psi(x_{i}) ,

(2) \psi(x) is compact for at least one x\in E.
Then \bigcap_{x\in E}\psi(x)\neq\phi . [3]
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Lemma 2. 9. Given E= \prod_{i=1}^{n}E_{i} , where E_{i} is a non-empty, compact and

convex subset of a separable Banach space X_{i}(i=1,2, \cdots, n) , let \psi_{i} : Earrow E_{i}

be a set-valued mapping satisfying:
(1) the graph of \psi_{i} is open in E\cross E_{i} ,
(2) the set \psi_{i}(x) is convex or empty for each x\in E.
Then there exists \overline{x}=(\overline{x}^{1},\overline{x}^{2}, \cdots,\overline{x}^{n})\in E such that either \overline{x}^{i}\in\psi_{i}(\overline{x}) or \psi_{i}(\overline{x})

=\phi for each i=1,2, \cdots , n .
REMARK. Let \psi_{iD_{i}} denote the restriction of \psi_{i} to D_{i} , where D_{i}=\{x :

x\in E,\acute{\varphi}_{i}(x)\neq\phi\} . A continuous function f:D_{i}arrow E_{i} is called a continuous
selection for \psi_{iD_{i}} , if f(x)\in\psi_{iD_{i}}(x) for every x\in D_{i} . The following Michael’s
theorem is used in the proof of lemma 2. 9.

THEOREM. Let X_{1} be a perfectly normal topological space and X_{2} be
a separable Banach space Let \psi:X_{1}arrow X_{2} be a lower semi-continuous set-
valued mapping such that the set \psi(x_{1}) belongs to the class \mathfrak{D}(X_{2}) for all
x_{1}\in X_{1} . Then \psi admits a continuous selection.

For the definition of the class \mathfrak{D}(X_{2}) and the proof of this theorem
see [7] p . p. 372–373.

PROOF of Lemma 2. 9.
Since every metric space is perfectly normal, E is perfectly normal. It

follows from (1) that D_{i} is open in E and the graph of \psi_{iD_{i}} is also open in
D_{i}\cross E_{i} . By making use of lemma 2. 6, \psi_{iD_{i}} is 1. s . c . in D_{i} . The set \psi_{iD_{i}}

(x_{1}) is open in E_{i} for all x_{1}\in D_{i} . Hence \psi_{iD_{i}} satisfies all the assumptions of
the above theorem. Therefore \psi_{iD_{i}} admits a continuous selection f_{i} : D_{i}arrow E_{i} .

Next, define the mapping \Phi_{i} : Earrow E_{i} by \Phi_{i}(x)=f_{i}(x) if x\in D_{i} . and \Phi_{i}(x)

=E_{i} otherwise. Then the set \Phi_{i}(x) is a non-empty, closed and convex subset
of E_{i} for each x\in E. Since D_{i} is open, \Phi_{i} is u . s . c . in E. Define \Phi : Earrow E

by \Phi=\prod_{i=1}^{n}\Phi_{i} . By making use of lemma 2. 7, there exists \overline{x}=(\overline{x}^{1},\overline{x}^{2_{ }},\cdots,\overline{x}^{n})\in E

with \overline{x}\in\Phi(\overline{x}) . \overline{x}\in\Phi(\overline{x}) means that \overline{x}^{i}\in\Phi_{i}(\overline{x}) for all i. If \overline{x}\in D_{i} , then \overline{x}^{i}=f_{i}

(\overline{x})\in\psi_{i}(\overline{x}) . Otherwise \psi_{i}(\overline{x})=\phi .

\S 3. Preliminaries on the description of abstract economies.

In the sequel X denotes a locally convex real Hausdorff linear topol0-
gical space, and its topological dual X^{*} is assumed to be equipped with the
strong topology. Let K be a closed proper cone with vertex \theta and K^{*} be its
dual cone with vertex \theta^{*} , where \theta and \theta^{*} denote the zero element of X
and X^{*} , respectively. It is assumed that at least one of the following three
cases occur:
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(\alpha) there exists a non-empty, strongly compact and convex subset \Delta of
K^{*} such that \theta^{*}\not\in\Delta and x^{*}(x)\geqq 0 for all x^{*}\in\Delta doesn’t always imply x\in K ;

(\beta) there exists a non-empty strongly compact and convex subset \Delta of
K^{*} such that \theta^{*}\oplus\Delta and x^{*}(x)\geqq 0 for all x^{*}\in\Delta implies x\in K ;

(\gamma) there exists a non-empty, strongly compact and convex subset \Delta_{0} of
a proper subcone K_{0}^{*}\subset K^{*} such that \theta^{*}\oplus\Delta_{0} and x^{*}(x)\geqq 0 for all x^{*}\in\Delta_{0}

implies x\in K_{0} .
In [12] it is shown that this assumption does not always violate the

hypothesis that the space X and the linear subspace K_{0}^{*}-K_{0}^{*} (or K^{*}-K^{*})
are infinite-dimensional.

C denotes K and K_{0} in the case (\alpha) or (\beta) and in the case (\gamma) , respectively.
The partial order \leqq_{c} in X is introduced by C, i . e. , x\leqq_{c}y in case x-y\in C.

Similarly P is reserved for \Delta and \Delta_{0} in the case (\alpha) or (\beta) and in the
case (\gamma) , respectively, and its typical element is writien as p instead of x^{*} .

C_{i}(i=1,2, \cdots, m) denotes a non-empty, compact and convex subset of
C which contains \theta and \xi^{i} satisfying p(\xi^{i})>0 for all p\in P.

\S 4. Economies with utility functions.

The following definitions are intended to describe a pure exchang econ0-

my, in which individual preference relations are given by utility functions :

DEFINITION 4. 1. A set of m ordered triples \{(C_{1}, \xi^{1}, u_{1}) , (C_{2}, \xi^{2}, u_{2}) , \cdots ,
(C_{m}, \xi^{n}, u_{m})\} , denoted by \{(C_{i}, \xi^{i}, u_{i})\}_{i=1}^{m} , is called an economy with utility
functions, where u_{i}(i=1,2, \cdots, m) is a continous real-valued function on
C. C_{i} , \xi^{i} and u_{i} are called a commodity set, an initial holding and utility

function of the economic agent i, respectively.
DEFINITION 4. 2. A set-valued mapping F_{i} : Parrow C_{i} , defifined by F_{i}(p)=

\{x^{i} : _{X^{i}}\in C_{i}, p(x^{i})\leqq p(\xi^{i})\} for all p\in P, is called a budget constraint mapping.

DEFINITION 4. 3. A set-valued mapping D_{i} : Parrow C_{i} , defifined by

D_{i}(p)=\{x^{i} : x^{i}\in C_{i} , u_{i}(x^{i})= \max_{y^{i}\epsilon F_{i}(p)}u_{i}(y^{i})\}

for all p\in P, is called a demand function of the agent i.
A set-valued mapping D:P arrow C_{0}=\sum_{i=1}^{m}C_{i} , defifined by

D(p)= \sum_{i=1}^{m}D_{i}(p)=\{x:x\in C_{0} , x= \sum_{i=1}^{m}x^{i} , x^{i}\in D_{i}(p)\}

for all p\in P, is called a total demand function of the economy \{(C_{i}, \xi^{i}, u_{i})\}_{i=1}^{m}.
DEFINITION 4. 4. (\overline{x}^{1},\overline{x}^{2_{ }},\cdots,\overline{x}^{m},\overline{p})\in C_{1}\cross C_{2}\cross\cdots\cross C_{m}\cross P is called an equi-
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librium (a quasi-equilibrium) for the economy \{(C_{i}, \xi^{i}, u_{i})\}_{i=1}^{m} with respect to C

and P, if \overline{x}^{i}\in D_{i}(\overline{p}) for each i=1,2, \cdots , m and \sum_{i=1}^{m}\overline{x}^{i}\leqq\xi=c\sum_{i=1}^{m}\xi^{i}(p(\sum_{i=1}^{m}\overline{x}^{i})\leqq p(\xi)

for all p\in P) .
The notion of quasi-equilibrium is necessary only when C is taken as

K in the case (\alpha) of \S 3. The expression “with respect to C and P” may
be omitted without confusions in the sequel. When there exists an equi-
librium (quasi-equilibrium) for the economy, the economy is called to have
an equilibrium (quasi-equilibrium). It is noteworthy that the existence of an
equilibrium is equivalent to \xi\in D(\overline{p})+C for some \overline{p}\in P.

It plays an important role for the proof of the equilibrium existence
that F_{i} is continuous in P. In other words, it guarantees the equilibrium
existence that the budget constraint set satisfying the Walras law in the
weak sense varies continuously as p varies.

THEOREM 4. 1. F_{i} is continuous in P.
PROOF. i) Let F_{i}(V) denote in general \cup F_{i}(p) for V\subset P and \mathfrak{V} the

p\epsilon v

fundamental (strong) neighbourhood system of p_{0}\in P. Then it can be shown
that F_{i}(p_{0})=\cap(F_{i}(V))^{-} . Here (F_{i}(V))^{-} denotes the closure of the set F_{i}(V) .

V\in 1l

First F_{i}(p_{0}) \subset\bigcap_{V\in \mathfrak{B}}(F_{i }( ^{V}))^{-} . Next let x_{1}\not\in F_{i}(p_{0}) and x_{1}\in C_{i} . Then p_{0}(x_{1})>

p_{0}(\xi^{i}) . Put p_{0}(x_{1})-p_{0}(\xi^{i})=\epsilon . Since p_{0} is continuous, there exists a neigh-

bourhood U(x_{1}) of x_{1} such that |p_{0}(x_{2})-p_{0}(x_{1})|< \frac{\epsilon}{3} for all x_{2}\in U(x_{1}) . On
the other hand, there exists a neighbourhood V_{1}(p_{0}) of p_{0} such that |p(\xi^{i})-

p_{0}( \xi^{i})|<\frac{\epsilon}{3} and |p(x_{2})-p_{0}(x_{2})|< \frac{\epsilon}{3} for all p\in V_{1}(p_{0}) and all x_{2}\in U(x_{1}) . Then

x_{2}\in U(x_{1}) and p\in V_{1}(p_{0}) together imply p( \xi^{i})<p_{0}(\xi^{i})+\frac{\epsilon}{3}<p_{0}(x_{2})-\frac{\epsilon}{3}<p(x_{2}) ,

which shows x_{2}\oplus F_{i}(V_{1}) . Hence U(x_{1})\cap F_{i}(V_{1})=\phi , and so x_{1} \oplus\bigcap_{V\epsilon i1\}}(F_{i}(V))^{-}-

Thus it has been shown F_{i}(p_{0}) \supset\bigcap_{V\in\overline{G}l}(F_{i}(V))^{-} .
ii) Let p_{0}\in P and G be an open set in C_{i} such that G\supset F_{i}(p_{0}) . By

making use of the result of i), F_{i}(p_{0})= \bigcap_{1\nabla\in I\}}(F_{i}(V))^{-} Putting H=C_{i}\cap G^{c} , H\cap

(\bigcap_{V\in iI\}}(F_{i}(V)^{-})=\phi . ( G^{c} denotes in general the complement of G). Since C_{i} is

compact, there exist V_{1} , V_{2}, \cdots , V_{n}\in \mathfrak{V} such that H \cap(\bigcap_{j=1}^{n} ( F_{i}( V_{j}) ) )=\phi . Then

F_{i}( \bigcap_{j=1}^{n}V_{j})\subset G . Thus there exists a neighbourhood V_{0}= \bigcap_{j=1}^{n}V_{j} of p_{0} such
that F_{i}(V_{0})\subset G . Combining with the fact that the set F_{i}(p_{0}) is compact, this
shows that F_{i} is u . s . c . at p_{0} . Since p_{0} is any point of P, F_{i} is u . s . c . in P.
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iii) Let p_{0}\in P and G be an open set in C_{i} such that G\cap F_{i}(p_{0})\neq\phi . Then
p_{0}(x_{1})\leqq p_{0}(\xi^{i}) for some x_{1}\in G . First consider the case when p_{0}(x_{1})<p_{0}(\xi^{i}) .
Putting p_{0}(\xi^{i})-p_{0}(x_{1})=\epsilon , there exists a neighbourhood U_{0}(p_{0}) of p_{0} such that

|p(x_{1})-p_{0}(x_{1})|< \frac{\epsilon}{3} and |p( \xi^{i})-p_{0}(\xi^{i})|<\frac{\epsilon}{3} for all p\in U_{0}(p_{0}) . Then p\in U_{0}(p_{0})

implies p(x_{1})<p(\xi^{i}) . Hence x_{1}\in F_{i}(p) . Thus there exists a neighbourhood
U_{0}(p_{0}) of p_{0} such that F_{i}(p)\cap G\neq\phi for all p\in U_{0}(p_{0}) , and hence F_{i} is 1. s . c .
at p_{0} .

Next consider the case when p_{0}(x_{1})=p_{0}(\xi^{i}) . Since G is open in C_{i} ,

there exists \lambda such that \lambda x_{1}\in G\cap C_{i} and 0<\lambda<1 . Then p_{0}(\lambda x_{1})<p_{0}(\xi^{i}) and
\lambda x_{1}\in G\cap F_{i}(p_{0}) . Using \lambda x_{1} instead of x_{1} in the above proof of the case
when p_{0}(x_{1})<p_{0}(\xi^{i}) , it can be shown that F_{i} is 1. s . c . at p_{0} . Since p_{0} is any
point of P, F_{i} is 1. s . c . in P.

REMARK. It plays a crucial roll that the topology of X^{*} is strong. If
\theta^{*}\in P and F_{i}(\theta^{*})=C_{i} , then F_{i} is u . s . c . at \theta^{*} . But F_{i} is 1. s . c . at \theta^{*} if
and only if F_{i} is a constant set-valued mapping.

COROLLARY 4. 1. D_{i} is u . s. c. in P.
PROOF. Define the real-valued function \psi_{i} : Parrow R by \psi_{i}(p)=\max_{\in?/^{i}F_{i}(p)}u_{i}(y^{i}) .

Then, since F_{i} is continuous in P, \psi_{i} is continuous in P. The set-valued
mapping D_{i}^{*}\backslash : Parrow C_{i} , defined by D_{i}^{*}(p)=\{x:x\in C_{i}, \psi_{i}(p)-u_{i}(x)\leqq 0\} for all
p\in P, is closed, since \psi_{i} is continuous. By making use of lemma 2. 4, D_{i}=

F_{i}\cap D_{i}^{*} is u . s . c . in P.

THEOREM 4. 2. TAe economy \{(C_{i}, \xi^{i}, u_{i})\}_{i=1}^{m} has a quasi-equilibrium in
the case (\alpha) , and it has an equilibrium in the case (\beta) or (\gamma) .

PROOF. Consider a price manipulating function, i . e. , a set-valued map-
ping M:C_{0}arrow P defined by M(x)= \{p:p\in P, p(x-\xi)=\max q(x-\xi)\} for all

x\in C_{0} . Since X^{*}\supset P is assumed to be endowed with theq\in P strong topology,
q(x-\xi) is a continuous bilinear function on C_{0}\cross P. Hence the function
M* , defined by M*(x)= \max q(x-\xi) for all x\in C_{0} , is continuous in C_{0} .

Therefore, the graph of M\{(x, p)q\in P : M^{*}(x)-p(x-\xi)\leqq 0\} is closed in C_{0}\cross P.
Thus M is a closed mapping. Since P is compact, M is u. s . c . in C_{0} by
making use of lemma 2. 5.

Since the mapping D is a composition product LD^{0} of D^{0} and L, where

D^{0}= \prod_{i=1}^{m}D_{i} and L : C_{1}\cross C_{2}\cross\cdots\cross C_{m}arrow C_{0} is defined by L(x^{1}, x^{2_{ }}, \cdots, x^{m})=\sum_{i=1}^{m}x^{i}

for (x^{1}, x^{2_{ }},\cdots, x^{m})\in C_{1}\cross C_{2}\cross\cdots\cross C_{m}, D is u. s . c . in P by making use of
lemma 2. 1 and 2. 2. Finally the mapping D\cross M:C_{0}\cross Parrow C_{0}\cross P is u . s . c .
in C_{0}\cross P by making use of lemma 2. 3.
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C_{0}\cross P is convex and compact in a locally convex Hanusdorff linear
topological space X\cross X^{*} , and the set D(p)\cross M(x) is non-empty, convex and
closed in C_{0}\cross P. By making use of lemma 2. 7, there exists (\overline{x},\overline{p})\in C_{0}\cross P

such that (\overline{x},\overline{p})\in D(\overline{p})\cross M(\overline{x}) . For this (\overline{x},\overline{p}) , there exists \overline{x}^{i}\in D_{i}(\overline{p}) for each
i=1,2, \cdots , m such that \overline{x}=\sum_{i=1}^{m}\overline{x}^{i} and \overline{p}(\overline{x}-\xi)=\max q(\overline{x}-\xi) . Since \overline{p}(\overline{x}^{i})\leqq

\overline{p}(\xi^{i}) for all i,\overline{p}(\overline{x})\leqq\overline{p}(\xi) . Consequently p(\xi-\overline{x})\geqq 0q\epsilon P for all p\in P. In the
case (\alpha) , this shows that (\overline{x}^{1},\overline{x}^{2_{ }},\cdots,\overline{x}^{m},\overline{p}) is a quasi-equilibrium. In the case
(\beta) or (\gamma) , this shows \xi-\overline{x}\in C and hence \xi\in D(\overline{p})+C, which is equivalent
to the existence of an equilibrium.

\S 5. Economies with preference orders.

DEFINITION 5. 1. A set of m ordered triples \{(C_{i}, \xi^{i}, \succ)\sim\}_{i=1}^{m}i is called an

economy with preference orders, where .\succ\tilde{i} , called a preference order of the
agent i, is a binary relation on C such that x\succ y\tilde{i} or y\succ x\tilde{i} for any x, y\in C.

x\succ y\sim_{i} and y*_{-\lrcorner}xi is written as x\succ yi . A\succ Bi denotes x\succ yi for all x\in A

and y\in B . Particular cases of preference intervals in C are defined as fol-
lows: C_{i}^{-}(x)=\{x^{\prime }: x\acute{\in}C_{i}, x’\succ x\}\tilde{i} and C_{i}(x)=\{x^{\prime }: x’\in C_{i},\acute{x}\succ x\}i .

DEFINITION 5. 2. A set-valued mapping \tilde{D}_{i} : Parrow C_{i} , defifined by \tilde{D}_{i}(p)=

{x:x\in F_{i}(p) , x\succ x’\tilde{i} for all x’\in F_{i}(p)} for all p\in P, is called a demand

function of the agent i {in terms of the preference order).
A set-valued mapping \tilde{D}:Parrow C_{0} , defifined by

\tilde{D}(p)=\{x:x\in C_{0} , x= \sum_{i=1}^{m}x^{i} , x^{i}\in\tilde{D}_{i}(p) (i=1,2, \cdots, m)\}

for all p\in P, is called a total demand function of the economy \{(C_{i}, \xi^{i},
\succ)\}_{i=1}^{m}\tilde{i} .

DEFINITION 5. 3. (\overline{x}^{1},\overline{x}^{2},\cdots,\overline{x}^{m},\overline{p})\in C_{1}\cross C_{2}\cross\cdots\cross C_{m}\cross P is called an equi-
librium (a quasi-equilibrium) for the economy \{(C_{i}, \xi^{i}, \succ\tilde{i})\} i=1m , if \overline{x}^{i}\in\tilde{D}_{i}(\overline{p})

(i=1,2, \cdots, m) and \sum_{i=1}^{m}\overline{x}^{i}\leqq_{c}\xi(p(\sum_{i=1}^{m}\overline{x})\leqq p(\xi) for all p\in P) .

THEOREM 5. 1. Let C_{i}^{-}(x) be closed in C_{i} and C_{i}(x) be convex for all
x\in C_{i} . Then \tilde{D}_{i}(p)\neq\phi .

PROOF. Let p\in P, E=\{x_{1}, I_{2}^{ },\cdots, x_{n}\}\subset F_{i}(p) and \psi(x_{t})=C_{i}^{-}(x_{l})\cap conv(E) ,
where conv (E) denotes the convex hull of E. Then the set \psi(x_{t}) is closed
in C_{i} . It can be shown that conv ( \{x_{t_{1}}, x_{t_{2}^{ }},\cdots, x_{t_{k}}\})\subset\bigcup_{j=1}^{k}\psi(x_{l_{\dot{\triangleleft}}}) for any subset
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\{x_{t_{1}}, x_{t_{2}^{ }},\cdots, x_{t_{k}}\} of E. Suppose the contrary. Then there exists y such that
y\in conv(\{x_{t_{1}}, x_{t_{-}^{ }},,\cdots, x_{t_{k}}\}) and y\not\in\psi(x_{t_{j}}) for j=1,2, \cdots , k . y\oplus\psi(x_{t_{j}}) implies
y\not\in C_{i}^{-}(x_{t_{j}}) , i . e. , x_{t_{j}}\succ yi for all j=1,2, \cdots , k . Since C_{i}(y) is convex, conv (\{x_{t_{1}} ,

x_{t_{z}} , \cdots , x_{t_{k}}\}) \subset C_{i}(y) . Hence y\in C_{i}(y) , which is a contradiction.

By making use of lemma 2. 8, \bigcap_{t=1}^{n}\psi(x_{t})\neq\phi . On the other hand, since

F_{i}(p) is convex, \bigcap_{t=1}^{n}(C_{i}^{-}(x_{l})\cap F_{i}(p))\neq\phi . Because of the compactness of F_{i}(p) ,

this shows that\bigcap_{x\in F_{i}(p)}(C_{i}^{-}(x)\cap F_{i}(p))\neq\phi . Let x’ \in\bigcap_{x\in F_{i}(p)}(C_{i}^{-}(x)\cap F_{i}(p))
, then x’\in

\tilde{D}_{i}(p) .
THEOREM 5. 2. Let \tilde{D}_{i}(p)\neq\phi for all p\in P. Assume that x\succ yi for

x, y\in C_{i} implies U(x)\succ iV(y) for a neighbourhood U(x) of x and a neigh-

bourhood V(y) of y. Then \tilde{D}_{i} is u. s. c. in P.
PROOF. Consider the set-valued mapping G_{i} : Parrow C_{i} defined by G_{i}(p)=

{x:x\in C_{i} , x\succ y\tilde{i} for all y\in F_{i}(p)} for all p\in P. Let p_{0}\in P, x_{1}\in C_{i} and x_{1}\not\in

G_{i}(p_{0}) . Then x’\succ x_{1}i for some x\acute{\in}F_{i}(p_{0}) , and so there exist a neighbour-

hood U(x\acute{)} of x’ and a neighbourhood V(x_{1}) of x_{1} such that U(x’)\succ_{i}V(xJ .

On the other hand, since U(x\acute{)}\cap F_{i}(p_{0})\neq\phi, because of the lower semi-con-
tinuity of F_{i} , there exists a negihbourhood W(p_{0}) of p_{0} such that F_{i}(p)\cap

U(x’)\neq\phi for all p\in W(p_{0}) . Let x’\in F_{?}.(p)\cap U(x’) . Then x’\succ_{i}V(x_{1}) for

x’\in F_{i}(p) . Hence V(x_{1})\cap G_{i}(p)=\phi . Thus it can be shown that the graph
of G_{i} is closed. Finally, since \tilde{D}_{i}=F_{i}\cap G_{i} , by making use of lemma 2. 4,
\tilde{D}_{i} is u. s . c . in P.

By utilizing the upper semi-continuity of \tilde{D}_{i}(p) , which is the crucial part

of the equilibrium existence proof, the proof of the following theorem is
similar to that of theorem 4. 2.

THEOREM 5. 3. Let the binary relation \succ\tilde{i} on C satisfy the following

conditions: (1) x\overline{r_{\tilde{i}}}y or y\succ x\tilde{i} for any x, y\in C, (2) C_{i}^{-}(x) is closed in C_{i} for
all x\in C_{i} , (3) C_{i}(x) is convex for all x\in C_{i} , (4) x^{c}ryi for x, y\in C_{i} implies

U(x)\succ iV(y) for a neighbourhood U(x) of x and a neighbourhood V(y) of y.
Then the economy \{(C_{i}, \xi^{i}, \succ\tilde{‘})\}_{i=1}^{m} has an equilibrium in the case (\beta) or

(\gamma) , and it has a quasi-equilibrium in the case (\alpha) .
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\S 6. Economies with preference mappings.

Put n=m+1, C_{n}=P and C^{*}= \prod_{j=1}^{n}C_{j} .

DEFINITION 6. 1. A set of m ordered triples \{(C_{i}, F_{i}, \pi_{i})\}_{i=1}^{m} is called an
economy with preference mappings, where \pi_{i}(i=1,2, \cdots,m) is a set-valued
mapping of C^{*} into C_{i} and is called a preference mapping of the agent i.

DEFINITION 6. 2. (\overline{x},\overline{p})=(\overline{x}^{1},\overline{x}^{2}, \cdots,\overline{x}^{m},\overline{p})\in C^{*} is called an equilibrium

{quasi-equilibrium) for the economy \{(C_{i}, F_{i}, \pi_{i})\}_{i=1}^{m} , if \sum_{i=1}^{m}\overline{x}^{i}\leqq_{n}\xi(p(\sum_{i=1}^{m}\overline{x}^{i})\leqq p(\xi)

for all p\in P) and, for each i=1,2, \cdots , m,\overline{x}^{i}\in F_{i}(\overline{p}) and F_{i}(\overline{p})\cap\pi_{i}(\overline{x},\overline{p})=\phi .

THEOREM 6. 1. Let the underlying space X be a separable Banach
space and \pi_{i} satisfy, for each i=1,2, \cdots , m, (1) the mapping \pi_{i} has an open
graph in C^{*}\cross C_{i} and (2) for each (x, p)\in c* , \pi_{i}(x, p) is non-empty, convex
and x^{i}\oplus\pi_{i}(x, p) , where x=(x^{1}, x^{2}, \cdots, x^{m})\in C_{1}\cross C_{2}\cross\cdots\cross C_{m} .

Then the economy \{(C_{i}, F_{i}, \pi_{i})\}_{i=1}^{m} has an equilibrium in the case (\beta) or
(\gamma) , and has a quasi-equilibrium in the case (\alpha) .

PROOF. Define F_{i}^{*}: Parrow C_{i}(i=1,2, \cdots, m) by F_{i}^{*}(p)=\{x^{\prime_{i}} : x^{\prime_{i}}\in C_{i} , p(x^{\acute{i}})

<p(\xi^{i})\} for all p\in P. Then F_{i}^{*}(p) is non-empty, and F_{i}^{*} has an open graph
in P\cross C_{i} . By utilizing these F_{i}^{*} , define the mapping \psi_{i} : C^{*}arrow C_{i} as follows:
\psi_{i}(x, p)=F_{i}^{*}(p) if p(x^{i})>p(\xi^{i}) ; \psi_{i}(x, p)=F_{i}^{*_{\vee}}(p)\cap\pi_{i}(x, p) if p(x^{i})\leqq p(\xi^{i}) , where
x=(x^{1}, x^{2}, \cdots, x^{m})\in\prod_{i=1}^{m}C_{i} and p\in C_{n} . Furthermore define the mapping \psi_{n} :

C^{*}arrow C_{n}(=p) by \psi_{n}(x, p)=\{q:q\in P, q( \sum_{i=1}^{m}x^{i}-\xi)>p(\sum_{i=1}^{m}x^{i}-\xi)\} for (x, p)=(x^{1} ,

x^{2} , \cdots , x^{m}, p)\in C^{*} . Then \psi_{n} has an open graph in C^{*}\cross C_{n} and the set
\psi_{n}(x, p) is convex. The graph of \psi_{i}(i=1,2, \cdots, m) coincides with the set
(G_{i}\cap H_{i})\cup(H_{i}\cap K_{i}\cap G_{i}^{C}) , where

G_{i}=\{(x, p, x’i) : (x, p)\in c* , x^{\prime_{i}}\in C_{i} and p(x^{i})>p(\xi^{i})\} .

H_{i}=\{(x, p, x^{\acute{i}}) : (x, p)\in c* , x^{\prime_{i}}\in C_{i} and p(x^{\acute{i}})<p(\xi^{i})\}

and

K_{i}=\{(x, p, x’i) : (x, p)\in C^{*} , x^{\prime_{i}}\in C_{i} and x^{\acute{i}}\in\pi_{i}(x, p)\}

Since (G_{i}\cap H_{i})\cup(H_{i}\cap K_{i}\cap G_{i}^{c})=(G_{i}\cap H_{i})\cup(H_{i}\cap K_{i}) and G_{i}, H_{i} and K_{i} are
open in C^{*}\cross C_{i} , the graph of \psi_{i} is also open in C^{*}\cross C_{i} . By making use
of lemma 2. 9, there exists (\overline{x},\overline{p})\in C^{*} such that for each i=1,2, \cdots , m\overline{x}^{i}\in



298 K. Yamamoto

\psi_{i}(\overline{x},\overline{p}) or \psi_{i}(\overline{x},\overline{p})=\phi and for \psi_{n}\overline{p}\in\psi_{n}(\overline{x},\overline{p}) or \psi_{n}(\overline{x},\overline{p})=\phi . Since \overline{x}_{i}\not\in

\psi_{i}(\overline{x},\overline{p}) for i=1,2, \cdots , m and \overline{p}\oplus\psi_{n}(\overline{x},\overline{p}) , \psi_{i}(\overline{x},\overline{p})=\phi for i=1,2, \cdots , n .

Since it is easy to show that \overline{x}^{i}\in F_{i}(\overline{p}) and \sum_{i=1}^{n}\overline{x}^{i}\leqq_{c}\xi(orp(\sum_{i=1}^{n}\overline{x}^{i})\leqq p(\xi)

for all p\in P) , it remains to show that F_{i}(\overline{p})\cap\pi_{i}(\overline{x},\overline{p})=\phi for all i=1,2, \cdots , m.

Contrary to this, suppose that there exists an x^{i}\in F_{i}(\overline{p})\cap\pi_{i}(\overline{x},\overline{p}) for some i.
It follows from F_{i}^{*}(\overline{p})\neq\phi that \overline{p}(x^{\prime_{i}})<\overline{p}(\xi^{i}) for some x^{\prime_{i}}\in C_{i} . Since the graph
of \pi_{i} is open in C^{*}\cross C_{i} and x^{i}\in\pi_{i}(\overline{x},\overline{p}) , x^{\acute{\prime}_{i}}=\lambda x^{\acute{i}}+(1-\lambda)x^{i}\in\pi_{i}(\overline{x},\overline{p}) for
sufficiently small \lambda with 0<\lambda<1 . For this x^{\prime\prime_{i}},\overline{p}(x^{\prime\prime_{i}})<\overline{p}(\xi^{i}) . Hence x^{\prime\prime_{i}}\in

F_{i}^{*}(\overline{p})\cap\pi_{i}(\overline{x},\overline{p})=\psi_{i}(\overline{x},\overline{p}) , which is a contradiction.

THEOREM 6. 2. Let the underlying space X be a separable Banach
space and \pi_{i} satisfy, for each i=1,2 , \cdots , m, (1) the mapping \pi_{i} : C^{*}arrow C_{i} has
an open graph in C^{*}\cross C_{i} and (-,) for each (x, p)\in C^{*} , \pi_{i}(x, p) is non-empty
and x^{i}\not\in conv (\pi_{i}(x, p)) . Then the same conclusion as in theorem 6. 1 holds.

The theorem in the form of the generalized n-person game is as follows:

THEOREM 6. 3. Let X be a Banach space. For each i, E_{i} be a non-

empty, compact and convex subset of X, \Phi_{i} : E= \prod_{i=1}^{n}E_{i}arrow E_{i} be a continuous

set-valued mapping such that \Phi_{i}(x) is non-empty, compact and convex for
each x\in E and \pi_{i} : Earrow E_{i} be a set-valued mapping such that the graph of
\pi_{i} is open in E\cross E_{i} and x^{i}\not\in (conv (\pi_{i}(x)))^{-} for each x\in E, where x=(x^{1} ,
x^{2} , \cdots , x^{n})\in E.

Then there exists an \overline{x}=(\overline{x}^{1},\overline{x}^{2}, \cdots,\overline{x}^{n})\in E satisfying, for each i,\overline{x}^{i}\in\Phi_{i}(\overline{x})

and \pi_{i}(\overline{x})\cap\Phi_{i}(\overline{x})=\phi .
PROOF. By using the norm metric in E\cross E_{i} , define the numerical func-

tion d_{i} : E\cross E_{i}arrow R so that d_{i}(x, x^{\prime_{i}}) is the distance between (x, x^{\prime_{i}}) and the
complement of the graph of \pi_{i} for each (x, x^{\prime i})\in E\cross E_{i} . Then d_{i} is non-
tinuous, and d_{i}(x, x^{\prime_{i}})>0 if and only if x^{\prime_{i}}\in\pi_{i}(x) . Define the mapping G_{i} :
Earrow E_{i} by G_{i}(x)= \{x^{\acute{\prime}_{i}} : x^{\acute{\prime}_{i}}\in\Phi_{i}(x), d_{i}(x, x^{\prime\prime_{i}})=,\max_{x^{i}\in\Phi_{i^{(x)}}}d_{i}(x, x^{\acute{i}})\} for all x\in E.

By making use of the similar argument in the proof of corollary 4. 1, G_{i}(x)

is shown to be u. s . c . in E. Furthermore define the mapping H:Earrow E by

H(x)= \prod_{i=1}^{n} (conv (G_{i}(x)))^{-}- Then H is u. s . c . in E. Hence, by making use of

lemma 2. 7, there exists \overline{x}\in E such that \overline{x}\in H(\overline{x}) . Since \overline{x}^{i}\in(conv(G_{i}(\overline{x}))^{-}

\subset\Phi_{i}(\overline{x}) , it remains to prove that \pi_{i}(\overline{x})\cap\Phi_{i}(\overline{x})=\phi . Contrary to this, suppose
that x^{\prime_{i}}\in\pi_{i}(\overline{x})\cap\Phi_{i}(\overline{x}) for some x^{\prime_{i}} . Then d_{i}(\overline{x}, x^{\acute{i}})>0 and x^{\prime_{i}}\in\Phi_{i}(\overline{x}) . Hence
d_{i}(\overline{x}, x^{\acute{\prime}i})>0 for all x^{\prime\prime_{i}}\in G_{i}(\overline{x}) , i . e. , G_{i}(\overline{x})\subset\pi_{i}(\overline{x}) . Thus \overline{x}^{i}\in(conv(G_{i}(\overline{x}))^{-}\subset

(conv (\pi_{i}(\overline{x})))^{-},\cdot which is a contradiction.
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REMARK. If X is finite-dimensional, then the convex hull of a compact
set is compact. Hence theorem 6. 3 holds under the weaker assumption
x^{i}\not\in conv (\pi_{i}(x)) than the assumption x^{i}\not\in(conv (\pi_{i}(x))^{-}- Furthermore, if
\pi_{i}(x) is assumed to be convex, then the assumption x^{i}\not\in(conv\pi_{i}(x)) is equiva-
le t to x^{i}\oplus\pi_{i}(x) . Hence theorem 6. 3 gives another simpler proof of the0-
rem 6. 1 and theorem 6. 2 in the finite-dimensional case. In fact, for each
i=1,2 , \cdots , m, let E_{i}=C_{i} , \Phi_{i}=F_{i} and \pi_{i} satisfy the same assumptions as in
theorem 6. 1 (6. 2), then the economy \{(C_{i}, F_{i}, \pi_{i})\}_{i=1}^{m} in theorem 6. 1 (6. 2\rangle

is converted into a generalized n-person game in theorem 6. 3.
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