A uniqueness theorem for holomorphic functions of exponential type

By Mitsuo Morimoto and Kunio Yoshino (Received October 28, 1977; Revised November 21, 1977)

§ 1. Introduction.

In this paper we treat a uniqueness theorem for holomorphic functions of exponential type on a half plane from the point of view of the theory of analytic functionals with non-compact carrier.

Avanissian and Gay [1] proved among others the following Theorem 1 using the theorey of analytic functionals of Martineau [4].

THEOREM 1. Let $F(\zeta)$ be an entire function of type $<\pi$. If we have F(-n)=0 for every $n=1, 2, 3, \dots$, then the entire function $F(\zeta)$ vanishes identically.

Theorem 1 is a corollary to Carlson's theorem (see Boas [2] p. 153).

Theorem 2. (Carlson) Let $F(\zeta)$ be a holomorphic function on the half plane $\{\zeta = \xi + i\eta; \xi = \text{Re } \zeta < 0\}$. Suppose that there exist real numbers a, k with $0 \le k < \pi$ and $C \ge 0$ such that

$$|F(\zeta)| \le C \exp(a\xi + k|\eta|)$$
 for $\text{Re } \zeta < 0$.

If we have F(-n) = 0 for $n = 1, 2, 3, \dots$, then the function $F(\zeta)$ vanishes identically.

We will prove Carlson's theorem by means of the theory of analytic functionals with non-compact carrier, which was introduced by the first named author [5] in connection with the theory of ultra-distributions of exponential growth of Sebastiaō-è-Silva [6], namely Fourier ultra-hyperfunctions.

Following the sections we outline the results. In § 2 we define the fundamental space $\mathscr{Q}(L;k')$, the element of which is a holomorphic function in a tubular neighborhood L_{ϵ} of the closed half strip $L=[a,\infty)+i[k_1,k_2]$. A continuous linear functional on the space $\mathscr{Q}(L;k')$ is, by definition, an analytic functional with carrier in L and of (exponential) type $\leqslant k'$. The image of the Laplace transformation of $\mathscr{Q}'(L;k')$ is characterized in Theorem 3. As in Avanissian-Gay [1] we define in § 3 the transformation G_{μ}

of an analytic functional $\mu \in \mathcal{C}'(L; k')$ by the formula: $G_{\mu}(\zeta) = \langle \mu_z, (1 - \zeta e^z)^{-1} \rangle$ and call it the Avanissian-Gay transformation. The Avanissian-Gay transformation is defined for $0 \leq k' < 1$ and G_{μ} is a holomorphic function on the complement of the set $\exp(-L)$, vanishes at the infinity and satisfies a certain growth condition at the origin. We show in § 4 the Avanissian-Gay transformation is injective if the width of the half strip L is less than 2π , proving the inversion formula (Theorem 4). As a corollary, we have the above mentioned Carlson theorem. In the last section, we determine the image of the Avanissian-Gay transformation (Theorem 6).

§ 2. Analytic functionals with half strip carrier and their Laplace transformation.

In this section we recall the definition of analytic functionals with non-compact carrier and characterize their Laplace transformation.

We begin with some notations. In the sequel, L denotes the closed half strip in the complex number plane C:

L=A+iK, $A=[a,\infty)$, $K=[k_1,k_2]$ and $i=\sqrt{-1}$, namely, $L=\{z=x+iy\in C; x\geqslant a, k_1\leqslant y\leqslant k_2\}$. By L_{ϵ} we denote the ϵ -neighborhood of L:

$$L_{\scriptscriptstyle \epsilon} = L + [\, -\varepsilon, \, \varepsilon] + i \, [\, -\varepsilon, \, \varepsilon]$$
 .

For $\varepsilon > 0$, $\varepsilon' > 0$ and $0 \le k' < \infty$, we define the function space $\mathscr{Q}_b(L_{\varepsilon}; k' + \varepsilon')$ as follows:

where $\mathcal{O}(\text{int } L_{\epsilon})$ denotes the space of holomorphic functions on the interior int L_{ϵ} of L_{ϵ} and $\mathcal{C}(L_{\epsilon})$ denotes the space of continuous functions on L_{ϵ} . Endowed with the norm

$$\sup_{z \in L_1} |f(z)| \exp((k' + \varepsilon') x),$$

the space $\mathscr{Q}_b(L_{\epsilon}; k'+\epsilon')$ becomes a Banach space. If $\epsilon_1 < \epsilon$ and $\epsilon_1' < \epsilon'$, the restriction mapping

$$\mathscr{Q}_b(L_{\epsilon}; k' + \epsilon') \longrightarrow \mathscr{Q}_b(L_{\epsilon}; k' + \epsilon'_1)$$
 (2.1)

is defined and a continuous linear injection. Following the mappings (2.1), we from the locally convex inductive limit:

$$\mathscr{Q}(L\,;\,\,k') = \lim_{\epsilon>0,\ \epsilon'>0} \, \mathscr{Q}_b(L_\epsilon\,;\,\,k'+\epsilon')\,.$$

If we put $X_n = \mathcal{Q}_b(L_{1/n}; k'+1/n)$, then with mappings (2.1) we have a sequence of Banach spaces with compact injective mappings $X_j \longrightarrow X_{j+1}$:

$$X_1 \longrightarrow X_2 \longrightarrow X_3 \longrightarrow \cdots$$

As we have clearly $\mathscr{Q}(L; k') = \liminf X_j$, the locally convex space $\mathscr{Q}(L; k')$ is a DFS space (namely the dual space of a Fréchet-Schwartz space). We denote the dual space of $\mathscr{Q}(L; k')$ by $\mathscr{Q}'(L; k')$, an element of which is, by definition, an analytic functional with carrier in L and of type $\leq k'$.

We denote by $h_L(\zeta)$ the supporting function of the half strip L:

$$h_L(\zeta) = \sup_{z \in L} \operatorname{Re} \zeta z = \int a \xi - k_1 \eta \quad \text{if } \xi \leqslant 0 \text{ and } \eta \geqslant 0$$

$$a \xi - k_2 \eta \quad \text{if } \xi \leqslant 0 \text{ and } \eta \leqslant 0.$$

Remark $h_L(\zeta) = \infty$ if Re $\zeta > 0$. For $k' \ge 0$ we denote by $\text{Exp}((-\infty, -k') + i\mathbf{R}; L)$ the space of all holomorphic functions φ on the open half plane $(-\infty, -k') + i\mathbf{R}$ for which

$$\sup_{\operatorname{Re} \zeta \leqslant -k' - \varepsilon'} \left| \varphi(\zeta) \right| \exp\left(-h_L(\zeta) - \varepsilon |\zeta| \right) < \infty \tag{2. 2}$$

for every $\varepsilon > 0$ and $\varepsilon' > 0$. An element of the space $\operatorname{Exp}((-\infty, -k') + i\mathbf{R}; L)$ is said to be a holomorphic function of exponential type in L. Endowed with the norms (2.2), the space $\operatorname{Exp}((-\infty, -k') + i\mathbf{R}; L)$ is an FS space (namely a Fréchet-Schwartz space). (As for the DFS spaces and FS spaces, we refer the reader to Komatsu [3].)

We define the Laplace transformation of an analytic functional μ with carrier in L and of type $\leq k'$ as follows:

$$\tilde{\mu}(\zeta) = \langle \mu_z, \exp(z\zeta) \rangle$$
. (2.3)

Remark that $\tilde{\mu}(\zeta)$ is defined for ζ of the half plane $\{\zeta \; | \; \text{Re} \; \zeta < -k' \}$. The next Paley-Wiener type theorem characterizes the Laplace transformation of the analytic functionals with carrier in L and of type $\leq k'$.

THEOREM 3. (Morimoto [5]) The Laplace transformation (2.3) is a linear topological isomorphism of the space $\mathcal{Q}'(L; k')$ onto the space Exp $((-\infty, -k')+i\mathbf{R}; L)$.

We have the following density theorem.

Proposition 1. For $h \in \mathcal{Q}(L; k')$, we have

$$\lim_{z \downarrow 0} h(z) \exp(-\delta z^2) = h(z)$$

in the topology of $\mathcal{Q}(L; k')$.

PROOF. By the definition of the space $\mathscr{Q}(L; k')$, there exist $\varepsilon > 0$ and $\varepsilon' > 0$ such that $h \in \mathscr{Q}_b(L_{2\varepsilon}; k' + 2\varepsilon')$. In particular, we have

$$\sup_{\mathbf{z}\in L_{2s}}\!\left|h(\mathbf{z})\right|\exp\left((\mathbf{k}'+2\varepsilon')\;x\right)=M\!>\!\infty\;.$$

Then we have

$$\begin{split} \sup_{\mathbf{z} \in L_{\mathbf{z}}} & \left| h(\mathbf{z}) \right| \left| 1 - \exp\left(-\delta \mathbf{z}^{\mathbf{z}} \right) \right| \exp\left((\mathbf{k}' + \varepsilon') \ x \right) \\ & \leqslant M \sup_{\mathbf{z} \in L_{\mathbf{z}}} & \left| 1 - \exp\left(-\delta \mathbf{z}^{\mathbf{z}} \right) \right| \exp\left(-\varepsilon' \ x \right). \end{split}$$

As the righthand side tends to 0 as $\delta \downarrow 0$, $h(z) \exp(-\delta z^2)$ tends to h(z) in the topology of $\mathscr{Q}_b(L_{\epsilon}; k' + \epsilon')$ as $\delta \downarrow 0$.

q. e. d.

COROLLARY. If $k_1' > k'$, then the space $\mathscr{Q}(L; k_1')$ is a dense subspace of the space $\mathscr{Q}(L; k')$. The dual space $\mathscr{Q}'(L; k')$ can be considered as a subspace of $\mathscr{Q}'(L; k_1')$.

PROOF. If $\delta > 0$ and $h \in \mathcal{Q}(L; k')$, then $h(z) \exp(-\delta z^2)$ belongs to $\mathcal{Q}(L; k'_1)$. The second assertion results from the Hahn-Banach theorem. q. e. d.

§ 3. The Avanissian-Gay transformation.

If $0 \le k' < 1$ and $\zeta \in \exp(-L)$, then the function of z, $(1 - \zeta e^z)^{-1}$ belongs to the space $\mathscr{Q}(L; k')$. Following Avanissian-Gay [1] we define the transformation G_{μ} of an analytic functional $\mu \in \mathscr{Q}'(L; k')$ as follows:

$$G_{\mu}(\zeta) = \left\langle \mu_z, (1 - \zeta e^z)^{-1}
ight
angle$$
 .

 $G_{\mu}(\zeta)$ is a function of $\zeta\!\in\!\exp\left(-L\right)$ and has the following properties.

Proposition 2. Suppose $\mu \in \mathcal{Q}'(L; k')$, $0 \le k' < 1$.

- (i) $G_{\mu}(\zeta)$ is a holomorphic function on the complement of $\exp{(-L)}$.
- (ii) The following Laurent expansion is valid:

$$G_{\mu}(\zeta) = -\sum_{n=1}^{\infty} \zeta^{-n} \, \tilde{\mu}(-n)$$

for $|\zeta| > e^{-a}$.

(iii) $\lim_{|\zeta|\to\infty} |G_{\mu}(\zeta)| = 0.$

PROOF. (i) can be derived from Morera's theorem.

(ii) We have the following expansion:

$$(1-\zeta e^{z})^{-1} = -\sum_{n=1}^{\infty} \zeta^{-n} \exp(-nz).$$

By elementary calculations, we can show that this series converges uniformly with respect to ζ with $|\zeta| \ge e^{-a+\epsilon}$, $\varepsilon > 0$, in the topology of $\mathscr{Q}(L; k')$. Hence we have

$$egin{aligned} G_{\mu}(\zeta) &= -\sum\limits_{n=1}^{\infty} \zeta^{-n} \Big\langle \mu_{z}, \exp\left(-nz\right) \Big
angle \ &= -\sum\limits_{n=1}^{\infty} \zeta^{-n} \, ilde{\mu}(-n) \, . \end{aligned}$$

(iii) is a trivial consequence of (ii).

q. e. d.

If the half strip L has the width $k_2-k_1<2\pi$, the complement of the set $\exp(-L)$ contains the open angular domain

$$A(-k_1, -k_2+2\pi) = \{\zeta \in C \setminus (0); -k_1 < \arg \zeta < -k_2+2\pi \}.$$

Fig. 1.

We shall investigate, for further purposes, the behavior of the function $G_{\mu}(\zeta)$ in this angular domain.

PROPOSITION 3. Suppose the half strip $L=[a,\infty)+i$ $[k_1,k_2]$ has the width $k_2-k_1<2\pi$ and $0 \le k' < 1$. If $\mu \in \mathscr{C}'(L;k')$, then, for any ε with $0<2\varepsilon<2\pi+k_1-k_2$ and any ε' with $0<\varepsilon'<1-k'$, there exists a constant $C \ge 0$ such that

$$|G_{\mu}(\zeta)| \leqslant C|\zeta|^{-k'-\epsilon'}$$

in the closed angular domain

$$\bar{A}(-k_1+\varepsilon, -k_2+2\pi-\varepsilon) = \left\{ \zeta \in \mathbb{C} \setminus (0) ; -k_1+\varepsilon \leqslant \arg \zeta \leqslant -k_2+2\pi-\varepsilon \right\}.$$

PROOF. By the continuity of $\mu \in \mathscr{Q}'(L; k')$, there exists a constant $C' \geqslant 0$ such that, for $\zeta \in \exp(-L_{\epsilon/2})$, we have

$$\begin{split} \left|G_{\mu}(\zeta)\right| &= \left\langle \mu_{z}, (1-\zeta e^{z})^{-1} \right\rangle \\ &\leqslant C' \sup_{z \in L_{\epsilon/2}} |1-\zeta e^{z}|^{-1} \exp\left((k'+\varepsilon') \ x\right) \\ &= C' \sup_{z \in L_{\epsilon/2}} |e^{-z}-\zeta|^{-1} \exp\left((k'+\varepsilon'-1) \ x\right) \\ &\leqslant C' \sup_{z \in L_{\epsilon/2}} |e^{-z}-\zeta|^{-k'-\epsilon'} \sup_{z \in L_{\epsilon/2}} |e^{-z}-\zeta|^{k'+\epsilon'-1} \exp\left((k'+\varepsilon'-1) \ x\right). \end{split}$$

Therefore with another constant $C'' \ge 0$, we have

$$\left| G_{\mu}(\zeta) \right|$$

$$\leqslant C'' \operatorname{dist} \left(\zeta, \exp\left(-L_{\epsilon/2} \right) \right)^{-k'-\epsilon'} \sup_{z \in L_{\epsilon/2}} |1 - \zeta e^z|^{k'+\epsilon'-1}$$

for $\zeta \in \exp(-L_{\epsilon/2})$. On the other hand, as the set $\exp(-L_{\epsilon/2})$ is contained in the closed angular domain $\bar{A}(-k_2-\varepsilon/2, -k_1+\varepsilon/2)$, we have

$$\operatorname{dist}\left(\zeta,\exp\left(-L_{\epsilon/2}\right)\right)\geqslant |\zeta|\,\sin\left(\varepsilon/2\right)$$

for
$$\zeta \in \bar{A}(-k_1+\varepsilon, -k_2+2\pi-\varepsilon)$$
.
If $z \in L_{\epsilon/2}$ and $\zeta \in \bar{A}(-k_1+\varepsilon, -k_2+2\pi-\varepsilon)$, then
$$|\arg \zeta e^z| \geqslant \varepsilon/2 \mod 2\pi.$$

Therefore we have

$$\inf_{z \in L_{\epsilon/2}} |1 - \zeta e^z| \geqslant \sin(\varepsilon/2) \quad \text{for } \zeta \in \bar{A}(-k_1 + \varepsilon, k_2 + 2\pi - \varepsilon).$$

As $-k'-\varepsilon' < 0$ and $k'+\varepsilon'-1 < 0$ by the choice of ε' , putting $C = C''(\sin(\varepsilon/2))^{-1}$ we obtain the desired estimate of $G_{\mu}(\zeta)$.

Suppose always $L=[a,\infty)+i[k_1,k_2]$ has the width $k_2-k_1<2\pi$ and $0 \le k' < 1$. We denote by $\mathcal{O}_0(C \setminus (-L); k')$ the space of all holomorphic functions φ on the domain $C \setminus \exp(-L)$ which satisfy following two conditions:

- (1) $|\varphi(\zeta)| \to 0$ as $|\zeta| \to \infty$.
- $(2) \quad \sup \left\{ |\varphi(\zeta) \, \zeta^{k'+\varepsilon'}| \; ; \; \zeta \! \in \! \bar{A}(-k_1+\varepsilon, \; -k_2+2\pi-\varepsilon) \right\} \! < \! \infty$

for any ε with $0<2\varepsilon<2\pi+k_1-k_2$ and any ε' with $0<\varepsilon'<1-k'$. The space $\mathcal{O}_0(\mathbb{C}\backslash\exp(-L);k')$ equipped with the seminorms $\sup\{|\varphi(\zeta)|;|\zeta|\geqslant e^{-a+\epsilon}\}$ and $\sup\{|\varphi(\zeta)|\zeta^{k'+\epsilon'}|;\zeta\in\bar{A}(-k_1+\varepsilon,-k_2+2\pi-\varepsilon)\}$, is clearly a Fréchet (-Schwartz) space. As a corollary to Propositions 2 and 3, we have the following proposition.

PROPOSITION 4. Suppose the width of L is less than 2π and $0 \le k' \le 1$. Then the Avanissian-Gay transformation G is a continuous linear mapping of $\mathcal{Q}'(L; k')$ into $\mathcal{O}_0(C \setminus \exp(-L); k')$. PROOF. The continuity results from the boundedness of the set $\{(1-\zeta e^z)^{-1}; |\zeta| \ge e^{-a+\epsilon}\}$ and the set $\{\zeta^{k'+\epsilon'}(1-\zeta e^z)^{-1}; \zeta \in \overline{A}(-k_1+\epsilon, -k_2+2\pi-\epsilon)\}$ in the space $\mathscr{Q}(L; k')$.

§ 4. Inversion formula for $G_{\mu}(\zeta)$.

In the sequel we suppose the half strip L has the form

$$L = [a, \infty) + i[k_1, k_2], k_2 - k_1 < 2\pi$$

and $0 \le k' < 1$.

LEMMA 1. (An integral formula) Let $h \in \mathcal{Q}(L; k')$. Choose positive numbers ε and ε' so small that $0 < 2\varepsilon < 2\pi + k_1 - k_2$, $0 < \varepsilon' < 1 - k'$ and that $h \in \mathcal{Q}_b(L_{\epsilon}; k' + \varepsilon')$.

(i) For any R>0, the function of z

$$H_{R}(z) = \int_{\partial L_{z,R}} h(w) \left(1 - \exp(z - w) \right)^{-1} dw$$

belongs to the space $\mathscr{Q}(L; 1)$, consequently to the space $\mathscr{Q}(L; k')$, where we denote $\partial L_{\bullet,R} = \partial L_{\bullet \cap} \{w : \text{Re } w \leq R\}$.

(ii) We have

$$2\pi i \ h(z) = \int_{\partial L_{\bullet}} h(w) \left(1 - \exp(z - w)\right)^{-1} dw \qquad \text{for } z \in \text{int } L_{\bullet}.$$

(iii) In the topology of $\mathcal{Q}(L; k')$, we have

$$\lim_{R\to\infty}\int_{\partial L_{\bullet,R}}h(w)\left(1-\exp\left(z-w\right)\right)^{-1}dw=2\pi i\;h(z)\;.$$

PROOF. (i) It is clear the function $H_R(z)$ is holomorphic in int L_{ϵ} . On the other hand we have

$$\begin{split} \sup_{z \in L_{\epsilon/2}} & \left| H_R(z) \; e^z \right| \\ &= \sup_{z \in L_{\epsilon/2}} \left| \int_{\partial L_{\epsilon,R}} h(w) \left(e^{-z} - e^{-w} \right)^{-1} dw \right| \\ &\leq \int_{\partial L_{\epsilon,R}} \left| h(w) \right| \operatorname{dist} \left(e^{-w}, \; \exp \left(-L_{\epsilon/2} \right) \right)^{-1} |dw| < \infty \; \text{,} \end{split}$$

because the integrand is continuous and $\partial L_{\epsilon,R}$ is compact.

(ii) By the residue theorem, if $z \in \text{int } L_{\epsilon}$ and Re z < R, then we have

$$\int_{\partial L_{\epsilon}(R)} h(w) \left(1 - \exp\left(z - w\right)\right)^{-1} dw = 2\pi i \ h(z) ,$$

where $\partial L_{\epsilon}(R)$ denotes the boundary of the rectangle

$$L_{\epsilon}(R) = L_{\epsilon \cap} \{ w ; \text{ Re } w \leq R \}$$
.

Let us denote by $C_{\cdot}(R)$ the boundary of $L_{\cdot \cap}\{w; \operatorname{Re} w \geqslant R\}$. We have to show, for z fixed in int L_{\cdot} ,

$$\int_{C_{\mathbf{z}}(R)} h(w) \left(1 - \exp(z - w)\right)^{-1} dw$$

tends to 0 as $R \rightarrow \infty$.

Fig. 2.

As $h \in \mathcal{Q}_b(L; k' + \varepsilon')$, we have with some constant $C \geqslant 0$,

$$\begin{split} \left| \int_{C_{\epsilon}(R)} h(w) \left(1 - \exp(z - w) \right)^{-1} dw \right| \\ &\leq C \int_{C_{\epsilon}(R)} e^{-(k' + \epsilon')u} (1 - e^{x - R})^{-1} |dw| \longrightarrow 0 \end{split}$$

as $R \rightarrow \infty$.

(iii) We have to show, putting $C'_{\bullet}(R) = \partial L_{\bullet} - \partial L_{\bullet,R}$

$$\int_{C_{\bullet}'(R)} h(w) \left(1 - \exp(z - w)\right)^{-1} dw$$

tends to 0 in the topology of $\mathscr{Q}(L; k')$ as $R \to \infty$. Remark that e^{-w} belongs to the closed angular domain $\bar{A}(-k_1+\varepsilon, -k_2+2\pi-\varepsilon)$ if $w \in C'(R)$. Therefore as in the proof of Proposition 3, we can show

$$\inf_{z \in L_{\epsilon/2}} |e^{-z} - e^{-w}| \geqslant e^{-u} \sin(\varepsilon/2)$$

and

$$\inf_{z \in L_{\epsilon/2}} |1 - e^{-w} e^{z}| \geqslant \sin(\epsilon/2) \quad \text{for } w \in C'_{\epsilon}(R).$$

Therefore we have with some constants C and $C' \geqslant 0$

$$\begin{split} \sup_{z \in L_{\epsilon/2}} \left| e^{(k' + \epsilon'/2)z} \int_{C'_{\epsilon}(R)} h(w) \left(1 - \exp(z - w) \right)^{-1} dw \right| \\ &= \sup_{z \in L_{\epsilon/2}} \left| \int_{C'_{\epsilon}(R)} h(w) \left(e^{-z} - e^{-w} \right)^{-k' - \epsilon'/2} (1 - e^{-w} e^{z})^{-1 + k' + \epsilon'/2} dw \right| \end{split}$$

$$\begin{split} &\leqslant C \! \int_{\mathcal{C}_{\bullet}'(R)} \! \left| h(w) \right| e^{((k'+\epsilon'/2)w)} |dw| \\ &\leqslant C' \! \int_{\mathcal{C}_{\bullet}'(R)} \! \left| \exp \left((-\epsilon'/2) \, w \right) \right| |dw| \; . \end{split}$$

The last term converges to 0 as $R \rightarrow \infty$. q. e. d.

THEOREM 4. (Inversion formula) Let $\mu \in \mathscr{Q}'(L; k')$ and $h \in \mathscr{Q}(L; k')$ with $0 \le k' < 1$ and $L = [a, \infty) + i[k_1, k_2]$, $k_2 - k_1 < 2\pi$. Choose positive numbers ε and ε' so small that $0 < 2\varepsilon < 2\pi + k_1 - k_2$, $0 < \varepsilon' < 1 - k'$ and that $h \in \mathscr{Q}_b$ ($L; k' + \varepsilon'$). Then we have the inversion formula:

$$\langle \mu, h \rangle = (2\pi i)^{-1} \int_{\partial L_{\epsilon}} G_{\mu}(e^{-w}) h(w) dw$$
.

Proof. We have by Lemma 1 (i)

$$\int_{\partial L_{\epsilon,R}} \langle \mu_{z}, \left(1 - \exp(z - w)\right)^{-1} \rangle h(w) dw$$

$$= \langle \mu_{z}, \int_{\partial L_{\epsilon,R}} \left(1 - \exp(z - w)\right)^{-1} h(w) dw \rangle$$

for R>0. By Lemma 1 (iii), the righthand side converges to $\langle \mu_z, 2\pi i \ h(z) \rangle$. As the lefthand side converges because of Proposition 3, we obtain the inversion formula.

THEOREM 5. Suppose $0 \le k' < 1$ and $L = [a, \infty) + i[k_1, k_2], k_2 - k_1 < 2\pi$. If the function $F \in \text{Exp}((-\infty, -k') + iR; L)$ satisfies the condition

$$F(-n) = 0$$
 for every $n=1, 2, 3, \dots$

then the function $F(\zeta)$ vanishes identically.

PROOF. By Theorem 3, there exists an analytic functional $\mu \in \mathcal{Z}'(L; k')$ such that $F(\zeta) = \tilde{\mu}(\zeta)$. By Proposition 2 (ii), we have the Laurent expansion:

$$G_{\mu}(\zeta) = -\sum_{n=1}^{\infty} \zeta^{-n} \tilde{\mu}(-n) = -\sum_{n=1}^{\infty} \zeta^{-n} F(-n)$$

for $|\zeta| > e^{-a}$. By the assumption, $G_{\mu}(\zeta) = 0$. By Theorem 4, we conclude $\mu = 0$ and $F(\zeta) = 0$.

Putting $-k_1=k_2=k$, $0 \le k < \pi$, we obtain Theorem 2 as a corollary.

\S 5. The image of the Avanissian-Gay transformation.

We determine in this section the image of the Avanissian-Gay transformation.

Theorem 6. Suppose the width of L is less than 2π and $0 \le k' < 1$.

Then the Avanissian-Gay transformation G is a linear topological isomorphism of $\mathscr{Q}'(L; k')$ onto $\mathscr{O}_0(\mathbb{C} \setminus \exp(-L); k')$.

PROOF. We have proved the Avanissian-Gay transformation G is a continuous linear mapping of $\mathscr{Q}'(L; k')$ into $\mathscr{O}_0(C \setminus \exp(-L); k')$ in Proposition 4. If we can prove the bijectivity of G, the continuity of the inverse mapping results from the closed graph theorem for Fréchet spaces. The injectivity of G is a consequence of the inversion formula (Theorem 4). Let us prove the surjectivity of G. Let $\varphi \in \mathscr{O}_0(C \setminus \exp(-L); k')$ be given. We put, for $h \in \mathscr{Q}(L; k')$,

$$\langle \mu(\varphi), h \rangle = \int_{\Gamma_{\bullet}} \varphi(\tau) h(-\log \tau) d\tau / \tau$$

$$= -\int_{\partial L_{\bullet}} \varphi(e^{-z}) h(z) dz$$
(5. 1)

where $\varepsilon > 0$ is a sufficiently small number and $\Gamma_{\epsilon} = \Gamma_{\epsilon}^{1} + \Gamma_{\epsilon}^{2} + \Gamma_{\epsilon}^{3} = \exp(-\partial L_{\epsilon})$ is the path in the τ -plane depicted in the figure 3.

First we show the improper integral of the righthand side of (5.1) exists and is independent of sufficiently small $\varepsilon > 0$. If $0 < \varepsilon_1 < \varepsilon < \pi + (k_1 - k_2)/2$ and $0 < \varepsilon' < 1 - k'$, we have

$$\sup_{\mathbf{z}\in L_{\mathbf{e}}\backslash L_{\mathbf{e}_1}} \left| \varphi(e^{-\mathbf{z}}) \, e^{-(k'+\mathbf{e}')\mathbf{z}} \right| < \infty \; .$$

If $h \in \mathcal{Q}_b(L_{\epsilon_0}; k' + \epsilon'_0)$, then the righthand side of (5.1) converges clearly for $0 < \varepsilon < \min(\pi + (k_1 - k_2)/2, \varepsilon_0)$ and is independent of such ε by the Cauchy integral theorem. Therefore $\langle \mu(\varphi), h \rangle$ is well defined by (5.1) and $\mu(\varphi)$ is continuous linear on the space $\mathcal{Q}_b(L_{\epsilon_0}; k' + \epsilon'_0)$ for any $\varepsilon_0 > 0$ and $\varepsilon'_0 > 0$. By the definition of the inductive limit topology, $\mu(\varphi)$ is a continuous linear functional on $\mathcal{Q}(L; k')$.

We shall compute the Avanissian-Gay transformation of the functional $\mu(\varphi)$. By the definition, we have

$$\begin{split} G_{\mu(\varphi)}(\zeta) &= \left\langle \mu(\varphi)_z, (1-\zeta e^z)^{-1} \right\rangle \\ &= \int_{\varGamma_\epsilon} \varphi(\tau) \left(1-\zeta \, \exp\left(-\log\tau\right) \right)^{-1} d\tau/\tau \\ &= \int_{\varGamma_\epsilon} \varphi(\tau) \, (\tau-\zeta)^{-1} d\tau \\ &= \lim_{\delta \to 0} \int_{\varGamma_\epsilon, \delta} \varphi(\tau) \, (\tau-\zeta)^{-1} d\tau \; , \end{split}$$

where $\Gamma_{\epsilon,\delta} = \Gamma_{\epsilon} \cap \{\tau; |\tau| \ge \delta\}$. For a sufficiently large number R > 0 and sufficiently small number $\delta > 0$, we put

$$C_R = \left\{ au \; ; \; | au| = R
ight\}$$

and

$$C_{\delta}'(\varepsilon) = \left\{ \tau \; ; \; |\tau| = \delta, \; -k_1 + \varepsilon \leqslant \arg \tau \leqslant -k_2 + 2\pi - \varepsilon \right\}.$$

By Cauchy's integral formula, we have

$$\frac{1}{2\pi i} \int_{C_{\delta}'(\bullet) + C_R + \Gamma_{\bullet, \delta}} \varphi(\tau) (\tau - \zeta)^{-1} d\tau = \varphi(\zeta).$$

We will show the integral over the path C_R tends to 0 as $R\to\infty$ and that the integral over the path $C'_{\delta}(\varepsilon)$ tends to 0 as $\delta\to0$. If $|\tau|=R$ and $R>|\zeta|$, we have $|\tau-\zeta|\geqslant |\tau|-|\zeta|=R-|\zeta|>0$. Therefore

$$\begin{split} \left| \int_{C_R} \varphi(\tau) \, (\tau - \zeta)^{-1} d\tau \right| & \leqslant \int_{C_R} \left| \varphi(\tau) \right| |\tau - \zeta|^{-1} |d\tau| \\ & \leqslant \sup_{|\tau| = R} \left| \varphi(\tau) \right| (R - |\zeta|)^{-1} 2\pi R \longrightarrow 0 \text{ as } R \longrightarrow \infty \;. \end{split}$$

If $|\zeta| > \delta$, then

$$\begin{split} \left| \int_{C_{\delta}'(s)} \varphi(\tau) \, (\tau - \zeta)^{-1} d\tau \right| & \leq \int_{C_{\delta}'(s)} \left| \varphi(\tau) \right| (|\zeta| - \delta)^{-1} |d\tau| \\ & \leq C_1 \delta^{-k' - s'} (|\zeta| - \delta)^{-1} 2\pi \delta \\ & = C_1 2\pi (|\zeta| - \delta)^{-1} \delta^{1 - (k' + s')} \longrightarrow 0 \text{ as } \delta \longrightarrow 0 \text{,} \end{split}$$

because we may choose ϵ' so that $1-(k'+\epsilon')>0$. We have thus proved

$$G_{\mu(\varphi)} = \varphi$$

and the surjectivity of the Avanissian-Gay transformation G. q. e. d.

References

- [1] V. AVANISSIAN and R. GAY: Sur une transformation des fonctionnelles analytiques et ses applications aux fonctions entières de plusieurs variables, Bull. Soc. Math. France, 103 (1975), 341-384.
- [2] R. P. BOAS: Entire Functions, Academic Press (1954).
- [3] H. Komatsu: Projective and injective limits of weakly compact sequences of locally convex spaces, J. Math. Soc. Japan. 19 (1967), 366-383.
- [4] A. MARTINEAU: Sur les fonctionnelles analytiques et la transformation de Fourier-Borel, J. Analyse Math. 11 (1963), 1-164.
- [5] M. MORIMOTO: On the Fourier ultra-hyperfunctions I. Surikaiseki-kenkyujo Kokyuroku, 192 (1973), 10-34.
- [6] SEBASTIAÕ-È-SILVA: Les fonctions analytiques comme ultra-distributions dans le calcul opérationnel, Math. Ann. 136 (1967), 109-142.

Department of Mathematics Sophia University Tokyo 102 JAPAN