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A uniqueness theorem for holomorphic

functions of exponential type
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§ 1. Introduction.

In this paper we treat a uniqueness theorem for holomorphic functions
of exponential type on a half plane from the point of view of the theory
of analytic functionals with non-compact carrier.

Avanissian and Gay proved among others the following Theorem 1
using the theorey of analytic functionals of Martineau [4].

THEOREM 1. Let F({) be an entire function of type <=m. If we have
F(—n)=0 for every n=1,2,3, -, then the entire function F({) vanishes
identically.

Theorem 1 is a corollary to Carlson’s theorem (see Boas p. 153).

THEOREM 2. (Carlson) Let F({) be a holomorphic function on the
half plane {{=¢&+in; §=Re {<0}. Suppose that there exist real numbers
a, k with 0<k<nr and C>=0 such that

|F(C)|<Cexp(d§+k]7yl) for Re{<0.

If we have F(—n)=0 for n=1,2,3,---, then the function F({) vanishes
tdentically.

We will prove Carlson’s theorem by means of the theory of analytic
functionals with non-compact carrier, which was introduced by the first
named author [5] in connection with the theory of ultra-distributions of
exponential growth of Sebastias-é-Silva [6], namely Fourier ultra-hyperfunc-
tions.

Following the sections we outline the results. In §2 we define the
fundamental space & (L ; k), the element of which is a holomorphic function
in a tubular neighborhood L, of the closed half strip L=[a, oo)+1[k,, k.
A continuous linear functional on the space & (L; k) is, by definition, an
analytic functional with carrier in L and of (exponential) type <k'. The
image of the Laplace transformation of 42’ (L; K) is characterized in Theo-
rem 3. As in Avanissian-Gay [1] we define in § 3 the transformation G,
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of an analytic functional pe &’ (L; k) by the formula: G,({)=<{g, (1—
Le)™'> and call it the Avanissian-Gay transformation. The Avanissian-Gay
transformation is defined for 0<k# <1 and G, is a holomorphic function
on the complement of the set exp (— L), vanishes at the infinity and satisfies
a certain growth condition at the origin. We show in §4 the Avanissian-
Gay transformation is injective if the width of the half strip L is less than
2x, proving the inversion formula (Theorem 4). As a corollary, we have
the above mentioned Carlson theorem. In the last section, we determine

the image of the Avanissian-Gay transformation (Theorem 6).

§ 2. Analytic functionals with half strip carrier and their Laplace
transformation.

In this section we recall the definition of analytic functionals with non-
compact carrier and characterize their Laplace transformation.

We begin with some notations. In the sequel, L denotes the closed
half strip in the complex number plane C:
L=A+iK, A=[a, ), K=[ky, k] and i=+—1, namely, L={z=z+y<C;
x>a, by<y<k,). By L, we denote the e-neighborhood of L:

L,=L+[—¢¢c]l+i[—s¢].
For ¢>0, ¢ >0 and 0<K < oo, we define the function space &,(L,; ¥ +¢)
as follows:
Zs(L.; K +¢)
={fed(nt L)n ¢ (L); sup | f(2)| exp (& +¢) x><oo} ,
where & (int L,) denotes the space of holomorphic functions on the interior

int L, of L, and ¥ (L, denotes the space of continuous functions on L.
Endowed with the norm

sup f(z)| exp ((k’ +¢) x> ,
zeL,
the space &2,(L,; K +¢') becomes a Banach space. If ¢ <e and ¢ <¢, the

restriction mapping

&o(L.; K +e&)—— &4(L. ; K +¢) (2.1)

1

is defined and a continuous linear injection. Following the mappings (2. 1),
we from the locally convex inductive limit :

& (L; ¥)=limind &2,(L,; ¥ +¢).

e>0, ¢'>0
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If we put X,=&,(Ly/n; K +1/n), then with mappings (2.1) we have a se-
quence of Banach spaces with compact injective mappings X,—X,,;:

Xl’_")X2—’X3'_""'

As we have clearly ¢ (L; ¥)=limind X, the locally convex space 2 (L ; k)

is a DFS space (namely the dual space of a Fréchet-Schwartz space). We

denote the dual space of &2(L; ¥) by &2'(L; ¥), an element of which is,

by definition, an analytic functional with carrier in L and of type <F¥.
We denote by A;({) the supporting function of the half strip L:

hr({) =sup Re {2z = [aE—km if £<0 and >0
z€L ‘
la{:—kzn if £<0 and %<0.

Remark A ({)=co0 if Re{>0. For ¥ >0 we denote by Exp ((—oo, —F)+
tR; L) the space of all holomorphic functions ¢ on the open half plane
(—oo, —F)+iR for which

sup (L)) exp (—ha()—elg]) < oo (2.2)

Re{<—k'—s’

for every ¢>0 and € >0. An element of the space Exp ((—oo, —&)+iR; L)
is saild to be a holomorphic function of exponential type in L. Endowed
with the norms (2.2), the space Exp((—oco, —F)+iR; L) is an FS space
(namely a Fréchet-Schwartz space). (As for the DFS spaces and FS spaces,
we refer the reader to Komatsu [3].)

We define the Laplace transformation of an analytic functional g with
carrier in L and of type <k as follows:

A(0) = (s exp (20)) . (2.3)
Remark that f({) is defined for { of the half plane {{; Re{< —#}. The

next Paley-Wiener type theorem characterizes the Laplace transformation
of the analytic functionals with carrier in L and of type <Fk.

THEOREM 3. (Morimoto [5]) The Laplace transformation (2.3) is a
linear topological isomorphism of the space &2'(L; K) onto the space Exp
((—oo, —K)+iR; L).

We have the following density theorem.

ProrosiTiON 1. For he &2 (L; k), we have

lim A(2) exp (—022) = h(2)

3lo

in the topology of & (L; k).
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Proor. By the definition of the space & (L; k), there exist ¢>0 and
¢ >0 such that he &@(L,.; K +2¢).
In particular, we have

sup | h(2)| exp ((# +2¢) x)=M>oo.

2€L,,

Then we have
iﬁﬂh(z)l ll-—exp (—522)| exp ((k’ +¢) x)

<Msupll—exp (—522)| exp(—¢ x).

2€L,

As the righthand side tends to 0 as 6] 0, h(z)exp(—0d2° tends to h(2) in
the topology of &,(L,; ¥ +¢) as 4 0.
g.e.d.

COROLLARY. If K\>F, then the space & (L; ki) is a dense subspace
of the space & (L; K). The dual space &'(L; k) can be considered as
a subspace of &'(L; k).

Proor. If >0 and he & (L; k), then h(z)exp(—dz?) belongs to &
(L; ¥). The second assertion results from the Hahn-Banach theorem.

q.e.d.

§3. The Avanissian-Gay transformation.

If 0SK <1 and C&exp(—L), then the function of 2, (1—{e?)~! belongs
to the space 22 (L; ¥). Following Avanissian-Gay we define the trans-
formation G, of an analytic functional pe &’ (L; ¥) as follows:

G (0) =t (1—L&)).

G,() is a function of {&exp(—L) and has the following properties.
PROPOSITION 2. Suppose p=&2’'(L; k), 0<KE <1.

(i) G,() is a holomorphic function on the complement of exp (— L).
(i) The following Laurent expansion is valid:

G.(0)=—X L ii(—n)

for [{] >e
(iii) llim |G,({)|=0.
t-voo

ProoF. (i) can be derived from Morera’s theorem.

(ii) We have the following expansion :
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(1—Ce®) 1= — ZIC‘" exp (—nz).

By elementary calculations, we can show that this series converges uniformly
with respect to { with || >e %", ¢>0, in the topology of <2 (L; ¥). Hence
we have

G.(0)=— ZIC"" {ttr €xp (—12))
=5 oal-n).
is a trivial consequence of (ii). q.e.d.

If the half strip L has the width k,—k,<2x, the complement of the
set exp (— L) contains the open angular domain

A(—ky, —ly+27) = {LEC\(0); —k<arg (< —k+27} .
argl{=—h

e—a

%{p(—m

arg{ = —ke2+2r

Fig. 1.

We shall investigate, for further purposes, the behavior of the function G,({)
in this angular domain.

ProprosITION 3. Suppose the half strip L=[a, co)+1i [k, k)] has the
width k,—k <21 and 0K <1. If psa&’'(L; k), then, for any ¢ with
0<2e<2n+k,—k, and any ¢ with 0< <1—F, there exists a constant C=0
such that

|G| < Clgl>-
in the closed angular domain
A(—ki+e, —k+21—¢)={LEC\(0); ~k+e<arg (< —k+2r—¢f.

Proor. By the continuity of ps«&?’(L; k), there exists a constant
C’' >0 such that, for & exp(—L,.), we have
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|GL(0)] = (pr (1=Ce)™)
< C'sup [1—Cef| texp (K +¢) z)

zET../2

=C"sup |e*—{| "t exp <(k'~|—s’ —1) :c)
zGIJS/2

< C sup |e*—&| 7%~ sup |[e*—{|¥ '~ exp <(k’ +¢ —1) x) .
zEL,/z zGI;ﬁ/z

Therefore with another constant C' >0, we have
|G,

< C// dlSt (C, exp (—L,/?)>—k’—" sup l]_ —Cezlk"""-l

zGL‘/2

for {&exp(—L,y). On the other hand, as the set exp (—L,;) is contained
in the closed angular domain A(—k,—¢/2, —k;+¢/2), we have

dist <C, exp (—L,/z)) > |{] sin (¢/2)

for (€ A(—k+e, —ky+2m—¢).
If 2L, and L€ A(—k+¢e, —ky+27—¢), then

larg {e*| > ¢/2 mod 27 .
Therefore we have

inf |1—{e?| > sin (¢/2) for tcA(—k,+e, ky+2n—e).

zEL‘/z
As —F —¢ <0 and ¥ +¢ —1<0 by the choice of ¢, putting C=C" (sin (¢/2))™*
we obtain the desired estimate of G,({). q.e. d.

Suppose always L=[a, co)+i[k, k;] has the width k,—% <27z and 0<
¥ <1. We denote by &y(C\exp(—L); K) the space of all holomorphic
functions ¢ on the domain C\exp(— L) which satisfy following two con-
ditions :

(1) [p(©I—0 as [¢]—co.

(2) sup {Jo) &"*]; LEA(—kte, —kt2n—e)} <o
for any ¢ with 0<2¢<2r+k,—k, and any ¢ with 0<¢ <1—F#. The space
O,(C\exp (— L) ; ¥) equipped with the seminorms sup {|¢ ({)| ; |{| =€ %**} and
sup {|e(&) &¥*[; teA(—k+e, —k+2n—¢)}, is clearly a Fréchet (-Schwartz)
space. As a corollary to Propositions 2 and 3, we have the following
proposition.

PROPOSITION 4. Suppose the width of L is less than 2x and 0K <1.
Then the Avanissian-Gay transformation G is a continuous linear mapping

of &' (L; k) into ©,(C\exp(—L); k).
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Proor. The continuity results from the boundedness of the set {(1—
§e)™'; |C]=e**) and the set {{***(1—(e)'; CEA(~k+e, —ky+2m—e)
in the space &2 (L; ¥). q.e.d.

§4. Inversion formula for G,(C).

In the sequel we suppose the half strip L has the form
L={a, o)+i[k, k), ki—k<2m

and 0K <.

LeMmMma 1. (An integral formula) Let h&?(L; ¥). Choose positive num-
bers ¢ and ¢ so small that 0<2e<2rx+k —ky, 0<d <1—FkK and that he
&y(L,; F+¢).

(i) For any R>O0, the function of 2

Hy(2) = LL Rh(w) <1—exp (z—w)) 'dw

belongs to the space & (L; 1), consequently to the space &2 (L; K), where
we denote 0L, p=0L,n{w; Re w<R}.
(i) We have

27t h(2) =S h(w) <1—exp (z—w)>_1dw for z€int L, .

oL,
(i) In the topology of & (L; k), we have
lim S h(w) <1 —exp (z2— w))—ldw =2ri h(z).
R0 JAL, p

Proor. (i) It is clear the function Hz(z) is holomorphic in int L,. On
the other hand we have

sup IHR(z) et

zELl /2

= sup S h(w) (e‘z——e‘“’)—ldw’
ZEL‘/Z aL‘,R
< ([, |htw)dist (e, exp(— Ly dw| <o,
BL‘,R

because the integrand is continuous and 9L, » is compact.
(i) By the residue theorem, if 2=int L, and Re 2<R, then we have

SaL R h(w) <1 —exp (z_w)>_1dw =21 h(z),

where dL,(R) denotes the boundary of the rectangle
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L(R)=L.,r{w; Rew<R}.

Let us denote by C.(R) the boundary of L, {w; Rew>R}. We have to
show, for z fixed in int L,,

50 - h(w) (1 —exp (2— w)>_ 'dw

tends to 0 as R—oo,

o+ C:(R)
oL:r 27t -
a—e¢ a ka

0 R

k1

k1—e

Fig. 2.

As he &@,(L; ¥ +¢), we have with some constant C>0,

So - h(w) (1 —exp (z— w)>_1 dw

< CS e~ ®+% (] — == B)~1|dyy|— 0
C (B

as R—oo.

We have to show, putting C/(R)=0L,—0dL,
S . h(w) (1—-exp (z—-w)>_1dw
Cs(R)

tends to O in the topology of & _(L; k) as R—>oo. Remark that e belongs
to the closed angular domain A(—k,+e, —k,+2r—¢) if weC,(R). There-
fore as in the proof of Proposition 3, we can show

inf [e7?—e %| >e % sin (¢/2)

2€L, /s

and

inf |1 —e %e*| >sin (¢/2) for weCl(R).

zel:‘/z

Therefore we have with some constants C and C' >0

sup

e(k'+¢’/2)z S
zelelz

h(w) <1 —exp (z— 'w)>—1 dw

ciR)

= sup
2€L; ;

S , h(w) (e —e™)F 3 (1 —emver) T R duy
C«(R)
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<cj

I w)le((k'+c’/2)u) |dw|
CuR

< C’( 'exp ((—e’/2) w>|]dwl .

JCUR)
The last term converges to 0 as R—oo. Y g.e. d.

THEOREM 4. (Inversion formula) Let yE@’ (L; ¥) and he«& (L; k)
with 0OSKK <1 and L=[a, oo)+i[k, k)], ky—k,<2r. Choose positive numbers
¢ and ¢ so small that 0<2e<2n+k —ky, 0<d<1—FK and that he&,
(L; K+4¢). Then we have the inversion formula: '

{y by =,<2m‘>-ljﬂ G, () h(w) dw .

Proor. We have by Lemma 1 (i)

S <;1z,< —exp (2— w> >h
= <pz, LL.,R 1 —exp (z— w))—lh(w) d'w>

for R>0. By Lemma 1 [iii), the righthand side converges to <{g, 2xi h(2)>.
As the lefthand side converges because of Proposition 3, we obtain the in-
version formula. g.e.d.

THEOREM 5. Suppose 0K <1 and L=[a, oo)+i[ky, ky], kbs—k, <27. If
the function FEExp ((—oo, —F)+iR; L) satisfies the condition

F(—n)=0  for every n=1,2,3, -,

then the function F({) vanishes identically.

Proor. By Theorem 3, there exists an analytic functional p= 2’ (L ; ¥)
such that F({)=/({). By Proposition 2 fii), we have the Laurent expansion :

Gul) = =Xt A(—n) = = S L F(—n)

for |{|>e @ By the assumption, G,({)=0. By Theorem 4, we conclude
¢=0 and F({)=0. g.e.d.
Putting —k=k,=k, 0<k<m, we obtain Theorem 2 as a corollary.

§ 5. The image of the Avanissian-Gay transformation.

We determine in this section the image of the Avanissian-Gay trans-
formation.

THEOREM 6. Suppose the width of L is less than 2z and 0K <1.
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Then the Avanissian-Gay transformation G is a linear topological isomor-
phism of &' (L; k) onto ©y(C\exp(—L); k).

Proor. We have proved the Avanissian-Gay transformation G is a
continuous linear mapping of &' (L; k) into &,(C\exp(—L); k) in Pro-
position 4. If we can prove the bijectivity of G, the continuity of the inverse
mapping results from the closed graph theorem for Fréchet spaces. The
injectivity of G is a consequence of the inversion formula (Theorem 4). Let
us prove the surjectivity of G. Let o=@ (C\exp(—L); ¥) be given. We
put, for he & (L; k),

< h> S —log 7) dv/r

= —-LL (e h(z) dz

where ¢>0 is a sufficiently small number and I',.=I"'+1?+13=exp(—dL,)
is the path in the z-plane depicted in the figure 3.

(5.1)

r-plane

—kite
112 e—a+te

3 /
T —kote

—

Fig. 3.

First we show the improper integral of the righthand side of (5. 1) exists
and is independent of sufficiently small e>0. If 0<¢;,<e<n+(k,—4k;)/2 and
0<d <1—F, we have
sup ISD ) e~ (k+c)zl<oo

z€L, \L

If hear,(L,,; K+e), then the righthand side of (5.1) converges clearly
for 0<e<min (74 (k,—k,)/2, &) and is independent of such ¢ by the Cauchy
integral theorem. Therefore {u(p), h> is well defined by (5.1) and x(p) is
continuous linear on the space £7,(L, ; ¥ +¢;) for any ¢, >0 and ¢>0. By
the definition of the inductive limit topology, u(¢) is a continuous linear
functional on £ (L; ¥).
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We shall compute the Avanissian-Gay transformation of the functional
t(p). By the definition, we have

G (€ <)“ ,(1—Ce)” >
=L ole) (1= exp (—log o) "

=, o) e~ 0ide

- lier o) (r—0)1dr ,

320
where I',,=I',N{r; |r|>d}. For a sufficiently large number R>0 and
sufficiently small number 4 >0, we put
Ce={z; 7] = R}
and
Cile)={r; |t| =8, —kite<argr< —h+2r—¢}.
By Cauchy’s integral formula, we have

1

2 Sc,;(.)+o,i,+rm,

o(7) (=0 tdr =({).

We will show the integral over the path Cx tends to 0 as R—oco and that the
integral over the path Cj(¢) tends to 0 as 0—0. If [z]=R and R>|{|, we
have [t—&|>|z|—|¢|=R—|¢| >0. Therefore

J, ot e=0rde] < lotolle—ciiae

< sup |¢(e)|(R—[¢])"122R—0 as R—sco.
If |£] >0, then

SC‘;(‘) SD(T) (T—C)—ldz- < .gcém |90(T)|(ICI —5)"11d‘c[

< G (|| —0)" 20
= C,2x(|] — 0)~18+ %"+ —0 as §—s0,

‘ because we may choose ¢ so that 1—(F +&)>0. We have thus proved
G,u(so) =0

and the surjectivity of the Avanissian-Gay transformation G. g-e.d.



270

(1]
[2]
[3]
[4]
(5]

[6]

M. Morimoto and K. Yoshino

References

V. AVANISSIAN and R. GAY: Sur une transformation des fonctionnelles ana-
lytiques et ses applications aux fonctions entiéres de plusieurs variables,
Bull. Soc. Math. France, 103 (1975), 341-384.

R. P. Boas: Entire Functions, Academic Press (1954).

H. KOMATSU: Projective and injective limits of weakly compact sequences of
locally convex spaces, J. Math. Soc. Japan. 19 (1967), 366-383.

A. MARTINEAU: Sur les fonctionnelles analytiques et la transformation de
Fourier-Borel, J. Analyse Math. 11 (1963), 1-164.

M. MORIMOTO: On the Fourier ultra-hyperfunctions I. Surikaiseki-kenkyujo
Kokyuroku, 192 (1973), 10-34.

SEBASTIAD-E-SILVA : Les fonctions analytiques comme ultra-distributions dans
le calcul opérationnel, Math. Ann. 136 (1967), 109-142.

Department of Mathematics
Sophia University
Tokyo 102 JAPAN



	\S 1. Introduction.
	THEOREM 1. ...
	THEOREM 2. ...

	\S 2. Analytic functionals ...
	THEOREM 3. ...

	\S 3. The Avanissian-Gay ...
	\S 4. Inversion formula ...
	THEOREM 4. ...
	THEOREM 5. ...

	\S 5. The image of the ...
	THEOREM 6. ...

	References

