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Abstract. We will discuss the convexoid, normaloid and spectraloid ele-
ments in a unital Banach algebra A, and in the tensor product A_{1}\otimes_{\alpha}A_{2}

of two unital Banach algebras A_{1}, A_{2} under some compatible reasonable
norm \alpha . If A is a Hilbert space, the convexoid, normaloid and spectraloid
operators on A are investigated by Halmos, Furuta, Nakamoto, Takeda and
Saito etc. Moreover, we give necessary and sufficient conditions for the
joint convexoidity of n-tuple of operators on Hilbert spaces.

1. Introduction.

Recently, Bonsall and Duncan in [1] developed the numerical range
V(T) for general normed linear space A which is defined by

V(T)=\{f(Tx) : (x,f)\in\pi\}

where \pi=\{(x,f)\in S(A)\cross S(A^{*}) :f(x)=1\} , and S(A) denotes the unit sphere
of A and A^{*} is the dual space of A.

Let A be a normed algebra with unit 1. For a\in A , the numerical
range V(a) of the element a is defined by

V(a)=V(T_{a}) ,

where T_{a} is the left regular representation (operator) on A. It is remarkable
that V(a) can be expressed by V(a)=\{f(a):f\in D(A, 1)\} , where D(A, 1)=
\{f\in A* : ||f||=1=f(1)\} (cf. Bonsall and Duncan [1]). The numerical range
W(T) of the operator T on Hilbert space (cf. Halmos [6]) is convex, but
in general V(T) is not convex. While V(a) is known to be a compact
convex set (cf. Bonsall and Duncan [1]). In this note we discuss the nu-
merical range of a Banach algebra with unit, and consider a\in A such that
the numerical range of the element a coincides with the convex hull of its
spectrum; for such element we shall say that a is convexoid. It seems
not to be known whether the tensor product of convexoid elements x, y
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in two unital Banach algebras A_{1} , A_{2} respectively is convexoid or not. If
A is a Hilbert space, the convexoidity of operators on A was investigated
by Halmos [2]. Furuta and Nakamoto [4], Furuta [5] and Saito [9] etc.
Now we will investigate the convexoid, normaloid and spectraloid elements
in a unital Banach algebra. For convenience, we begin in section 2 to de-
scribe the definitions and some notations. Sections 3 and 4 are the main
parts, we discuss the convexoid, normaloid and spectraloid elements in the
tensor products of two unital Banach algebras for a compatible reasonable
norm. This will yield a sharper version of a similar theorems of Furuta
and Nakamoto [4] and Saito [9]. Recently Dash [2], Dash and Schechter
[3] have discussed the joint numerical range of operators T_{i}(1\leq i\leq n) acting
on the tensor products of Hilbert spaces. In section 4, we will apply the
methods in section 3 to study the joint convexoidity of an n-tuple of operators
T_{1} , \cdots , T_{n} on the tensor products H_{1}\otimes H_{2}\otimes\cdots\otimes H_{n} of Hilbert spaces, and
establish necessary and sufficient conditions for joint convexoidity (For the
definition see section 4).

2. Preliminaries and notations.

Through out this note, all normed algebras are over complex field C.
Let A be a normed algebra with unit 1, such that ||1||=1 , i . e. a unital

normed algebra. Denote by A^{*} the dual space of A. We define the state
space of A to be the set:

D(A, 1)=\{f\in A^{*}:f(1)=1=||f||\}

For each a\in A , the numerical range of a is defined by:

V(A, a)=\{f(a) : f\in D(A, 1)\} ,

and the radius v(a) of numerical range, called numerical radius, is given
by v(a)= \sup\{|\lambda| : \lambda\in V(A, a)\} . The spectrum of a is denoted by Sp (A, a)
and the spectral radius by \rho(a) . In a unital Banach algebra it is known
that the spectrum Sp (A, a) is contained in the numerical range V(A, a)
for any a\in A .

For a normed space A, we denote by S(A) the unit sphere of A, and

\pi=\{(s,f)\in A\cross A^{*}: x\in S(A) and f\in S(A^{*}) , f(x)=1\}

For each T\in \mathfrak{B}(A) , the set of all bounded linear operators on a normed
linear space A, we define the spatial numerical range V(T) of T as

V(T)=\{f(Tx) : (x,f)\in\pi\}
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If A is a Hilbert space, the classical numerical range W(T)=\{\langle Tx, x\rangle:x\in

S(A)\} coincides with V(T) . Here \langle , \rangle denotes the scalar product. If A
is a unital normed algebra, consider the left regular representation aarrow T_{a}

of A in \mathfrak{B}(A) , we have (see Bonsall and Duncan [1]) V(A, a)=V(T_{a}) .
Given a bounded linear operator T on a Banach space A, we may

regard T as an element of the unital Banach algebra \mathfrak{B}(A) , and so the
numerical range is given by V(\mathfrak{B}(A), T) . In Bonsall and Duncan [1; TheO-
rem 9, 4] and Stampfli and Williams [10; Theorem 6], they give a further
result that \overline{Co}V(T)=V(\mathfrak{B}(A), T) , where \overline{Co} means the closure of convex
hull. If A is a Hilbert space, then V(\mathfrak{B}(A), T)=\overline{W(T)} .

An element a\in A is said to be convexoid if V(a)=CoSp(a) , where
V(a)=V(A, a) , Sp (a)=Sp(A, a) . The element a\in A is said to be normaloid
if \rho(a)=||a|| and a\in A is said to be spectraloid if v(a)=\rho(a) . It is easy
to see that our notions of convexoid, normaloid and spectraloid elements
extend the definitions given for the cases \mathfrak{B}(H) by which are defined in
Furuta [5] and Halmos [6]. Here and henceforth H denotes Hilbert space.

3. Numerical range of the tensor products of elements.

Denote by A_{1}\otimes A_{2} the algebraic tensor product of normed algebras A_{1}

and A_{2} . Every element u in A_{1}\otimes A_{2} can be expressed in the form u= \sum_{i=1}^{k}

x_{i}\otimes y_{i} . There is a natural multiplication in A_{1}\otimes A_{2} defined by

u_{1} \cdot u_{2}=\sum_{i=1}^{n}\sum_{f=1}^{m}x_{i}s_{j}\otimes y_{i}t_{j}

where u_{1}= \sum_{i=1}^{n}x_{i}\otimes y_{i} and u_{2}= \sum_{j=1}^{m}s_{j}\otimes t_{j} are elements in A_{1}\otimes A_{2} , and then

A_{1}\otimes A_{2} becomes an algebra under the natural multiplication. If A_{1} and A_{2}

are * -algebras, then we can supply an involution on A_{1}\otimes A_{2} by

( \sum_{i=1}^{n}x_{i}\otimes y_{i})^{*}=\sum_{i=1}^{n}x_{i}^{*}\otimes y_{i}^{*}

This * defined here is well defined (cf. Laursen [8]), and so A_{1}\otimes A_{2} forms
a * -algebra. There are several norms on the algebraic tensor product A_{1}\otimes

A_{2} of normed algebras A_{1} and A_{2} . Among these norms we mention the

least cross norm \epsilon , defined as follows: for u= \sum_{i=1}^{n}x_{i}\otimes y_{i} in A_{1}\otimes A_{2},

||u||_{e}= \sup|\sum_{i=1}^{n}x’(x_{i})y’(y_{i})|

where the sup is taken over all choices of x,\cdot y’ in the unit balls of the
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dual spaces of A_{1} , A_{2}, and is independent of the choice of representation
for u .

Another natural norm on A_{1}\otimes A_{2} is the greatest cross norm \pi , which
is defined by the following manner: for u\in A_{1}\otimes A_{2} define

||u||_{\pi}= \inf\sum||x_{i}||||y_{i}||

where the inf is taken over all representations of u= \sum_{i=1}^{n}x_{i}\otimes y_{i} . A norm \alpha

on A_{1}\otimes A_{2} is called reasonable, if \alpha is a cross norm on A_{1}\otimes A_{2} and the
dual norm \alpha’ induced by the dual of A_{1}\otimes_{\alpha}A_{2} is a cross norm on A_{1}^{*}\otimes A_{2}^{*} .
It is well known that \pi and \epsilon are reasonable, and every norm \alpha with \epsilon\leq

\alpha\leq\pi is reasonable.
A cross norm or reasonable norm \alpha on A_{1}\otimes A_{2} is called uniform, if

for any pair (T_{1}, T_{2})\in \mathfrak{B}(A_{1})\cross \mathfrak{B}(A_{2}) , we have

sup \{||(T_{1}\otimes T_{2})u||_{\alpha} ; ||u||_{\alpha}\leq 1 , u\in A_{1}\otimes_{\alpha}A_{2}\}\leq||T_{1}||||T_{2}||

The greatest and smallest reasonable norm \pi and \epsilon are uniform, and if \alpha

is a reasonable norm, so is \alpha’ (cf. Ichinose [7; p. 129]).
In this section we assume that \alpha is a compatible reasonable norm on

A_{1}\otimes A_{2} . This means that
\alpha(u_{1}\cdot u_{2})\leq\alpha(u_{1})\alpha(u_{2}) , for all u_{1} , u_{2}\in A_{1}\otimes A_{2} ,

so that A_{1}\otimes_{\alpha}A_{2} forms a normed algebra. The greatest cross norm \pi is
always compatible with multiplication, there are some examples of algebras
in which the least cross norm \epsilon is not compatible with multiplication. We
denote A_{1}\otimes_{\alpha}A_{2} to be the completion of A_{1}\otimes_{\alpha}A_{2} with the compatible rea-
sonable norm \alpha .

The following two propositions are easy to see and may be known in
the product states and product functionals, for convenient which we state
as following.

PROPOSITION 3. 1. Let A_{1} , A_{2} be unital normed algebras, then

D(A_{1},1)\otimes D(A_{2},1)\subseteq D(A_{1}\otimes_{\alpha}A_{2},1\otimes 1)

Furthermore

\overline{Co}(D(A_{1},1)\otimes D(A_{2},1)\subseteq D(A_{1}\otimes_{\alpha}A_{2},1\otimes 1) ,

where D(A_{1}\otimes_{\alpha}A_{2},1\otimes 1) is the state space of A_{1}\otimes_{\alpha}A_{2}, the closure is taken
in weak*-topology in (A_{1}\otimes_{\alpha}A_{2})^{*} .

PROPOSITION 3. 2. Let A_{1} and A_{2} be two unital Banach algebras,
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x\in A_{1} , y\in A_{2}, x\otimes y\in A_{1}\otimes_{\alpha}A_{2} . Then, for a compact set E of complex num-
bers, Co(E) is compact and so \overline{Co}(E)=Co(E) . Also V(x)\cdot V(y) is compact.

So \overline{C^{\tau}o}(V(x)\cdot V(y))=Co(V(x)\cdot V(y))\subseteq V(x\otimes y) .
If \alpha is a reasonable compatible norm on A_{1}\otimes A_{2} , then we have:
THEOREM 3.3. Let A_{1} and A_{2} be unital Banach algebras and \alpha

a uniform compatible norm on A_{1}\otimes A_{2} . Then

Sp(x\otimes y)=Sp(x)Sp(y)1

PROOF. Let x\in A_{1} , y\in A_{2} and T_{x}, T_{y} be left regular representations
of A_{1} , A_{2} in \mathfrak{B}(A_{1}) , \mathfrak{B}(A_{2}) respectively. Evidently, T_{x\otimes y}=T_{x}\otimes T_{y}\in \mathfrak{B}(A_{1}\otimes_{a}

A_{2}) . Since \alpha is a reasonable norm, T_{x}\otimes T_{y} is a bounded operator on A_{1}\otimes_{\alpha}A_{2}

and so T_{x\otimes y} coincides algebraically with T_{x}\otimes T_{y} . Therefore T_{x}\otimes T_{y} can be
extended continuously to the completion A_{1}\otimes_{\alpha}A_{2} of A_{1}\otimes_{a}A_{2} . We denote by
T_{x}\overline{\otimes_{\alpha}}T_{y} , the extension of T_{x}\otimes T_{y} . By virtue of Theorem 1. 9 and Theorem
4. 3 in Ichinose [7], we have

Sp (T_{x\otimes y})=Sp(T_{x}\overline{\otimes_{\alpha}}T_{y})=Sp(T_{x}) Sp (T_{y}) .
Since Sp (T_{x})=Sp(x) and Sp (T_{y})=Sp(y) (cf. [7] Theorem 1. 6. 9), we have

Sp (x\otimes y)=Sp(T_{x\copyright y})=Sp(T_{x}\overline{\otimes_{\alpha}}T_{y})=Sp(T_{x}) Sp (T_{y})

=Sp(x) Sp(y) Q. E. D.

It is known that in the tensor products of operators T and S on a
complex Hilbert space, the relation

(*) \overline{W}(T\otimes S)=Co(W(T)\cdot W(B))

need not be always true (cf. Saito [9]).
It is natural to ask when the relation (^{*}) holds for the tensor products

of elements of Banach algebras, that is; when does the relation

(^{**}) V(x\otimes y)=Co(V(x)\cdot V(y))

hold for the elements x, y of Banach algebras ?
We give necessary and sufficient conditions for (^{**}) in the following
THEOREM 3.4. Let A_{1} , A_{2} be unital Banach algebras and \alpha a uniform

compatible norm on A_{1}\otimes A_{2} . Suppose that x\in A_{1} and y\in A_{2} are convexoid.
Then the element x\otimes y\in A_{1}\otimes_{\alpha}A_{2} is convexoid if and only if the following
identity

(^{**}) V(x\otimes y\grave{)}=Co(V(x)\cdot V(y))

holds.
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PROOF. For the necessity, it sufficies to prove that

V(x\otimes y)\subseteq Co(V(x)\cdot V(y))

Since by Theorem 3. 3,

V(x\otimes y)=Co Sp (x\otimes y)=Co(Sp(x)Sp(y))\subseteq Co(V(x)\cdot V(y)) ,\cdot

it follows from Proposition 3. 2 that we have

Co (V(x)\cdot V(y))=V(x\otimes y)1

Conversely if V(x\otimes y)=Co( V(x)V(y)) , we will prove that x\otimes y is convexoid.
That is

V(x\otimes y)=Co Sp (x\otimes y)

This follows at once from the elementary observation that for sets E, F
of complex numbers

Co (Co (E) Co (F))=Co(F, E) .
Q. E. D.

It is known that \overline{W(T}) =V(\mathfrak{B}(H), T) , for T\in \mathfrak{B}(H) . It follows that
the convexoid, normaloid and spectraloid elements of the Banach algebra
\mathfrak{B}(H) are convexoid, normaloid and spectraloid operators on Hilbert space
H (cf. Halmos [6], Furuta [5]).

COROLLARY 3. 5. (Saito [9]). Let T_{j}S be operators on a Hilbert space
and convexoid. Then the following conditions are equivalent:

(i) \overline{W}(T\otimes S)=\overline{Co}(W(T)W(s))

(ii) T\otimes S is convexoid.
The results for the normaloid and spectraloid elements are immediately

by virtue of [4]. For convenience, we state and prove the following theorem
THEOREM 3.6. Let A_{1} , A_{2} be unital Banach algebras if x\in A_{1} and

y\in A_{2} are normaloid, then x\otimes y\in A_{1}\otimes_{a}A_{2} is also normaloid and vice versa.
PROOF. It x and y are normaloid, then \rho(x)=||x|| , \rho(y)=||y|| . Since

\alpha 1S a cross norm,

\rho(x\otimes y)=h.m||(x\otimes y)^{n}||^{\frac{1}{\alpha n}}=\lim_{nnarrow\inftyarrow\infty}||x^{n}\otimes y^{n}||^{\frac{1}{\alpha n}}

= \lim_{narrow\infty}(||x^{n}||^{\frac{1}{n}}||y^{n}||^{\frac{1}{n}})=\lim_{narrow\infty}||x^{n}||^{\frac{1}{n}}||\lim_{narrow\infty}||y^{n}||^{\frac{1}{n}}

=\rho(x)\rho(y)=||x||||y||=||x\otimes y||_{\alpha}
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Conversely, if \rho(x\otimes y)=||x\otimes y||_{\alpha} , \rho(x)\rho(y)=||x||||y|| , and \rho(x)\leq||x|| , \rho(y)\leq

||y|| , then \rho(x)=||x|| and \rho(y)=||y|| , i . e . x and y are normaloid.

THEOREM 3.7. Let A_{1} and A_{2} be unital Banach algebras. If x\in A_{1}

and y\in A_{2} are spectraloid satisfying V(x\otimes y)=Co(V(x)\cdot V(y)) then x\otimes y\in

A_{1}\otimes_{\alpha}A_{2} is spectraloid.
PROOF. Since V(x)V(y)\subseteq\{\lambda:|\lambda|\leq v(x)x(y)\}=D,

Co (V(x)\cdot V(y))\subseteq D ,

and
V(x\otimes y)\subseteq D, i . e . v(x\otimes y)\leq v(x)v(y)

By Proposition 3. 2, v(x)v(y)\leq v(x\otimes y) . Consequently, v(x\otimes y)=v(x)v(y)=

\rho(x)\rho(y)=\rho(x\otimes y) . Q. E. D.

4. The joint convexoidity of an n-tuple of operators on Hilbert spaces.

In this section we investigate the joint convexoidity of an n-tuple of
operators T_{i}(1\leq i\leq n) on Hilbert spaces. Let \{H_{i}\}_{i=1}^{n} be Hilbert spaces, I_{i}

be the identity operator on H_{i} , A_{i} be an arbitrary bounded linear operator
on H_{i}(1\leq i\leq n) . We introduce the operators T_{i}(i=1,2, \cdots, n) of tensor
products acting on the tensor product space H_{1}\otimes H_{2}\otimes\cdots\otimes H_{n} defined by

(1) T_{i}=I_{1}\otimes\cdots\otimes I_{i-1}\otimes A_{i}\otimes I_{i+1}\otimes\cdots\otimes I_{n}

(n=1,2, \cdots, n) . The joint numerical range of T_{i}(i=1,2, \cdots, n) is defined
to be the set of n-tuple z=(z_{1^{ }},\cdots, z_{n}) in C^{n} given by

W(T_{1}, T_{2^{ }},\cdots, T_{n})=\{(\langle T_{1}u, u\rangle, \cdots, \langle T_{n}u, u\rangle) ;

u is a unit vector in H_{1}\otimes\cdots\otimes H_{n}\}

The joint spectrum of T_{1} , T_{2}, \cdots T_{n} is a subset in C^{n} , denoted by Sp (T_{1}, \cdots ,
T_{n}) which is explaining as following:

Let \mathfrak{U} be the set of all double (or second) commutants of T_{1} , \cdots , T_{n} ,
that is the set of all operators on H_{1}\otimes\cdots\otimes H_{n} that commute with every
operator which commutes with every T_{i} . Since the operators T_{1} , \cdots , T_{n} com-
mute with each other, \mathfrak{U} is a commutative Banach algebra. A complex
vector z=(Z_{1}^{ },\cdots, z_{n}) of C^{n} belongs to the joint spectrum Sp (T_{1^{ }},\cdots, T_{n}) of
T_{1} , \cdots , T_{n} if and only if for any operator B_{1} , \cdots , B_{n} in \mathfrak{A} , the following relation
holds

\sum_{i=1}^{n}B_{i}(T_{i}-z_{i})\neq I_{1}\otimes\cdots\otimes I_{n}
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In Dash and Schechter [3] they proved that the joint spectrum of T_{1} , \cdots ,
T_{n} is given by

(a) Sp (T_{1^{ }}, \cdots, T_{n})=\prod_{i=1}^{n}Sp(T_{i})

and
Sp (T_{i})=Sp(A_{i}) .

Furthermore Dash proved in [2] that

(b) W(T_{1^{ }}, \cdots, T_{n})=\prod_{i=1}^{n}W(T_{i})=\prod_{i=1}^{n}W(A_{i})

is convex and contains Sp (T_{1^{ }},\cdots, T_{n}) .
We say that an n-tuple of operators T_{1} , \cdots , T_{n} is joint convexoid if

Co Sp (T_{1^{ }},\cdots, T_{n})=\overline{W}(T_{1}, \cdots, T_{n})

By (a) and (b) we see that the joint convexoidity follows from the following
identity:

Co ( \prod_{i=1}^{n}Sp(T_{i}))=\prod_{i=1}^{n}\overline{W}(T_{i})

We will give a necessary and sufficient condition for the joint convexoidity
of an n-tuple of operators T_{1} , \cdots , T_{n} which we state as follows

THEOREM 4. 1. An n-tuple of operators T_{1} , \cdots , T_{n} on H_{1}\otimes\cdots\otimes H_{n}

given by (1) at the first paragraph of this section is joint convexoid if and
only if each T_{i}(1\leq i\leq n) is convexoid.

PROOF. For necessity, we assume that an n-tuple of operators T_{1} , \cdots ,
T_{n} is joint convexoid, then we have

\prod_{i=1}^{n}\overline{W}(T_{i})=Co(\prod_{i=1}^{n}Sp(T_{i}))

It follows from Co ( \prod_{i=1}^{n}Sp(T_{i}))\subseteq\prod_{i=1}^{n}Co Sp (T_{i}) that we have

\overline{W}(T_{i})\subseteq Co Sp (T_{i}) for each i\tau

but since Co Sp (T_{i})\subseteq\overline{W}(T_{i}) , we have
\overline{W}(T_{i})=Co Sp (T_{i}) ,

it follows that each T_{i} is convexoid.
Conversely, since

D=\{z=(z_{1^{ }},\cdots, z_{n})\in C^{n} ; |z-\lambda|\leq r, r\in R, \lambda\in C^{n}\}



222 H.- C. Lai and F.- B. Yeh

is a polydisk containing \prod_{i=1}^{n}Sp(T_{i})=Sp(T_{1}, \cdots, T_{n})=\prod_{i=1}^{n}Sp(A_{i}) , thus we have

( \sum_{i=1}^{n}|\rho(A_{i})-\lambda_{i}|^{2})^{\not\in}\leq r ,

where \rho(A_{i}) is the spectral radius of A_{i} . Now if each T_{i} is convexoid,
then Co Sp (T_{i})=\overline{W}(T_{i}) , and \sup_{||f_{i}||=1}\{|\langle A_{i}f_{i},f_{i}\rangle|\}=\rho(A_{i})

, we have

( \sum_{i=1}^{n}|\langle(A_{i}-\lambda_{i})f_{i},f_{i}\rangle|^{2})^{\S}\leq(\sum_{i=1}^{n}|\rho(A_{i})-\lambda_{i}|^{2})^{1}2\leq r .

Since

Co Sp (T_{1^{ }},\cdots, T_{n})

is the intersection of all such polydisk containing Sp (T_{1^{ }},\cdots, T_{n}) , it follows
that

\overline{W}(T_{1}, \cdots, T_{n})\subseteq Co Sp (T_{1^{ }},\cdots, T_{n})

Consequently

Co Sp (T_{1^{ }},\cdots, T_{n})=\overline{W}(T_{1^{ }},\cdots, T_{n})

This shows that the n-tuple of operators T_{1} , \cdots , T_{n} is joint convexoid.
Q. E. D.
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