Numerical ranges of the tensor products of elements

By Hang-chin Lai and Fang-Bo Yeh
(Received August 31, 1977)

[AMS (MOS) Subject Classification Scheme (1970) 46 H 99, 47 H 10]

Abstract

We will discuss the convexoid, normaloid and spectraloid elements in a unital Banach algebra A, and in the tensor product $A_{1} \widehat{\otimes}_{\alpha} A_{2}$ of two unital Banach algebras A_{1}, A_{2} under some compatible reasonable norm α. If A is a Hilbert space, the convexoid, normaloid and spectraloid operators on A are investigated by Halmos, Furuta, Nakamoto, Takeda and Saito etc. Moreover, we give necessary and sufficient conditions for the joint convexoidity of n-tuple of operators on Hilbert spaces.

1. Introduction.

Recently, Bonsall and Duncan in [1] developed the numerical range $V(T)$ for general normed linear space A which is defined by

$$
V(T)=\{f(T x):(x, f) \in \pi\}
$$

where $\pi=\left\{(x, f) \in S(A) \times S\left(A^{*}\right): f(x)=1\right\}$, and $S(A)$ denotes the unit sphere of A and A^{*} is the dual space of A.

Let A be a normed algebra with unit 1 . For $a \in A$, the numerical range $V(a)$ of the element a is defined by

$$
V(a)=V\left(T_{a}\right),
$$

where T_{a} is the left regular representation (operator) on A. It is remarkable that $V(a)$ can be expressed by $V(a)=\{f(a): f \in D(A, 1)\}$, where $D(A, 1)=$ $\left\{f \in A^{*}:\|f\|=1=f(1)\right\}$ (cf. Bonsall and Duncan [1]). The numerical range $W(T)$ of the operator T on Hilbert space (cf. Halmos [6]) is convex, but in general $V(T)$ is not convex. While $V(a)$ is known to be a compact convex set (cf. Bonsall and Duncan [1]). In this note we discuss the numerical range of a Banach algebra with unit, and consider $a \in A$ such that the numerical range of the element a coincides with the convex hull of its spectrum; for such element we shall say that a is convexoid. It seems not to be known whether the tensor product of convexoid elements x, y

[^0]in two unital Banach algebras A_{1}, A_{2} respectively is convexoid or not. If A is a Hilbert space, the convexoidity of operators on A was investigated by Halmos [2]. Furuta and Nakamoto [4], Furuta [5] and Saito [9] etc. Now we will investigate the convexoid, normaloid and spectraloid elements in a unital Banach algebra. For convenience, we begin in section 2 to describe the definitions and some notations. Sections 3 and 4 are the main parts, we discuss the convexoid, normaloid and spectraloid elements in the tensor products of two unital Banach algebras for a compatible reasonable norm. This will yield a sharper version of a similar theorems of Furuta and Nakamoto [4] and Saito [9]. Recently Dash [2], Dash and Schechter [3] have discussed the joint numerical range of operators $T_{i}(1 \leq i \leq n)$ acting on the tensor products of Hilbert spaces. In section 4, we will apply the methods in section 3 to study the joint convexoidity of an n-tuple of operators T_{1}, \cdots, T_{n} on the tensor products $H_{1} \otimes H_{2} \otimes \cdots \otimes H_{n}$ of Hilbert spaces, and establish necessary and sufficient conditions for joint convexoidity (For the definition see section 4).

2. Preliminaries and notations.

Through out this note, all normed algebras are over complex field \boldsymbol{C}.
Let A be a normed algebra with unit 1 , such that $\|1\|=1$, i.e. a unital normed algebra. Denote by A^{*} the dual space of A. We define the state space of A to be the set:

$$
D(A, 1)=\left\{f \in A^{*}: f(1)=1=\|f\|\right\} .
$$

For each $a \in A$, the numerical range of a is defined by:

$$
V(A, a)=\{f(a): f \in D(A, 1)\},
$$

and the radius $v(a)$ of numerical range, called numerical radius, is given by $v(a)=\sup \{|\lambda|: \lambda \in V(A, a)\}$. The spectrum of a is denoted by $\operatorname{Sp}(A, a)$ and the spectral radius by $\rho(a)$. In a unital Banach algebra it is known that the spectrum $\operatorname{Sp}(A, a)$ is contained in the numerical range $V(A, a)$ for any $a \in A$.

For a normed space A, we denote by $S(A)$ the unit sphere of A, and

$$
\pi=\left\{(s, f) \in A \times A^{*}: x \in S(A) \quad \text { and } \quad f \in S\left(A^{*}\right), f(x)=1\right\} .
$$

For each $T \in \mathfrak{B}(A)$, the set of all bounded linear operators on a normed linear space A, we define the spatial numerical range $V(T)$ of T as

$$
V(T)=\{f(T x):(x, f) \in \pi\} .
$$

If A is a Hilbert space, the classical numerical range $W(T)=\{\langle T x, x\rangle: x \in$ $S(A)\}$ coincides with $V(T)$. Here \langle,$\rangle denotes the scalar product. If A$ is a unital normed algebra, consider the left regular representation $a \rightarrow T_{a}$ of A in $\mathfrak{B}(A)$, we have (see Bonsall and Duncan [1]) $V(A, a)=V\left(T_{a}\right)$.

Given a bounded linear operator T on a Banach space A, we may regard T as an element of the unital Banach algebra $\mathfrak{B}(A)$, and so the numerical range is given by $V(\mathfrak{B}(A), T)$. In Bonsall and Duncan [1; Theorem 9, 4] and Stampfli and Williams [10; Theorem 6], they give a further result that $\overline{\mathrm{Co}} V(T)=V(\mathfrak{B}(A), T)$, where $\overline{\mathrm{Co}}$ means the closure of convex hull. If A is a Hilbert space, then $V(\mathfrak{B}(A), T)=\overline{W(T)}$.

An element $a \in A$ is said to be convexoid if $V(a)=\operatorname{CoSp}(a)$, where $V(a)=V(A, a), \operatorname{Sp}(a)=\operatorname{Sp}(A, a)$. The element $a \in A$ is said to be normaloid if $\rho(a)=\|a\|$ and $a \in A$ is said to be spectraloid if $v(a)=\rho(a)$. It is easy to see that our notions of convexoid, normaloid and spectraloid elements extend the definitions given for the cases $\mathfrak{B}(H)$ by which are defined in Furuta [5] and Halmos [6]. Here and henceforth H denotes Hilbert space.

3. Numerical range of the tensor products of elements.

Denote by $A_{1} \otimes A_{2}$ the algebraic tensor product of normed algebras A_{1} and A_{2}. Every element u in $A_{1} \otimes A_{2}$ can be expressed in the form $u=\sum_{i=1}^{\kappa}$ $x_{i} \otimes y_{i}$. There is a natural multiplication in $A_{1} \otimes A_{2}$ defined by

$$
u_{1} \cdot u_{2}=\sum_{i=1}^{n} \sum_{j=1}^{m} x_{i} s_{j} \otimes y_{i} t_{j}
$$

where $u_{1}=\sum_{i=1}^{n} x_{i} \otimes y_{i}$ and $u_{2}=\sum_{j=1}^{m} s_{j} \otimes t_{j}$ are elements in $A_{1} \otimes A_{2}$, and then $A_{1} \otimes A_{2}$ becomes an algebra under the natural multiplication. If A_{1} and A_{2} are $*$-algebras, then we can supply an involution on $A_{1} \otimes A_{2}$ by

$$
\left(\sum_{i=1}^{n} x_{i} \otimes y_{i}\right)^{*}=\sum_{i=1}^{n} x_{i}^{*} \otimes y_{i}^{*} .
$$

This * defined here is well defined (cf. Laursen [8]], and so $A_{1} \otimes A_{2}$ forms a $*$-algebra. There are several norms on the algebraic tensor product $A_{1} \otimes$ A_{2} of normed algebras A_{1} and A_{2}. Among these norms we mention the least cross norm ε, defined as follows : for $u=\sum_{i=1}^{n} x_{i} \otimes y_{i}$ in $A_{1} \otimes A_{2}$,

$$
\|u\|_{i}=\sup \left|\sum_{i=1}^{n} x^{\prime}\left(x_{i}\right) y^{\prime}\left(y_{i}\right)\right|
$$

where the sup is taken over all choices of x^{\prime}, y^{\prime} in the unit balls of the
dual spaces of A_{1}, A_{2}, and is independent of the choice of representation for u.

Another natural norm on $A_{1} \otimes A_{2}$ is the greatest cross norm π, which is defined by the following manner : for $u \in A_{1} \otimes A_{2}$ define

$$
\|u\|_{\pi}=\inf \sum\left\|x_{i}\right\|\left\|y_{i}\right\|
$$

where the inf is taken over all representations of $u=\sum_{i=1}^{n} x_{i} \otimes y_{i}$. A norm α on $A_{1} \otimes A_{2}$ is called reasonable, if α is a cross norm on $A_{1} \otimes A_{2}$ and the dual norm α^{\prime} induced by the dual of $A_{1} \otimes_{\alpha} A_{2}$ is a cross norm on $A_{1}^{*} \otimes A_{2}^{*}$. It is well known that π and ε are reasonable, and every norm α with $\varepsilon \leq$ $\alpha \leq \pi$ is reasonable.

A cross norm or reasonable norm α on $A_{1} \otimes A_{2}$ is called uniform, if for any pair $\left(T_{1}, T_{2}\right) \in \mathfrak{B}\left(A_{1}\right) \times \mathfrak{B}\left(A_{2}\right)$, we have

$$
\sup \left\{\left\|\left(T_{1} \otimes T_{2}\right) u\right\|_{\alpha} ;\|u\|_{\alpha} \leq 1, u \in A_{1} \otimes_{\alpha} A_{2}\right\} \leq\left\|T_{1}\right\|\left\|T_{2}\right\|
$$

The greatest and smallest reasonable norm π and ε are uniform, and if α is a reasonable norm, so is α^{\prime} (cf. Ichinose [7; p. 129]).

In this section we assume that α is a compatible reasonable norm on $A_{1} \otimes A_{2}$. This means that

$$
\alpha\left(u_{1} \cdot u_{2}\right) \leq \alpha\left(u_{1}\right) \alpha\left(u_{2}\right), \quad \text { for all } u_{1}, u_{2} \in A_{1} \otimes A_{2},
$$

so that $A_{1} \otimes_{\alpha} A_{2}$ forms a normed algebra. The greatest cross norm π is always compatible with multiplication, there are some examples of algebras in which the least cross norm ε is not compatible with multiplication. We denote $A_{1} \widehat{\otimes}_{\alpha} A_{2}$ to be the completion of $A_{1} \otimes_{\alpha} A_{2}$ with the compatible reasonable norm α.

The following two propositions are easy to see and may be known in the product states and product functionals, for convenient which we state as following.

Proposition 3.1. Let A_{1}, A_{2} be unital normed algebras, then

$$
D\left(A_{1}, 1\right) \otimes D\left(A_{2}, 1\right) \subseteq D\left(A_{1} \otimes_{\alpha} A_{2}, 1 \otimes 1\right)
$$

Furthermore

$$
\overline{\mathrm{Co}}\left(D\left(A_{1}, 1\right) \otimes D\left(A_{2}, 1\right) \subseteq D\left(A_{1} \otimes_{\alpha} A_{2}, 1 \otimes 1\right)\right.
$$

where $D\left(A_{1} \otimes_{a} A_{2}, 1 \otimes 1\right)$ is the state space of $A_{1} \otimes_{\alpha} A_{2}$, the closure is taken in weak*-topology in $\left(A_{1} \otimes_{\alpha} A_{2}\right)^{*}$.

Proposition 3.2. Let A_{1} and A_{2} be two unital Banach algebras,
$x \in A_{1}, y \in A_{2}, x \otimes y \in A_{1} \otimes_{\alpha} A_{2}$. Then, for a compact set E of complex numbers, $C o(E)$ is compact and so $\overline{C o}(E)=C o(E)$. Also $V(x) \cdot V(y)$ is compact. So $\overline{C o}(V(x) \cdot V(y))=C o(V(x) \cdot V(y)) \subseteq V(x \otimes y)$.

If α is a reasonable compatible norm on $A_{1} \otimes A_{2}$, then we have:
Theorem 3.3. Let A_{1} and A_{2} be unital Banach algebras and α a uniform compatible norm on $A_{1} \otimes A_{2}$. Then

$$
S p(x \otimes y)=S p(x) S p(y) .
$$

Proor. Let $x \in A_{1}, y \in A_{2}$ and T_{x}, T_{y} be left regular representations of A_{1}, A_{2} in $\mathfrak{B}\left(A_{1}\right), \mathfrak{B}\left(A_{2}\right)$ respectively. Evidently, $T_{x \otimes y}=T_{x} \otimes T_{y} \in \mathfrak{B}\left(A_{1} \otimes_{\alpha}\right.$ A_{2}). Since α is a reasonable norm, $T_{x} \otimes T_{y}$ is a bounded operator on $A_{1} \otimes_{\alpha} A_{2}$ and so $T_{x \otimes y}$ coincides algebraically with $T_{x} \otimes T_{y}$. Therefore $T_{x} \otimes T_{y}$ can be extended continuously to the completion $A_{1} \otimes_{\alpha} A_{2}$ of $A_{1} \otimes_{\alpha} A_{2}$. We denote by $\widetilde{T_{x} \otimes_{\alpha}} T_{y}$, the extension of $T_{x} \otimes T_{y}$. By virtue of Theorem 1.9 and Theorem 4.3 in Ichinose [7], we have

$$
\mathrm{Sp}\left(T_{x \otimes y}\right)=\mathrm{Sp}\left(\widetilde{T_{x}} \widetilde{\bigotimes_{\alpha}} T_{y}\right)=\operatorname{Sp}\left(T_{x}\right) \operatorname{Sp}\left(T_{y}\right) .
$$

Since $\operatorname{Sp}\left(T_{x}\right)=\operatorname{Sp}(x)$ and $\operatorname{Sp}\left(T_{y}\right)=\operatorname{Sp}(y)$ (cf. [7] Theorem 1.6.9), we have

$$
\begin{aligned}
& \operatorname{Sp}(x \otimes y)=\operatorname{Sp}\left(T_{x 8 y}\right)=\operatorname{Sp}\left(\widetilde{T_{x} \bigotimes_{\alpha}} T_{y}\right)=\operatorname{Sp}\left(T_{x}\right) \operatorname{Sp}\left(T_{y}\right) \\
&=\operatorname{Sp}(x) \operatorname{Sp}(y) . \\
& \text { Q. E. D. }
\end{aligned}
$$

It is known that in the tensor products of operators T and S on a complex Hilbert space, the relation

$$
\begin{equation*}
\bar{W}(T \otimes S)=\operatorname{Co}(W(T) \cdot W(B)) \tag{*}
\end{equation*}
$$

need not be always true (cf. Saito [9]).
It is natural to ask when the relation (*) holds for the tensor products of elements of Banach algebras, that is; when does the relation

$$
\begin{equation*}
V(x \otimes y)=\operatorname{Co}(V(x) \cdot V(y)) \tag{}
\end{equation*}
$$

hold for the elements x, y of Banach algebras?
We give necessary and sufficient conditions for (${ }^{* *)}$ in the following
Theorem 3.4. Let A_{1}, A_{2} be unital Banach algebras and α a uniform compatible norm on $A_{1} \otimes A_{2}$. Suppose that $x \in A_{1}$ and $y \in A_{2}$ are convexoid. Then the element $x \otimes y \in A_{1} \widehat{\otimes}_{\alpha} A_{2}$ is convexoid if and only if the following identity

$$
\begin{equation*}
V(x \otimes y)=C o(V(x) \cdot V(y)) \tag{**}
\end{equation*}
$$

holds.

PROOF. For the necessity, it sufficies to prove that

$$
V(x \otimes y) \subseteq \operatorname{Co}(V(x) \cdot V(y))
$$

Since by Theorem 3.3,

$$
V(x \otimes y)=\operatorname{Co~} \mathrm{Sp}(x \otimes y)=\mathrm{Co}(\mathrm{Sp}(x) \mathrm{Sp}(y)) \subseteq \mathrm{Co}(V(x) \cdot V(y))
$$

it follows from Proposition 3.2 that we have

$$
\operatorname{Co}(V(x) \cdot V(y))=V(x \otimes y)
$$

Conversely if $V(x \otimes y)=\operatorname{Co}(V(x) V(y))$, we will prove that $x \otimes y$ is convexoid. That is

$$
V(x \otimes y)=\operatorname{CoSp}(x \otimes y)
$$

This follows at once from the elementary observation that for sets E, F of complex numbers

$$
\operatorname{Co}(\operatorname{Co}(E) \operatorname{Co}(F))=\operatorname{Co}(F, E)
$$

Q. E. D.

It is known that $\overline{W(T)}=V(\mathfrak{B}(H), T)$, for $T \in \mathfrak{B}(H)$. It follows that the convexoid, normaloid and spectraloid elements of the Banach algebra $\mathfrak{B}(H)$ are convexoid, normaloid and spectraloid operators on Hilbert space H (cf. Halmos [6], Furuta [5]).

COROLLARY 3. 5. (Saito [9]). Let T, S be operators on a Hilbert space and convexoid. Then the following conditions are equivalent:
(i) $\bar{W}(T \otimes S)=\overline{\operatorname{Co}}(W(T) W(s))$
(ii) $T \otimes S$ is convexoid.

The results for the normaloid and spectraloid elements are immediately by virtue of [4]. For convenience, we state and prove the following theorem

THEOREM 3.6. Let A_{1}, A_{2} be unital Banach algebras if $x \in A_{1}$ and $y \in A_{2}$ are normaloid, then $x \otimes y \in A_{1} \widehat{\otimes}_{\alpha} A_{2}$ is also normaloid and vice versa.

PROOF. It x and y are normaloid, then $\rho(x)=\|x\|, \rho(y)=\|y\|$. Since α is a cross norm,

$$
\begin{aligned}
\rho(x \otimes y) & =\lim _{n \rightarrow \infty}\left\|(x \otimes y)^{n}\right\|_{\alpha}^{\frac{1}{n}}=\lim _{n \rightarrow \infty}\left\|x^{n} \otimes y^{n}\right\|_{\alpha}^{\frac{1}{n}} \\
& =\lim _{n \rightarrow \infty}\left(\left\|x^{n}\right\|^{\frac{1}{n}}\left\|y^{n}\right\|^{\frac{1}{n}}\right)=\lim _{n \rightarrow \infty}\left\|x^{n}\right\|^{\frac{1}{n}}\left\|\lim _{n \rightarrow \infty}\right\| y^{n} \|^{\frac{1}{n}} \\
& =\rho(x) \rho(y)=\|x\|\|y\|=\|x \otimes y\|_{\alpha} .
\end{aligned}
$$

Conversely, if $\rho(x \otimes y)=\|x \otimes y\|_{\alpha}, \rho(x) \rho(y)=\|x\|\|y\|$, and $\rho(x) \leq\|x\|, \rho(y) \leq$ $\|y\|$, then $\rho(x)=\|x\|$ and $\rho(y)=\|y\|$, i. e. x and y are normaloid.

Theorem 3.7. Let A_{1} and A_{2} be unital Banach algebras. If $x \in A_{1}$ and $y \in A_{2}$ are spectraloid satisfying $V(x \otimes y)=C o(V(x) \cdot V(y))$ then $x \otimes y \in$ $A_{1} \widehat{\otimes}_{\alpha} A_{2}$ is spectraloid.

Proof. Since $V(x) V(y) \subseteq\{\lambda:|\lambda| \leq v(x) x(y)\}=D$,

$$
\mathrm{Co}(V(x) \cdot V(y)) \subseteq D
$$

and

$$
V(x \otimes y) \subseteq D, \text { i. e. } \quad v(x \otimes y) \leq v(x) v(y) .
$$

By Proposition 3.2, $v(x) v(y) \leq v(x \otimes y)$. Consequently, $v(x \otimes y)=v(x) v(y)=$ $\rho(x) \rho(y)=\rho(x \otimes y)$.
Q.E.D.
4. The joint convexoidity of an \boldsymbol{n}-tuple of operators on Hilbert spaces.

In this section we investigate the joint convexoidity of an n-tuple of operators $T_{i}(1 \leq i \leq n)$ on Hilbert spaces. Let $\left\{H_{i}\right\}_{i=1}^{n}$ be Hilbert spaces, I_{i} be the identity operator on H_{i}, A_{i} be an arbitrary bounded linear operator on $H_{i}(1 \leq i \leq n)$. We introduce the operators $T_{i}(i=1,2, \cdots, n)$ of tensor products acting on the tensor product space $H_{1} \otimes H_{2} \otimes \cdots \otimes H_{n}$ defined by

$$
\begin{equation*}
T_{i}=I_{1} \otimes \cdots \otimes I_{i-1} \otimes A_{i} \otimes I_{i+1} \otimes \cdots \otimes I_{n} \tag{1}
\end{equation*}
$$

$(n=1,2, \cdots, n)$. The joint numerical range of $T_{i}(i=1,2, \cdots, n)$ is defined to be the set of n-tuple $z=\left(z_{1}, \cdots, z_{n}\right)$ in \boldsymbol{C}^{n} given by

$$
\begin{gathered}
W\left(T_{1}, T_{2}, \cdots, T_{n}\right)=\left\{\left\langle\left\langle T_{1} u, u\right\rangle, \cdots,\left\langle T_{n} u, u\right\rangle\right) ;\right. \\
\left.u \text { is a unit vector in } H_{1} \otimes \cdots \otimes H_{n}\right\} .
\end{gathered}
$$

The joint spectrum of $T_{1}, T_{2}, \cdots T_{n}$ is a subset in \boldsymbol{C}^{n}, denoted by $\operatorname{Sp}\left(T_{1}, \cdots\right.$, T_{n}) which is explaining as following:

Let \mathfrak{N} be the set of all double (or second) commutants of T_{1}, \cdots, T_{n}, that is the set of all operators on $H_{1} \otimes \cdots \otimes H_{n}$ that commute with every operator which commutes with every T_{i}. Since the operators T_{1}, \cdots, T_{n} commute with each other, \mathfrak{A} is a commutative Banach algebra. A complex vector $z=\left(z_{1}, \cdots, z_{n}\right)$ of C^{n} belongs to the joint spectrum $\operatorname{Sp}\left(T_{1}, \cdots, T_{n}\right)$ of T_{1}, \cdots, T_{n} if and only if for any operator B_{1}, \cdots, B_{n} in \mathfrak{A}, the following relation holds

$$
\sum_{i=1}^{n} B_{i}\left(T_{i}-z_{i}\right) \neq I_{1} \otimes \cdots \otimes I_{n}
$$

In Dash and Schechter [3] they proved that the joint spectrum of T_{1}, \cdots, T_{n} is given by
(a) $\quad \operatorname{Sp}\left(T_{1}, \cdots, T_{n}\right)=\prod_{i=1}^{n} \operatorname{Sp}\left(T_{i}\right)$
and

$$
\operatorname{Sp}\left(T_{i}\right)=\operatorname{Sp}\left(A_{i}\right) .
$$

Furthermore Dash proved in [2] that

$$
\begin{equation*}
W\left(T_{1}, \cdots, T_{n}\right)=\prod_{i=1}^{n} W\left(T_{i}\right)=\prod_{i=1}^{n} W\left(A_{i}\right) \tag{b}
\end{equation*}
$$

is convex and contains $\operatorname{Sp}\left(T_{1}, \cdots, T_{n}\right)$.
We say that an n-tuple of operators T_{1}, \cdots, T_{n} is joint convexoid if

$$
\operatorname{Cosp}\left(T_{1}, \cdots, T_{n}\right)=\bar{W}\left(T_{1}, \cdots, T_{n}\right) .
$$

By (a) and (b) we see that the joint convexoidity follows from the following identity :

$$
\operatorname{Co}\left(\prod_{i=1}^{n} \mathrm{Sp}\left(\mathrm{~T}_{i}\right)\right)=\prod_{i=1}^{n} \bar{W}\left(T_{i}\right) .
$$

We will give a necessary and sufficient condition for the joint convexoidity of an n-tuple of operators T_{1}, \cdots, T_{n} which we state as follows

THEOREM 4.1. An n-tuple of operators T_{1}, \cdots, T_{n} on $H_{1} \otimes \cdots \otimes H_{n}$ given by (1) at the first paragraph of this section is joint convexoid if and only if each $T_{i}(1 \leq i \leq n)$ is convexoid.

PROOF. For necessity, we assume that an n-tuple of operators T_{1}, \cdots, T_{n} is joint convexoid, then we have

$$
\prod_{i=1}^{n} \bar{W}\left(T_{i}\right)=\operatorname{Co}\left(\prod_{i=1}^{n} \operatorname{Sp}\left(T_{i}\right)\right) .
$$

It follows from $\operatorname{Co}\left(\prod_{i=1}^{n} \operatorname{Sp}\left(T_{i}\right) \subseteq \prod_{i=1}^{n} \operatorname{Co} \operatorname{Sp}\left(T_{i}\right)\right.$ that we have

$$
\bar{W}\left(T_{i}\right) \subseteq \operatorname{Cosp}\left(T_{i}\right) \quad \text { for each } i
$$

but since $\operatorname{Co} \operatorname{Sp}\left(T_{i}\right) \subseteq \bar{W}\left(T_{i}\right)$, we have

$$
\bar{W}\left(T_{i}\right)=\operatorname{Cosp}\left(T_{i}\right),
$$

it follows that each T_{i} is convexoid.
Conversely, since

$$
D=\left\{z=\left(z_{1}, \cdots, z_{n}\right) \in \boldsymbol{C}^{n} ;|z-\lambda| \leq r, r \in R, \lambda \in \boldsymbol{C}^{n}\right\}
$$

is a polydisk containing $\prod_{i=1}^{n} \operatorname{Sp}\left(T_{i}\right)=\operatorname{Sp}\left(T_{1}, \cdots, T_{n}\right)=\prod_{i=1}^{n} \operatorname{Sp}\left(A_{i}\right)$, thus we have

$$
\left(\sum_{i=1}^{n}\left|\rho\left(A_{i}\right)-\lambda_{i}\right|^{2}\right)^{\frac{1}{2}} \leq r,
$$

where $\rho\left(A_{i}\right)$ is the spectral radius of A_{i}. Now if each T_{i} is convexoid, then $\operatorname{CoSp}\left(T_{i}\right)=\bar{W}\left(T_{i}\right)$, and $\sup _{\left\|f_{i}\right\|=1}\left\{\left|\left\langle A_{i} f_{i}, f_{i}\right\rangle\right|\right\}=\rho\left(A_{i}\right)$, we have

$$
\left(\sum_{i=1}^{n}\left|\left\langle\left(A_{i}-\lambda_{i}\right) f_{i}, f_{i}\right\rangle\right|^{2}\right)^{\frac{1}{2}} \leq\left(\sum_{i=1}^{n}\left|\rho\left(A_{i}\right)-\lambda_{i}\right|^{2}\right)^{\frac{1}{2}} \leq r .
$$

Since

$$
\operatorname{Cosp}\left(T_{1}, \cdots, T_{n}\right)
$$

is the intersection of all such polydisk containing $\operatorname{Sp}\left(T_{1}, \cdots, T_{n}\right)$, it follows that

$$
\bar{W}\left(T_{1}, \cdots, T_{n}\right) \subseteq \operatorname{CoSp}\left(T_{1}, \cdots, T_{n}\right)
$$

Consequently

$$
\operatorname{CoSp}\left(T_{1}, \cdots, T_{n}\right)=\bar{W}\left(T_{1}, \cdots, T_{n}\right)
$$

This shows that the n-tuple of operators T_{1}, \cdots, T_{n} is joint convexoid.
Q. E. D.

References

[1] F. F. Bonsall and J. Duncan: "Numerical range of the element in normed algebras" London Math. Soc. Lecture Note, 1971.
[2] A. T. Dash: Tensor products and joint numerical range, Proc. Amer. Math. Soc., 40 (1973), 521-526.
[3] A. T. Dash and M. Schechter: Tensor products and joint spectra, Israel J. Math., 8 (1970), 191-193.
[4] T. Furuta and R. Nakamoto: On tensor products of operators, Proc. Japan Acad., 45 (1969), 680-685.
[5] T. Furuta: Some characterization of the convexoid operators, Rev. Roumaine Math. Pures et Appl., 18 (1973), 893-900.
[6] P. R. Halmos: "A Hilbert space of problem book", D. Van Nostrand Company, Inc., Princeton, N. J. 1967.
[7] T. Ichinose: Tensor products of linear operators in Banach spaces, J. für die reine und angewandte Mathematik, 244 (1970), 119-153.
[8] K. E. Laursen: Tensor products of Banach algebras with involution, Trans. Amer. Math. Soc., 136 (1969), 467-487.
[9] T. Saito: Numerical ranges of tensor products of operators, Tôhoku Math. J., 19 (1967), 98-100.
[10] J. G. Stamfli and J. P. Williams: Growth conditions and the numerical range in a Banach algebra, Tôhoku Math. J., 20 (1968), 417-424.

Institute of Mathematics National Tsing Hua University

Hsinchu, Taiwan, China

[^0]: * The author was partially supported by the Mathematics Research Center, National Science Council, Taiwan, China.

