On the compact convex base of a dual cone

By Kaneyuki YAMAMOTO

(Received February 20, 1978)

Let X be a locally convex Hausdorff linear topological space over R, where R is the field of real numbers endowed with its usual topology, X^* be its topological dual and K be a closed proper cone with vertex θ , i. e., a closed subset of X with the following properties : i) $K+K\subset K$, ii) $\lambda K\subset K$ for all $\lambda \ge 0$, and iii) $K\cap (-K)=\{\theta\}$, where θ denotes the zero element of the linear space X. Then K allows us to introduce, by virtue of " $x \le y$ if $y-x \in K$ ", a partial order \le , under which X is an ordered linear space with possitive cone K. Let Δ be a non-empty subset of the dual cone $K^* =$ $\{x^*: x^* \in X^*. x^*(x) \ge 0$ for all $x \in K$.} satisfying the following conditions :

- (1) if $x^*(x) \ge 0$ for all $x^* \in \mathcal{A}$, then $x \in K$;
- (2) Δ is strongly compact and convex;

(3) $\theta^* \in \Delta$.

Here θ^* is reserved for the zero element of X^* .

The use of Δ as a set of price systems is justified, when it is intended to treat the infinite-dimensional commodity space (see [2]). Although, in the finite-dimensional case, an example of Δ is easily found, it is not always easy and even impossible to find such an example in the infinite-dimensional case. The purpose of this paper is to discuss the existence of Δ in the infinite-dimensional case. In the infinite-dimensional Banach space, there exists no non-empty subset Δ of K^* with $X^* = K^* - K^*$ satisfying (1), (2) and (3). In fact, the following theorem holds:

THEOREM. Let X be a Banach space, K be a closed proper cone in X and K* be its dual cone. Assume $X^* = K^* - K^*$. If there exists a nonempty subset Δ of K* which satisfies the above conditions (1), (2) and (3), then X is finite-dimensional.

PROOF. Let $(\bigcup_{\lambda \neq 0} \lambda d)^{w-}$ denote the weak*-closure of $\bigcup_{\lambda \neq 0} \lambda d$. Then obviously $K^* \supset (\bigcup_{\lambda \neq 0} \lambda d)^{w-}$.

Suppose that $x_0^* \in (\bigcup_{\lambda \ge 0} \lambda \varDelta)^{w-}$ for some $x_0^* \in K^*$. Then, by making use of the separation theorem, there exists an $x_0 \in X$ such that

$$\inf_{\substack{x^* \in \bigcup 23 \\ x \ge 0}} x^*(x_0) \ge 0 > x_0^*(x_0) .$$

Hence $x^*(x_0) \ge 0$ for all $x^* \in \mathcal{A}$. By (1), this implies $x_0 \in K$. Consequently $x_0^*(x_0) \ge 0$, which is a contradiction. Therefore

$$K^* = (\bigcup_{\lambda \ge 0} \lambda \varDelta)^{w-} \, .$$

Let $y^* \in K^*$. Then there exist nets $\{x^*_{\alpha}, \alpha \in A\}$ and $\{\lambda_{\alpha}, \alpha \in A\}$ such that $x^*_{\alpha} \in A$, $0 < \lambda_{\alpha} < +\infty$ and a net $\{\lambda_{\alpha} x_{\alpha}, \alpha \in A\}$ converges weakly to y^* . Since \varDelta is strongly compact, it may be assumed that the net $\{x^*_{\alpha}, \alpha \in A\}$ converges strongly to x^*_0 for some $x^*_0 \in \varDelta$. On the other hand, by making use of the separation theorem, (2) and (3) imply that there exists an $x_0 \in X$ such that $x^*(x_0) \ge \varepsilon > 0$ for all $x^* \in \varDelta$. Then the net $\{\lambda_{\alpha} x^*_{\alpha} (x_0), \alpha \in A\}$ converges to $y^*(x_0)$, and consequently $\{\lambda_{\alpha}, \alpha \in A\}$ converges to $\frac{y^*(x_0)}{x^*_0(x_0)}$ ($<\infty$). Thus $\{\lambda_{\alpha}, \alpha \in A\}$ is a bounded set. Hence it may be assumed that $\{\lambda_{\alpha}, \alpha \in A\}$ converges to λ_0 for some λ_0 . Then $y^* = \lambda_0 x^*_0 \in \lambda_0 \varDelta$. Therefore, it has been proved that $K^* \subset \bigcup \lambda \varDelta$. This shows $\bigcup \lambda \varDelta = K^*$.

Put $\hat{A} = \bigcup_{\substack{\lambda \geq 0 \\ 0 \leq \lambda \leq 1}} \lambda \Delta$. Then $\hat{\Delta}$ is strongly compact, too. By making use of $X^* = K^* - K^*$, $X^* = \bigcup_{\substack{n=1 \\ n=1}}^{\infty} n(\hat{\Delta} - \hat{\Delta})$. Here $\hat{\Delta} - \hat{\Delta}$ is strongly compact, and so it is strongly closed. It follows from the Baire's category theorem that $\hat{\Delta}$ has a non-empty interior, while it is strongly compact. Hence X^* is finite-dimensional. Finally, X is also finite-dimensional.

REMARK. Although the condition (1) is in general weaker than the condition (*) $K^* = \bigcup_{\lambda \ge 0} \lambda \Delta$, it is equivalent to the condition (*) under the condition (3), when X is a Banach space.

The following corollary is essentially another version of the above theorem.

COROLLARY 1. Let X be an infinite-dimensional Banach space and $\Delta_0 \subset X^*$ satisfy the following conditions:

(i) Δ_0 is strongly (norm-) compact and convex and

(ii) $\theta^* \in \mathcal{A}_0$. Define K_0^* and K_0 by (iii) $K_0^* = \bigcup_{2>0} \lambda \mathcal{A}_0$

and

$$K_0 = \{x: x^*(x) \ge 0 \text{ for all } x^* \in K_0^*\},$$

respectively. Assume (iv) $K_0 \cap (-K_0) = \{\theta\}.$

K. Yamamoto

$$K^* = \left\{ x^* : x^* = (v_1, v_2, \cdots), v_n \ge 0, \sum_{n=1}^{\infty} v_n < +\infty \right\}.$$

Put

$$x_0^* = \left(1, \frac{1}{2^2}, \frac{1}{3^2}, \cdots\right), \ \varDelta = \{x^* : \ \theta^* \leq x^* \leq x_0^*\} \ \text{and}$$

 $\varDelta_0 = \{x^* : \ x_0^* \leq x^* \leq 2x_0^*\}.$

a) Δ satisfies (1) but does not satisfy (*). In fact, for example, $x'^* \in K^*$ but $x'^* \notin \bigcup_{\lambda \ge 0} \lambda \Delta$, where

$$l^1 \ni x'^* = \left(1, \frac{1}{2^{\alpha}}, \frac{1}{3^{\alpha}}, \cdots\right) \quad (1 < \alpha < 2).$$

b) Δ_0 is convex and strongly (i. e. norm-) compact. $\theta^* \notin \Delta_0$. Let $x_0 = (1, 0, 0, \dots) \in (c_0)$. Then $x^*(x_0) \ge 1$ for all $x^* \in \Delta_0$.

c) Let $K_0^* = \bigcup_{x \ge 0} \lambda \Delta_0$ and $K_0 = \{x : x^*(x) \ge 0 \text{ for all } x^* \in K_0^*\}$. Then K_0 coincides with the set $\{x : x^*(x) \ge 0 \text{ for all } x^* \in \Delta_0\}$. In the vector lattice (X, K), for each $x \in X$, x^+ , x^- and |x| denote $\sup(x, \theta)$, $\sup(-x, \theta)$ and $\sup(x, -x)$, respectively. Since $x^* \in \Delta_0$ means $x^* = x_0^* + y^*$ for some y^* with $\theta^* \le y^* \le x_0^*$ and

$$\inf_{ heta^{*} \leq y^{*} \leq x_{0}^{*}} y^{*}(x) = - x_{0}^{*}(x^{-})$$
 ,

the following chain of equivalences is valid :

$$x \in K_{0} \longleftrightarrow \inf_{x^{*} \in J_{0}} x^{*}(x) \ge 0 \Longrightarrow x_{0}^{*}(x) + \inf_{\theta^{*} \le y^{*} \le x_{0}^{*}} y^{*}(x) \ge 0$$
$$\iff x_{0}^{*}(x) - x_{0}^{*}(x^{-}) \ge 0 \Longleftrightarrow x_{0}^{*}(x^{+}) \ge 2x_{0}^{*}(x^{-}).$$

d) Let $x \in K_0 \cap (-K_0)$. Then, $x_0^*(x^+) \ge 2x_0^*(x^-)$ and $x_0^*((-x)^+) \ge 2x_0^*((-x)^-)$. $((-x)^-)$. Since $(-x)^+ = x^-$ and $(-x)^- = x^+$, $x_0^*(x^+) \ge 2x_0^*(x^-)$ and $x_0^*(x^-) \ge 2x_0^*(x^+)$.

Hence $x_0^*(x^+) = 0 = x_0^*(x^-)$. Remembering that $x_0^* = \left(1, \frac{1}{2^2}, \frac{1}{3^2}, \cdots\right), x^+ = \theta = x^-$ and so $x = \theta$.

Thus it has been shown that K_0 is a proper cone. (n)

e) Let $x_0 = (1, 0, 0, \cdots)$ and $x_n = \left(\frac{1}{2}, 0, \cdots, 0, -\frac{n}{2}, 0, 0, \cdots\right)(n = 2, 3, \cdots)$. Then $x_0 - x_n \ge \theta$ and so $x_0^*((x_0 - x_n)^+) \ge 2x_0^*((x_0 - x_n)^-)$. Hence $x_0 - x_n \in K_0$, i. e., $x_n \le x_0$.

On the other hand, since $x_0^*(x_n^+) = \frac{1}{2}$ and $x_0^*(x_n^-) = \frac{1}{2n}$, $x_0^*(x_n^+) \ge 2x_0^*(x_n^-)$ and so $\theta \le x_n$. Thus it has been shown that

186

Then

 $X^* \rightleftharpoons K_0^* - K_0^*$.

REMARK. By utilizing (iv), $K_0^* - K_0^*$ is weak*-dense in X*, i. e.,

 $(K_{\rm o}^*-K_{\rm o}^*)^{w-}=X^*$.

COROLLARY 2. Let (X, K) be an infinite-dimensional Banach lattice. Then there exists no strongly-compact and convex subset Δ of X^* such that

$$K^* = \bigcup_{\lambda \geq 0} \lambda \Delta$$
 and $\theta^* \in \Delta$.

In spite of corollary 2, even if (X, K) is an infinite-dimensional Banach lattice, it is possible to construct a subcone $K_0^* \subset K^*$ so that Δ_0 satisfies all the conditions (i), (ii) and (iii) of corollary 1. Here $K_0 \supset K$ may be called an augumented cone in comparison with the original cone K.

Let K be a closed proper cone in a locally convex Hausdoff linear topological space X. Take a non-empty subset Δ of K* satisfying (2). For example, in the infinite-dimensional Banach spaces, a non-empty subset Δ of K* satisfying the conditions (1) and (2) is easily found. Starting from this Δ , one method of the construction of Δ_0 satisfying the conditions (1'), (i) and (ii) (equivalently (i), (ii) and (iii) in the Banach space) is stated as follows, where the condition (1') is a following modification of (1):

(1') if $x^*(x) \ge 0$ for all $x^* \in \mathcal{A}_0$, then $x \in K_0$.

Since K^* is not always proper, choose x_0^* so that $x_0^* \in K^*$ and $x_0^* \in -K^*$. Put $\mathcal{L}_0 = x_0^* + \mathcal{L}$. Then \mathcal{L}_0 satisfies (i) and (ii). Next put $K_0^* = \bigcup \lambda \mathcal{L}_0$ and $K_0 = \{x : x^*(x) \ge 0 \text{ for all } x^* \in K_0^*\}$. If $K_0^* - K_0^*$ is weak*-dense in X^* and not weak*-closed, then K_0 is proper and $K_0^* - K_0^* \neq X^*$. The partial order introduced by K_0 is denoted by ≤ 0 . In a normed space X, it is sufficient for $K_0^* - K_0^* \neq X^*$ that there exists an order interval $\{z : z \in X, x \le z \le y\}$ which is not norm-bounded (see [1] p. 216 and p. 220). These \mathcal{L}_0 and K_0 may satisfy the desired conditions (1'), (i) and (ii) in the infinite-dimensional spaces. The following examples show that this really occurs in the infinite-dimensional spaces.

EXAMPLE 1. Let $X = (c_0)$

and

$$K = \left\{ x : x = (u_1, u_2, \dots, u_n, \dots), u_n \ge 0, \lim_{n \to \infty} u_n = 0 \right\}.$$

Then $X^* = l^1$, and

On the compact convex base of a dual cone

$$x_n \in \{x: \theta \leq x \leq x_0\}$$
 $(n = 2, 3, \cdots).$

This order interval is not norm-bounded, because $\sup_{n} ||x_{n}||_{\infty} = \infty$. Hence $K_{0}^{*} - K_{0}^{*} \neq X^{*}$.

EXAMPLE 2. Let X=C[0, 1]. Then X^* is the space of signed measures on [0, 1]. Define $\phi_n^* \in X^*$ by

$$\phi_n^*(f) = \int_0^1 f(t) \, dt + \frac{1}{n} \int_0^1 \cos(n\pi t) f(t) \, dt \qquad \text{for all } f \in X.$$

Since

$$||\phi_n^* - \phi_m^*|| = \int_0^1 \left| \frac{\cos(n\pi t)}{n} - \frac{\cos(m\pi t)}{m} \right| dt \leq \frac{1}{n} + \frac{1}{m},$$

 ϕ_n^* converges strongly to some $\phi_\infty^* \in X^*$. The set $\{\phi_1^*, \phi_2^*, \dots, \phi_\infty^*\}$ is strongly (i. e. norm-) compact. Take \mathcal{A}_0 as the (norm-) closed convex hull of this set. Then \mathcal{A}_0 is (norm-) compact.

a) If $f_0(t)=1$ for all $t \in [0, 1]$, then $\phi_n^*(f_0)=1$ for all n. Hence $\phi^*(f_0)=1$ for all $\phi^* \in \mathcal{A}_0$. Therefore $\theta^* \in \mathcal{A}_0$.

b) Put $K_0^* = \bigcup_{\lambda \ge 0} \lambda \mathcal{A}_0$ and $K_0 = \{f : \phi^*(f) \ge 0 \text{ for all } \phi^* \in K_0^*\}$. Then K_0 coincides with the set $\{f : \phi_n^*(f) \ge 0 \ (n=1, 2, \cdots)\}$.

c) Let $f \in K_0 \cap (-K_0)$. Then

$$\int_{0}^{1} f(t) dt + \frac{1}{n} \int_{0}^{1} \cos(n\pi t) f(t) dt = 0 \quad \text{for all } n.$$

On the other hand,

$$\left|\frac{1}{n}\int_0^1 \cos\left(n\pi t\right)f(t)\,dt\right| \leq \frac{1}{n}\sup_{0\leq t\leq 1}\left|f(t)\right| \to 0\,,\qquad \text{as }n\to\infty\,.$$

Hence

$$\int_{0}^{1} f(t) dt = 0 \text{ and } \int_{0}^{1} \cos(n\pi t) f(t) dt = 0 \text{ for all } n.$$

Since the set $\{\cos(\pi t), \cos(2\pi t), \dots, \cos(n\pi t), \dots\}$ is total, $f=\theta$. Thus it has been shown that K_0 is proper.

d) Define $f_m \in C[0, 1]$ $(m=0, 1, 2, \cdots)$ as follows:

$$f_0(t) = 1$$
 for all $t \in [0, 1]$

and

$$f_m(t) = m \cos(m\pi t)$$
 for all $t \in [0, 1]$ $(m = 1, 2, \dots)$.

Then $\phi_n^*(f_0) = 1$ $(n = 1, 2, \dots)$ and

187

K. Yamamoto

$$\phi_n^*(f_m) = m \int_0^1 \cos(m\pi t) \, dt + \frac{m}{n} \int_0^1 \cos(n\pi t) \cos(m\pi t) \, dt = \frac{1}{2} \delta_{nm}$$

(n = 1, 2, ...; m = 1, 2, ...),

where δ_{nm} denotes Kronecker's symbol. Hence, for each $m=1, 2, \dots$, $\phi_n^*(f_0) \ge \phi_n^*(f_m) \ge 0$ for all $n=1, 2, \dots$. Therefore, for each $m=1, 2, \dots$, $\phi^*(f_0) \ge \phi^*(f_m) \ge \phi^*(\theta)$ for all $\phi^* \in K_0^*$. This means

$$f_m \in \left\{ f \colon f \in C[0, 1], \ \theta \leq f \leq f_0 \right\}.$$

On the other hand, $\sup_{m} ||f_{m}||_{\infty} = \infty$. Thus the order interval which is not norm-bounded is obtained. Hence $K_{0}^{*} - K_{0}^{*} \neq X^{*}$, i. e., K_{0}^{*} is not generating.

References

[1] H. H. SCHAEFER: Topological vector spaces, Springer-Verlag, Berlin, 1970.

[2] K. YAMAMOTO: On the equilibrium existence in abstract economies, to appear in Hokkaido Math. J..

> Department of Mathematics Hokkaido University

188