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On the compact convex base of a dual cone

By Kaneyuki YAMAMOTO
(Received February 20, 1978)

Let X be a locally convex Hausdorff linear topological space over R,
where R is the field of real numbers endowed with its usual topology, X^{*}

be its topological dual and K be a closed proper cone with vertex \theta , i . e. ,
a closed subset of X with the following properties: i) K+K\subset K, ii) \lambda K\subset K

for all \lambda\geqq 0 , and iii) K\cap(^{-K)}’=\{\theta\} , where \theta denotes the zero element of
the linear space X. Then K allows us to introduce, by virtue of “

x\leqq y if
y-x\in K”, a partial order \leqq , under which X is an ordered linear space
with possitive cone K. Let \Delta be a non-empty subset of the dual cone K^{*}=

{ x^{*}: x^{*}\in X^{*} . x^{*}(x)\geqq 0 for all x\in K.} satisfying the following conditions :
(1) if x^{*}(x)\geqq 0 for all x^{*}\in\Delta , then x\in K ;
(2) \Delta is strongly compact and convex;
(3) \theta^{*}\not\in\Delta .

Here \theta^{*} is reserved for the zero element of X^{*} .
The use of \Delta as a set of price systems is justified, when it is intended

to treat the infinite-dimensional commodity space (see [2]). Although, in
the finite-dimensional case, an example of \Delta is easily found, it is not always
easy and even impossible to find such an example in the infinite-dimensional
case. The purpose of this paper is to discuss the existence of \Delta in the
infinite-dimensional case. In the infinite-dimensional Banach space, there
exists no non-empty subset \Delta of K^{*} with X*=K^{*}-K^{*} satisfying (1), (2)
and (3). In fact, the following theorem holds :

THEOREM. Let X be a Banach space, K be a closed proper cone in
X and K^{*} be its dual cone. Assume X^{*}=K^{*}-K^{*} . If there exists a non-
empty subset \Delta of K^{*} which satisfifies the above conditions (1), (2) and (3),
then X is fifinite-dimensional.

PROOF. Let ( \bigcup_{\lambda\geqq 0}\lambda\Delta)^{w-} denote the weak*-closure of \bigcup_{\lambda\geqq 0}\lambda\Delta . Then obviously
K^{*} \supset(\bigcup_{\lambda\geqq 0}\lambda\Delta)^{w-}

Suppose that x_{0}^{*} \not\in(\bigcup_{\lambda\geqq 0}\lambda\Delta)^{w-} for some x_{0}^{*}.\in K^{*} . Then, by making use of
the separation theorem, there exists an x_{0}\in X such that

x* \epsilon_{\lambda\geqq 0}\inf_{\cup\lambda\Delta}x^{*}(x_{0})\geqq 0>x_{0}^{*}(x_{0})1
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Hence x^{*}(x_{0})\geqq 0 for all x^{*}\in\Delta . By (1), this implies x_{0}\in K . Consequently
x_{0}^{*}(x_{0})\geqq 0 , which is a contradiction. Therefore

K^{*}=( \bigcup_{\lambda\geqq 0}\lambda\Delta)^{w-}

Let y^{*}\in K^{*} . Then there exist nets \{x_{\alpha}^{*}, \alpha\in A\} and \{\lambda_{\alpha}, \alpha\in A\} such
that x_{a}^{*}\in\Delta , 0<\lambda_{\alpha}<+\infty and a net \{\lambda_{\alpha}x_{\alpha}, \alpha\in A\} converges weakly to y* .
Since \Delta is strongly compact, it may be assumed that the net \{x_{a}^{*}, \alpha\in A\}

converges strongly to x_{0}^{*} for some x_{0}^{*}\in\Delta . On the other hand, by making

use of the separation theorem, (2) and (3) imply that there exists an x_{0}\in X

such that x^{*}(x_{0})\geqq\epsilon>0 for all x^{*}\in\Delta . Then the net \{\lambda_{\alpha}x_{\alpha}^{*}(x_{0}), \alpha\in A\} con-
y^{*}(x_{0})

verges to y^{*}(x_{0}) , and consequently \{\lambda_{\alpha}, \alpha\in A\} converges to \overline{x_{0}^{*}(x_{0})}(<\infty) .
Thus \{\lambda_{\alpha}, \alpha\in A\} is a bounded set. Hence it may be assumed that \{\lambda_{\alpha}, \alpha\in A\}

converges to \lambda_{0} for some \lambda_{0} . Then y^{*}=\lambda_{0}x_{0}^{*}\in\lambda_{0}\Delta . Therefore, it has been
proved that K^{*}\subset\cup\lambda\Delta . This shows \cup\lambda\Delta=K^{*} .

\lambda\geqq 0 \lambda\geqq 0

Put .\ddot{\grave{\dot{\Delta}}}= \cup\lambda\Delta . Then \hat{\Delta} is strongly compact, too. By making use of
0\leqq\lambda\leqq 1

X^{*}=K^{*}-K^{*} , X^{*}=\cup n(\hat{\Delta}-\hat{\Delta}) . Here \acute{\grave{\Delta}}-\hat{\Delta} is strongly compact, and so it is
n=1

strongly closed. It follows from the Baire’s category theorem that \grave{\dot{\Delta}} has
a non-empty interior, while it is strongly compact. Hence X^{*} is finite-
dimensional. Finally, X is also finite-dimensional.

REMARK. Although the condition (1) is in general weaker than the
condition (^{*})K^{*}=\cup\lambda\Delta , it is equivalent to the condition (^{*}) under the con-

\lambda\geqq 0

dition (3), when X is a Banach space.
The following corollary is essentially another version of the above the0-

rem.
COROLLARY 1. Let X be an infinite-dimensional Banach space and

\Delta_{0}\subset X^{*} satisfy the following conditions:
(i) \Delta_{0} is strongly (norm-) compact and convex

and
(ii) \theta^{*}\not\in\Delta_{0} .

Defifine K_{0}^{\star} and K_{0} by
(iii) K_{0}^{\star}= \bigcup_{\lambda\geqq 0}\lambda\Delta_{0}

and
K_{0}=\{x:x^{*}(x)\geqq 0 for all x^{*}\in K_{0}^{*}\}.

,

respectively. Assume
(iv) K_{0}\cap(-K_{0})=\{\theta\} .
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K^{*}=\{x^{*}: x^{*}=(v_{1}, v_{2}, \cdots) , v_{n} \geqq 0,\sum_{n=1}^{\infty}v_{n}<+\infty\}

Put

x_{0}^{*}=(1, \frac{1}{2^{2}}, \frac{1}{3^{2}} , \cdots), \Delta=\{x^{* }: \theta^{*}\leqq x^{*}\leqq x_{0}^{*}\} and

\Delta_{0}=\{x^{*} : x_{0}^{*}\leqq x^{*}\leqq 2x_{0}^{*}\}

a) \Delta satisfies (1) but does not satisfy (^{*}) . In fact, for example, x’*\in

K^{*} but x’* \not\in\bigcup_{\lambda\geqq 0}\lambda\Delta
, where

l^{1}\ni x’=*(1, \frac{1}{2^{\alpha}} , \frac{1}{3^{a}} , \cdots ) (1<\alpha<2)

b) \Delta_{0} is convex and strongly (i. e . norm-) compact. \theta^{*}\not\in\Delta_{0} . Let x_{0}=

(1,0,0, \cdots)\in(c_{0}) . Then x^{*}(x_{0})\geqq 1 for all x^{*}\in\Delta_{0} .
c) Let K_{0}^{*}= \bigcup_{\lambda\geqq 0}\lambda\Delta_{0} and K_{0}= {x:x^{*}(x)\geqq 0 for all x^{*}\in K_{0}^{*} }. Then K_{0}

coincides with the set {x:x^{*}(x)\geqq 0 for all x^{*}\in\Delta_{0}}. In the vector lattice
(X, K) , for each x\in X, x^{+} , x^{-} and |x| denote sup (x, \theta) , sup (-x, \theta) and sup
(x, - x) , respectively. Since x^{*}\in\Delta_{0} means x^{*}=x_{0}^{*}+y* for some y* with
\theta^{*}\leqq y*\leqq x_{0}^{A_{1}} and

\inf_{\theta^{*}\leqq y^{*}\leqq x_{0}^{*}}y^{*}(x)=-x_{0}^{*}(x^{-})

,

the following chain of equivalences is valid:

x \in K_{0}\Leftrightarrow\inf_{x^{*}\in\Delta_{0}}x^{*}(x)\geqq 0i\Rightarrow x_{0}^{*}(x)+\inf_{\theta^{*}\leqq y^{*}\leqq x_{0}^{*}}y^{*}(x)\geqq 0

C^{\underline{-\backslash }}x_{0}^{*}(x)-x_{0}^{A_{1}}(x^{-})\geqq 0\Leftarrow_{=}^{=}\backslash x_{0}^{*}(x^{+})\geqq 2x_{0}^{*}(x^{-})

d) Let x\in K_{0}\cap(-K_{0}) . Then, x_{0}^{*}(x^{+})\geqq 2x_{0}^{*}(x^{-}) and x_{0}^{*}((-x)^{+})\geqq 2x_{0}^{*}

((-x)^{-}) . Since (-x)^{+}=x^{-} and (-x)^{-}=x^{+} , x_{0}^{*}(x^{+})\geqq 2x_{0}^{*}(x^{-}) and x_{0}^{*}(x^{-})\geqq

2x_{0}^{*}(x^{+}) .
Hence x_{0}^{*}(x^{+})=0=x_{0}^{*}(x^{-}) . Remembering that x_{0}^{*}=(1, \frac{1}{2^{2}} , \frac{1}{3^{2}} , \cdots) , x^{+}=\theta=

x^{-} and so x=\theta .
Thus it has been shown that K_{0} is a proper cone, (n)

e) Let x_{0}=(1,0,0, \cdots) and x_{n}=( \frac{1}{2}, 0 , \cdots , 0, - \frac{n}{2},0 , 0,\cdots)(n=2,3, \cdots) .

Then x_{0}-x_{n}\geqq\theta and so x_{0}^{*}((x_{0}-x_{n})^{+})\geqq 2x_{0}^{*}((x_{0}-x_{n})^{-}) .
Hence x_{0}-x_{n}\in K_{0} , i . e. , x_{n}\leqq_{0}x_{0} .

On the other hand, since x_{0}^{*}(x_{n}^{+})= \frac{1}{2} and x_{0}^{*}(x_{n}^{-})= \frac{1}{2n} , x_{0}^{*}(x_{n}^{+})\geqq 2x_{0}^{*}(x_{n}^{-})

and so \theta\leqq x_{n}0^{\cdot} Thus it has been shown that
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Then
X^{*} \frac{-\backslash -}{\backslash }K_{0}^{*}-K_{0}^{*}

REMARK. By utilizing (iv), K_{0}^{*}-K_{0}^{*} is weak*-dense in X^{*} , i . e. ,

(K_{0}^{*}-K_{0}^{A_{1}})^{w-}=X^{*}

COROLLARY 2. Let (X, K) be an infifinite-dimensional Banach lattice.
Then there exists no strongly-compact and convex subset \Delta of X^{*} such that

K^{*}= \bigcup_{\lambda\geqq 0}\lambda\Delta and \theta^{*}\not\in\Delta .

In spite of corollary 2, even if (X, K) is an infinite-dimensional Banach
lattice, it is possible to construct a subcone K_{0}^{*}\subset K^{*} so that \Delta_{0} satisfies all
the conditions (i), (ii) and (iii) of corollary 1. Here K_{0}\supset K may be called
an augumented cone in comparison with the original cone K.

Let K be a closed proper cone in a locally convex Hausdoff linear t0-
pological space X. Take a non-empty subset \Delta of K^{*} satisfying (2). For
example, in the infinite-dimensional Banach spaces, a non-empty subset \Delta

of K^{*} satisfying the conditions (1) and (2) is easily found. Starting from
this \Delta , one method of the construction of \Delta_{0} satisfying the conditions (1’) ,
(i) and (ii) (equivalently (i), (ii) and (iii) in the Banach space) is stated as fol-
lows, where the condition (1’) is a following modification of (1):

(1’) if x^{*}(x)\geqq 0 for all x^{*}\in\Delta_{0} , then x\in K_{0} .
Since K^{*} is not always proper, choose x_{0}^{*} so that x_{0}^{*_{\backslash }}\in K^{*} and x_{0}^{*_{\backslash }}\not\in-K^{*} .
Put \Delta_{0}=x_{0}^{*}+\Delta . Then \Delta_{0} satisfies (i) and (ii). Next put K_{0}^{*}= \bigcup_{\lambda\geqq 0}\lambda\Delta_{0} and K_{0}=

{x:x^{*}(x)\geqq 0 for all x^{*}\in K_{0}^{*}}. If K_{0}^{*}-K_{0}^{*}. is weak*-dense in X^{*} and not
weak*-closed, then K_{0} is proper and K_{0}^{*}-K_{0}^{*}\neq X^{*} . The partial order in-
troduced by K_{0} is denoted by \leqq_{0} . In a normed space X, it is sufficient for
K_{0}^{*}-K_{0}^{*}\neq X^{*} that there exists an order interval \{z:z\in X, x\leqq_{0}z\leqq_{0}y\} which
is not norm-bounded (see [1] p. 216 and p. 220). These \Delta_{0} and K_{0} may
satisfy the desired conditions (1’) , (i) and (ii) in the infinite-dimensional spaces.
The following examples show that this really occurs in the infinite-dimen-
sional spaces.

EXAMPLE 1. Let X=(c_{0})

and

K=\{x:x=(u_{1}, u_{2}, \cdots, u_{n^{ }},\cdots) , u_{n} \geqq 0,\lim_{narrow\infty}u_{n}=0\}

Then X^{*}=l^{1}, and
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x_{n}\in\{x:\theta\leqq 0x\leqq_{0}x_{0}\} (n=2,3, \cdots)

This order interval is not norm-bounded, because \sup_{n}||x_{n}||_{\infty}=\infty .
Hence K_{0}^{*}-K_{0}^{*}\neq X^{*} .

EXAMPLE 2. Let X=C[0, 1] . Then X^{*} is the space of signed measures
on [0, 1] . Define \phi_{n}^{*}\in X^{*} by

\phi_{n}^{*}(f)=\int_{0}^{1}f(t)dt+\frac{1}{n}\int_{0}^{1} cos (n\pi t)f(t)dt for all f\in X

Since

|| \phi_{n}^{*}-\phi_{n\iota}^{*}||=\int_{0}^{1}|\frac{\cos(n\pi t)}{n}-\frac{\cos(m\pi t)}{m}|dt\leqq\frac{1}{n}+\frac{1}{m} ,

\phi_{n}^{*_{\backslash }} converges strongly to some \phi_{\infty}^{*}\in X^{*} . The set \{\phi_{1}^{*}, \phi_{2}^{*}, \cdots. \phi_{\infty}^{*}\} is strongly
(i . e . norm-) compact. Take \Delta_{0} as the (norm-) closed convex hull of this set.
Then \Delta_{0} is (norm-) compact.

a) If f_{0}(t)=1 for all t\in[0,1] , then \phi_{n}^{*}(f_{0})=1 for all n .
Hence \phi^{*}(f_{0})=1 for all \phi^{*}\in\Delta_{0} . Therefore \theta^{*}\not\in\Delta_{0} .

b) Put K_{0}^{*}= \bigcup_{\lambda\geqq 0}\lambda\Delta_{0} and K_{0}= {f:\phi^{*}(f)\geqq 0 for all \phi^{*}\in K_{0}^{*} }. Then K_{0}

coincides with the set \{f:\phi_{n}^{*}(f)\geqq 0(n=1,2, \cdots)\} .
c) Let f\in K_{0}\cap(-K_{0}) . Then

\int_{0}^{1}f(t)dt+\frac{1}{n}\int_{0}^{1} cos (n\pi t)f(t)dt=0 for all n .

On the other hand,

| \frac{1}{n}\int_{0}^{1} cos (n \pi t)f(t)dt|\leqq\frac{1}{n}\sup_{0\leqq t\leqq 1}|f(t)|arrow 0 . as narrow\infty

Hence

\int_{0}^{1}f(t)dt=0 and \int_{0}^{1} cos (n\pi t)f(t)dt=0 for all n

Since the set {cos (\pi t) , cos (2\pi t) , \cdots , cos (n\pi t) , \cdots } is total, f=\theta . Thus it has
been shown that K_{0} is proper.

d) Define f_{m}\in C[0,1](m=0,1,2, \cdots) as follows :

f_{0}(t)=1 for all t\in[0,1]

and

f_{m}(t)=m cos (m\pi t) for all t\in[0,1] (m=1,2, \cdots)

Then \phi_{n}^{*}(f_{0})=1(n=1,2,\cdots) and
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\phi_{n}^{*_{1}}(f_{m})=m\int_{0}^{1} cos (m \pi t)dt+\frac{m}{n}\int_{0}^{1} cos (n\pi t) cos (m \pi t)dt=\frac{1}{2}\delta_{nm}

(n=1,2, \cdots ; m=1,2, \cdots)\eta,

where \delta_{nm} denotes Kronecker’s symbol. Hence, for each m=1,2, \cdots ,
\phi_{n}^{*}(f_{0})\geqq\phi_{n}^{*}(f_{m})\geqq 0 for all n=1,2 , \cdots . Therefore, for each m=1,2, \cdots ,
\phi^{*}(f_{0})\geqq\phi^{*}(f_{m})\geqq\phi^{*}(\theta) for all \phi^{*}\in K_{0}^{*} . This means

f_{m}\in\{f:f\in C[0,1] , \theta\leqq_{0}f\leqq_{0}f_{0}\}

On the other hand, sup ||f_{m}||_{\infty}=\infty . Thus the order interval which is not
m

norm-bounded is obtained. Hence K_{0}^{*}-K_{0}^{*}\neq X^{*} , i . e. , K_{0}^{*} is not generating.

References
[1] H. H. SCHAEFER: Topological vector spaces, Springer-Verlag, Berlin, 1970.
[2] K. YAMAMOTO: On the equilibrium existence in abstract economies, to appear

in Hokkaido Math. J..

Department of Mathematics
Hokkaido University


	THEOREM. Let ...
	References

