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1. Introduction

Let G be a finite group and q a prime. We say that G is q-closed
if G has a normal Sylow q-subgroup and q-nilpotent if G has a normal q-
complement. In this paper we prove the following theorem.

THEOREM. Let G be a fifinite group. Assume that G admits an autO-
morphism \alpha of order p, p a prime. Assume further that C_{G}(\alpha) is a cyclic
q-group for some odd prime q distinct from p. Then G is q-closed or q-
nilpotent. In particular G is solvable.

B. Rickman [8] prove the case q\geq 5 , so we prove the case q=3 .

2. Preliminaries

All groups considered in this paper are assumed finite. Our notation
corresponds to that of Gorenstein [5].

(2. 1) Let A be a \pi’ -group of automorphism of the \pi group G, and
suppose G or A is solvable. Then for each prime p in \pi , we have

(1) A leaves invariant some S_{p} -subgroup of G.
(2) Any two A invariant Sp-subgroups of G are conjugate by an ele-

ment of C_{G}(A) .
(3) Any A invariant p-subgroup of G is contained in an A-invariant

S_{p}\cdot subgroup of G.
(4) If H is any A-invariant normal subgroup of G, then C_{G/H}(A)

is the image of C_{G}(A) in G/H.
(2. 2) (Thompson)
A p group P posseses a characteristic subgroup C with the following

properties ;
(1) c1(C)\leq 2 and C/Z(C) is elementary abelian.
(2) [P, C]\subseteq Z(C) .
(3) C_{P}(C)=Z(C) .
(4) Every nontrivial p’ -automorphism of P induces a nontrivial autO-

morphism of C
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(2. 3) If A is a p’ -group of automorphisms of the p-group P with p odd
which acts trivially on \Omega_{1}(P) , then A=1 .

(2. 4) Let P be a p-group of class at most 2 with p odd. Then \Omega_{1}(P)

is of exponent p.
(2. 5) (Clifford)
Let V/F be an irreducible G-module and let H be a normal subgroup

of G. Then V is the direct sum of H-invariant subspaces V_{i} , 1\leq i\leq r,
which satisfy the following conditions;

(1) V_{i}=X_{i1}\oplus X_{i2}\oplus\cdots\oplus X_{il} , where each X_{ij} is an irreducible H-sub-
module, 1\leq i\leq r, t is independent of i, and X_{ij}, X_{i’j’} are isomorphic H-
modules if and only if i=i’

(2) For x in G, the mapping \pi(x) ; V_{i}arrow V_{i}x, 1\leq i\leq r, is a permuta-
tion of the set S=\{V_{1}, \cdots, V_{r}\} and \pi induces a transitive permutation re-
presentation of G on S.

(2. 6) (Thompson)
Assume G is a fifinite group admitting a fifixed point free automorphism

of prime order. Then G is nilpotent.
(2. 7) (Shult)
Let G=NQP with NbG, QbQP, |P| is a prime, |Q| is an odd and

(|Q|, |P|)=1 , (|N|, |Q|)=1 . Assume further that C_{N}(P)=1 . Then [P, Q]\underline{\subset}

C_{Q}(N) .
(2. 8) (Thompson Transitivity Theorem)
Let G be a group in which the centralizer of every p-element is p-

constrained. Then if A\in SCN_{3}(P) , C_{G}(A) permutes transitively under con-
jugation the set of all maximal A-invariant q-subgroups of G for any
prime q\neq p .

(2. 9) Let G be a group in which the centralizer of every p-element
is p-constrained. Let P be an S_{p} -subgroup of G and let A be an element
of SCN_{3}(P) . Then for any prime q\neq p , P normalizes some maximal A-
invariant q subgroup of G.

(2. 10) (Glauberman)
Let G be a group, and P be an S_{p}-subgroup of G. If p\geq 5 , P\neq 1 ,

and N_{G}(P)/C_{G}(P) is a p-group, then G has a factor group of order p.
Suppose p is an odd prime and P is an S_{p}-subgroup of G. A normal

subgroup T of P is said to control strong fusion in P if T has the following
property.

“Whenever W\subseteq P, g\in G, and W^{g}\subseteq P, then there exist c\in C_{G}(W) and
n\in N_{G}(T) such that cn=g.’ ’
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Define the quadratic group for the prime p to be the semidirect product
Qd(p) of a two dimentional vector space V over GF(p) by the special lineargroup SL(V) on V. Let F(p) be the normalizer of some S_{p}-subgroup ofQd(p) .

(2. 11) (G1auberman_{1}^{\backslash }

If F(p) is not involved in N_{G}(Z(J(P))) , then Z(J(P)) controls strongfusion in P with respect to G.
(2. 12) (Glauberman)
Let G be a non-abelian simple group. Assume that S_{4} is not involvedin G Then. G is a JR-group, L_{2}(q) , q\equiv 3,5(8) , L_{2}(2^{n}) , Sz(2^{n}) , U_{3}(2^{n}) .
(2. 13) (Signalizer functor theorem)
Let A be an elementary abelian p-subgroup of G of rank at least 3.If G possesses the solvable A-signalizer functor \theta , then the subgroup <\theta

(C_{G}(a))|a\in A\#> of G is a solvable p’ -group.
(2. 14) (Gorenstein, Walter)
Let G be a group with O(G)=1 and SCN_{3}(2)\neq\phi . Assume furtherthat the centralizer of every involution of G is 2-constrained. Then o(C_{G}

(x)=1 for every involution x of G.

3. The structure of solvable groups satisfying the hypothesis ofthe theorem

Lemma 3. 1. Let G be a solvable group admitting an automorphism
\alpha prime order p fifixing a cyclic q-group for some odd prime q distinctfrom p. Then G is q-closed or q-nilpotent.

PROOF. Suppose false and G be a minimal counterexample. First ofall we prove that G=O_{q,q’}(G)C_{G}(\alpha) . We may assume that o_{q}(G)=1 . LetQ be a \alpha-invariant S_{q}-subgroup of G. By (2. 7) we have that [Q, \alpha]\subseteq C_{G}

(O_{q’}(G))\subseteq O_{q},(G) . Hence Q=C_{Q}(\alpha) . Let Q_{0} be asubgroup of Q and M bea \alpha-invariant Hall q’ -subgroup of N_{G}(Q_{0}) . Let y\in N_{G}(Q_{0}) and x\in Q_{0} . Then
(y^{-1})^{\alpha}xy^{\alpha}=(y^{-1}xy)^{a}=y^{-1}xy , this implies that [y^{\alpha}y^{-1}, x]=1 . Since M=[M, \alpha] ,we have that [M, Q_{0}]=1 . Hence N_{G}(Q_{0})/C_{G}(Q_{0}) is a q-group. Hence G hasa normal g-complement and G=O_{q,q} , (G)C_{G}(\alpha) . Let U be a \alpha-invariant Hall
q’ -subgroup of G. Assume [O_{q}(G), U]=1 . Then G is q-nilpotent, acontra-diction. So we have [O_{q}(G), U]\neq 1 . Hence C_{O_{q}(G)}(\alpha)\neq 1 . Next we provethat \Phi(O_{q}(G))=1 . Assume \Phi(O_{q}(G))\neq 1 . By the minimality of G, G/\Phi(O_{q}
(G)) is q-closed or q-nilpotent. Assume G/\Phi(O_{q}(G)) is q-closed. Then Gis q-closed, hence G/\Phi(O_{q}(G)) is q-nilpotent. Hence [O_{q}(G), U]\underline{\subset}\Phi(O_{q}(G)) ,it follows that [U, O_{q}(G)]=1 , a contradiction. Hence \Phi(O_{q}(G))=1 . By the
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Frattini argument, G=O_{q}(G)N_{G}(U) since G=O_{q,q’}(G)C_{G}(\alpha) . Hence C_{N_{G}(^{\gamma}J)}

(\alpha)\neq 1 . Let \langle g\rangle=\Omega_{1}(C_{G}(\alpha)) , then g\in N_{G}(U) . By Theorem 5. 2. 3 of [5],

O_{q}(G)=[O_{q}(G), U]\cross C_{o_{q^{(G)}}}(U) . Since [g, U]\underline{\subset}U\cap O_{q}(G)=1 , [O_{q}(G), U, U\rfloor=

1 , this implies [O_{q}(G), U]=1 , a contradiction.

4. The proof of the theorem

Let G be a minimal counterexample to the Theorem and assume q=3 .

Lemma 4. 1. G is simple.
Proof. By minimality of G, G is characteristic simple. Hence G=G_{1}

\cross\cdots\cross G_{n} where the G_{i} is non-abelian simple. Any normal non-abelian
simple subgroup of G coincide with one of the G_{i}1\leq i\leq n . Since G_{1}^{\alpha}\infty G ,

G_{1}^{\alpha}=G_{i} for some i . Assume that G_{1}^{a}=G_{1} . Then by minimality of G,

G=G_{1} , which implies the conclusion of the Lemma 4. 1. Hence we may

assume that G_{1}^{a}\neq G_{1} . Since G_{1}\cross G_{1}^{\alpha}\cross\cdots\cross G_{1}^{\alpha}p1\underline{\subset}G , C_{G}(\alpha) is non-solvable,

which is a contradiction since C_{G}(\alpha) is cyclic.

Lemma 4. 2. Let \forall r\in\pi(G)-\{2,3\} . Then for any r subgroup R_{0} of
G, N_{G}(R_{0})/C_{G}(R_{0}) is a\{3, r\} -group where S_{3} -subgroups are cyclic.

PBOOF. Let R be a \alpha-invariant S_{r} -subgroup of G. Then N_{G}(R) is

solvable Let V be a \alpha-invariant Hall \{3, r\}’ subgroup of N_{G}(R) . Then
[V, R]=1 since C_{VR}(\alpha)=1 . Let Q_{0} be a \alpha -invariant S_{3} subgroup of N_{G}(R) .

By (2. 7), [Q_{0}, \alpha]\underline{\subset}C_{Q_{0}}(R) . Hence N_{G}(R)C_{Q_{0}}(\alpha)RC_{G}(R) , which implies that
N_{G}(R)/RC_{G}(R) is a cyclic 3-group. Next we prove that N_{G}(Z(J(R)))=N_{G}(R) .

Suppose false. If N_{G}(Z(J(R))) is 3-nilpotent, then N_{G}(Z(J(R)))=N_{G}(R) ,

a contradiction. If N_{G}(Z(J(R))) is 3-closed, then R\underline{\subset}N_{G}(Q) , where Q is

a \alpha-invariant S_{3} -subgroup of G, so Q_{0}\underline{\subset}Q . Then N_{G}(R)/C_{G}(R) is a r-group

since [Q_{0}, R]\underline{\subset}R\cap Q=1 . By (2. 10) G is non-simple, a contradiction. So

we have N_{G}(Z(J(R)))=N_{G}(R) . By (2. 11) Z(J(R)) controls strong fusion in

R since F(r) is not involved in N_{G}(Z(J(R))) . Hence if x\in N_{G}(R_{0}) , then

there exist c\in C_{G}(R_{0}) and n\in N_{G}(Z(J(R))) such that x=cn. Hence we have

the conclusion of Lemma 4. 2.

Lemma 4. 3. Let X be a fifinite group. For each r\in\pi(X)-\{2,3\} , as-

some that N_{G}(R_{0})/C_{G}(R_{0}) is odd order for any r subgroup R_{0} of X and that
L_{3}(3) and L_{2}(7) are not involved in X. Then X is solvable.

PROOF. Let X be a minimal counterexample. If there exists a non-

trivial proper normal subgroup K of X, then X/K and K is solvable since

X/K and K satisfy the hypothesis of Lemma 4. 3, this implies that X is

solvable, a contradiction. So X is a minimal simple group since proper

subgroups are solvable. By N-paper [11] X is L_{2}(q) , Sz(2^{n}) or L_{3}(3) . By
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the hypothesis of Lemma 4. 3, X is L_{2}(q)(q \frac{\neq}{J}7) or Sz(2^{n}) . But L_{2}(q)(q\neq 7)

and Sz(2^{n}) have a r-group R_{0} such that N_{G}(R_{0})/C_{G}(R_{0}) is even order for
some r\in\pi(X)-\{2,3\} , a contradiction. Hence X is solvable.

By Lemma 4. 3 we may assume that L_{3}(3) or L_{2}(7) is involved in G.
Let S be a \alpha-invariant S_{2}-subgroup of G and Q be a \alpha-invaiant S_{3} -subgroup
of G. Let S_{0} be a \alpha-invariant subgroup of N_{G}(Q) .

Lemma 4. 4. N_{G}(Q)/C_{G}(Q) is a non-trivial elementary 2-group and
N_{G}(Q) is a maximal \alpha-invariant subgroup of G.

PROOF. Assume that N_{G}(Z(J(Q)))^{-=}\approx N_{G}(Q) , then N_{G}(Z(J(Q))) is 3-
nilpotent Hence N_{G}(Z(J(Q))) is F(3) -free. By (2.11) Z(J(Q)) controls
strong fusion in Q. Hence S_{4} is not involved in G. By (2. 12) G is aJR-
group, L_{2}(q) , q\equiv 3,5 (@), L_{2}(2^{n}) , Sz(2^{n}) , U_{3}(2^{n}) . But such simple groups
have not an automorphism which satisfy the hypothesis of the Theorem,
a contradiction. Hence we have that N_{G}(Z(J(Q)))=N_{G}(Q) . If N_{G}(Q) is
not a maximal \alpha-invariant subgroup of G, then N_{G}(Q) is 3-nilpotent. Hence
N_{G}(Z(J(Q))) is 3-nilpotent, a contradiction. Therefore N_{G}(Q) is amaximal
\alpha-invariant subgroup of G. Assume that N_{G}(Q)/C_{G}(Q) is odd order, then
we have similarly prove that S_{4} is not involved in G. Hence N_{G}(Q)/C_{G}(Q)

is even order Let L be a \alpha-invariant Hall 3’ -subgroup of N_{G}(Q) . Then
L is nilpotent by (2. 6). We set \overline{Q}=Q/\Phi(Q) . By Maschke’s theorem \overline{Q}=

\overline{Q}_{0}\oplus\overline{Q}_{1}\oplus\cdots\oplus\overline{Q}_{n} , where \overline{Q}_{i} is \langle\alpha\rangle L irreducible 1\leq i\leq n . We may assume
that C_{\overline{Q}_{i}}(\alpha)=1 for i=1 , \cdots n , since C_{\overline{Q}}(\alpha) is cyclic. Hence [L,\overline{Q}_{i}]=1 for i
=1 , \cdots , n . By (2. 5) \overline{Q}_{0} is the direct sum of L-invariant subspace V_{i} , 1\leq

i\leq r, such that V_{i}=X_{i1}\oplus\cdots\oplus X_{it} , where each X_{ij} is an irreducible L-sub-
module, 1\leq i\leq t , and X_{ij} , X_{i’j’} are isomorphic L-module if and only if i=i’
Assume that r=1 , then Z(L/C_{L}(Q_{0})) is a \alpha-invariant cyclic group of even
order. Hence C_{G}(\alpha) is even order, acontradiction. Since \langle\alpha\rangle induces a
transitive permutation of the set \{V_{1}, \cdots, V_{r}\} by (2. 5), we have \overline{Q}_{0}=V_{1}\oplus

V_{1}^{\alpha}\oplus\cdots\oplus V_{1^{\sim}}^{\alpha^{D-1}},where V_{1}^{\alpha’} coincides with one of the V_{i} , 1\leq i\leq r, for j=
0, \cdots , p–l. Since C_{Q_{0}}(\alpha) is cyclic, |V_{1}|=3 , this implies that L/C_{L}(Q) is
elementary 2-group. Hence N_{G}(Q)/QC_{G}(Q) is an elementary 2-gr0up.

Lemma 4. 5. C_{N_{G}(S)}(\alpha)=1 . In particular N_{G}(S) is nilpotent and \{2, 3\}-

group.
PROOF. Suppose that C_{N_{G}(S)}(\alpha)\neq 1 . We set \Omega_{1}(C_{G}(\alpha))=\langle g\rangle , then g\in

N_{G}(S) . Let S_{0} be a \alpha-invariant S_{2}-subgroup of N_{G}(Q) , then by Lemma 4. 4
[S_{0}, Q]\neq 1 . By (2. 2) there exists a characteristic subgroup C of Q such
that class C\leq 2 and [S_{0}, C]\neq 1 . By (2. 3) [S_{0}, \Omega_{1}(C)]\neq 1 , and \Omega_{1}(C) is of
exponent 3 by (2. 4). If g\not\subset\Omega_{1}(C) , then [S_{0}, \Omega_{1}(C)]=1 , a contradiction, hence
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g\in\Omega_{1}(C) . On the other hand [S_{0}, g]\underline{\subset}S\cap Q=1 . \langle\alpha\rangle S_{0} acts on D=\Omega_{1}(C)/\Phi

(\Omega_{1}(C)) . Since \overline{g}\in C_{D}(S_{0}) , \alpha acts fixed point free on D/C_{D}(S_{0}) , hence [S_{0} ,
D]\underline{\subset}C_{D}(S_{0}) , this implies that [S_{0}, D]=1 , which implies [S_{0},\Omega_{1}(C)]=1 , a con-
tracdiction. Hence C_{N_{G}(S)}(\alpha)=1 . In particular N_{G}(S) is nilpotent. Next
assume that N_{G}(S) is not {2, 3}-group, then there exists an element r\in\pi

(N_{G}(S))-\{2,3\} . Let R be a \alpha-invariant S_{r} -subgroup of G. N_{G}(S)=N_{G}(R)

is nilpotent. By (2. 10) G is non-simple, which is a contradiction.

Let P be a \alpha-invariant S_{13}-subgroup of G and \langle g\rangle=\Omega_{1}(C_{G}(\alpha)) .

Lemma 4. 6. Assume P\neq 1 , then the fallowings hold;

(i) g\in N_{G}(P) ,
(ii) C_{P}(g)=1 .
PROOF. Assume g\oplus N_{G}(P) , then N_{G}(P) is nilpotent, which implies G

is non-simple by (2. 10), a contradiction. Next we prove that C_{P}(g)=1 .

Suppose false. We set P_{0}=C_{P}(g)\neq 1 . Let M be a maximal \alpha-invariant
subgroup of G which contains C_{G}(g) , then M is 3-closed or 3-nilp0tent.
If M is 3-closed, then P_{0}\underline{\subset}N_{G}(Q) , this implies that N_{G}(S)=N_{G}(P) by Lemma
4. 4, a contradiction. Hence M is 3-nilpotent and we deduce that M=N_{G}

(P) . Assume that g\in Z(Q) , then Q\underline{\subset}N_{G}(P) . Hence [Q, \alpha]\underline{\subset}C_{Q}(P) , which
implies that [\Omega_{1}(Z(Q)), P_{0}]=1 . Since N_{G}(Q) is a maximal \alpha-invariant sub-
group of G, P_{0}\underline{\subset}N_{G}(Q) , a contradiction. Hence g\not\in Z(Q) . This implies
that [Z(Q), P]=1 . Hence P\underline{\subset}N_{G}(Q) , a contradiction.

Lemma 4. 7. C_{G}(x) is 13-nipotent for each x\in P^{\#} .

PROOF. By taking a conjugation of x we may assume that C_{P}(x) is
a S_{13} -subgroup of C_{G}(x) . Let P_{0} be a non-trivial 13-subgroup of C_{P}(x) . We
set P_{1}=\langle x\rangle P_{0} . Assume that N_{C_{G}(x)}(P_{0})/C_{C_{G}(x)}(P_{0}) is not a 13-group. Then
there exists an element y such that y\in N_{C_{G}(x)}(P_{0})-C_{C_{G}(x)}(P_{0}) and y is a 13’-

element. This implies that y\in N_{G}(P_{1})-C_{G}(P_{1}) . Assume that N_{G}(Z(J(P)))_{\check{R-}}^{-}

N_{G}(P) , then N_{G}(P) is nilpotent, a contradiction. Hence N_{G}(Z(J(P)))=N_{G}

(P)=C_{N_{G}(P)}(\alpha)PC_{G}(P) . Since F(13) is not involved in N_{G}(Z(J(P))) , Z(J(P))

controls strong fusion in P. Hence there exists c\in C_{G}(P_{1}) and n\in N_{G}(Z(J

(P))) such that y=cn. Since N_{G}(P)=C_{N_{G}(P)}(\alpha)PC_{G}(P) , we may assume n\in

C_{N_{G}(P)}(\alpha) . By Lemma 4. 6 n=1 since C_{P}(g)=1 , which contradicts the choice
of y. Hence N_{c_{G}(x)}(P_{0})/C_{C_{G}(x)}(P_{0}) is a 13-group. Hence C_{G}(x) is 13-nilp0tent.

In particular C_{G}(x) is 13-constrained for each x\in P^{\#} by Lemma 4. 7.
Assume that P\neq 1 and Z(P) is cyclic, then p(=|\alpha|) is 2 or 3. Hence G

is odd order or a 3’ -group, a contradiction. Hence we may assume that
P=1 or Z(P) is a non-cyclic group.
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1. The case SCN_{3}(P)\neq\phi

Lemma 4. 8. C_{G}(x) is a\{2.3\}’ -group for each x\in P^{\mu}’ .
PROOF. Suppose false. Then there exists an element x\in P^{\#} and r

such that r\in\pi(C_{G}(x)) , where r=2 or 3. Since Z(P) is a non-cyclic group,
we may assume that x\in Z(P) . Then P normalizes some S_{r} -subgroup of
C_{G}(x) since C_{G}(x) is 13-nilpotent. Let A\in SCN_{3}(P) . By Transitivity TheO-
rem C_{G}(A) permutes transitively under conjugation the set of all maximal
A-invariant r-subgroup. Then all maximal A-invariant r-subgroups are P-
invariant since C_{G}(A)\underline{\subset}C_{G}(Z(P))\underline{\subset}N_{G}(P) . Since \alpha permutes maximal P-
invariant r-subgroups and the number of maximal P-invariant r-subgroups
is coprime to 13, \alpha invariants some maximal P-invariant r-subgroup. Let
W be a \langle\alpha\rangle P-invariant r-subgroup. If r=2, then N_{G}(P) is nilpotent since
N_{G}(P)=N_{G}(S) , a contradiction. Next we assume r=3 . Let M be a maximal
\alpha-invariant subgroup of G which contains N_{G}(W) . If M is 3-closed, then
P\underline{\subset}N_{G}(Q) , a contradiction. Hence M is 3-nilpotent and so M=N_{G}(P) . By
(2. 7) [Z(Q), \alpha]\underline{\subset}C_{Q}(P) . Assume that [Z(Q), \alpha]=1 , then [S_{0}, Z(Q)]=1 . Since
g\in Z(Q) , [S_{0}, Q]=1 , a contradiction. Hence we may assume that [Z(Q) ,
\alpha]\neq 1 . Next we prove that C_{Z(Q)}(S_{0})=1 . Suppose false. Let M be a maxi-
mal \alpha-invariant subgroup of G which contains N_{G}(S_{0}) . Since C_{Z(Q)}(S_{0})\underline{\subset}M

and N_{G}(S) is nilpotent M is 3-closed. Hence N_{S}(S_{0})=S_{0} , this implies S=S_{0} .
Hence we see S\subseteq N_{G}(Q) , in particular C_{Z(Q)}(S)\neq 1 . By Glauberman’s weakly
closed elements theorem [2] C_{Z(Q)}(S) is weakly closed in Q with respect to
G since C_{Z(Q)}(S)\underline{\subset}Z(N_{G}(J(Q))) . Let z\in\Omega_{1}(Z(S))^{\#} . By Z^{*} theorem there
exists an element x(\neq z) of S such that x is conjugate to z in G. Then
there exists an element k\in G and subgroup H of S such that z^{k}=x and
k\in N_{G}(H) , z, x\in H. Since C_{Z(Q)}(S) is weakly closed in S, N_{G}(H)=C_{G}(H)

N_{N_{G}(H)}(C_{Z(Q)}(S)) by the Frattini argument. Then we may assume k\in N_{G}

(C_{Z(Q)}(S))\subseteq N_{G}(Q) . Hence z=z^{k}=x, a contradiction. Hence C_{Z(Q)}(S_{0})=1 .
By (2. 5) \Omega_{1}(Z(Q))=\langle a\rangle\oplus\langle a^{\alpha}\rangle\oplus\cdots\oplus\langle a^{\alpha}\rangle p-1 , where \langle a^{a^{i}}\rangle is a Wedderburn
component, 0\leq i\leq p-1 . Let v\in S_{0}^{\#} . If a^{v}=a^{-1}, (a^{\alpha^{i}})^{v}=a^{\alpha^{i}} for i=1 , \cdots , p-1 ,
then a^{vv^{a}}=a^{-1} and (a^{a})^{vv^{\alpha}}=a^{-\alpha} . We set b=a^{-1}a^{a} , then b^{w}=b^{-1} and b\in

[Z(Q), \alpha] . By the Frattini argument N_{G}(\langle b\rangle)=C_{G}(b)N_{N_{G}(\langle b\rangle)}(P) . Hence N_{G}

(P) is even order, this implies N_{G}(S)=N_{G}(P) , a contradiction. Hence C_{G}(x)

is a \{2, 3\}’ -group for each x\in P\# .
Lemma 4. 9. C_{G}(t) is solvable for every 2-element and 3-element t of

G. In particular O(C_{G}(x))=1 for every involution x of G.
PROOF. Let R be a \alpha-invariant S_{7}-subgroup of G. Assume that R\neq 1

and d(Z(R))\leq 2 , then p=2 or 3. Then G is odd order or 3’ group, a con-
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tradiction. Hence we may assume that R=1 or d(Z(R))\geq 3 . Assume d
\langle Z(R))\geq 3 . Then we can repeat the proof of Lemma 4. 6, 4. 7 and 4. 8
verbatim with R in place of P to obtain that C_{G}(y) is a \{2, 3\}’ -group for
each y\in R^{\#} . Hence C_{G}(t) is a \{7, 13\}’ -group for every 2-element and 3-
element t of G. In particular C_{G}(t) is solvable by Lemma 4. 3. Assume
SCN_{3}(2)=\phi . Then |\Omega_{1}(Z(S))|\leq 4 . Hence p(=|\alpha|)=3 , a contradiction.
Hence we may assume SCN_{3}(2)\neq\phi . By (2. 14) O(C_{G}(x))=1 for every inv0-
lution x of G. Assume R=1 .
Then C_{G}(t) is a \{7, 13\}’ -group for every 2-element and 3-element t of G is
a 7’-group. Hence Lemma 4. 9 is proved.

Lemma 4. 10. O_{3’}(C_{G}(x)) is odd order for every element x of Q^{\#} .
PROOF. Suppose false. Then there exists an element x of Q^{\#} such

that O_{3’}(C_{G}(x)) is even order. Since Z(Q) is non-cyclic and the centralizer
of every non-trivial 3-element is solvable, we may assume that x\in Z(Q) .
By (2. 10) W=\langle O_{3’}(C_{G}(x))|x\in Z(Q)^{\#}\rangle is a solvable 3’ -group of G. Then
W is \alpha-invariant and even order. Let S_{1} be a \langle\alpha\rangle Q -invariant S_{2}-subgroup
of W. Let K be a maximal \alpha-invariant subgroup of G which contains S_{1}

Q. Suppose that K is 3-nilpotent, then Q\underline{\subset}N_{G}(S) , a contradiction. Hence
K is 3-closed. It follows [S_{1}, Q]\underline{\subset}S_{1}\cap Q=1 . Let L be a maximal \alpha-invariant
subgroup which contains C_{G}(S_{1}) . Then L is 3-closed. Hence Z(S)\underline{\subset}N_{G}(Q) .
If C_{Z(S)}(Q)\neq 1 , then S\underline{\subset}N_{G}(Q) . If \Omega_{1}(Z(S)) is weakly closed in S, then G is
a JR-group, L_{2}(q) , q\equiv 3,5(8) , L_{2}(2^{n}) , Sz(2^{n}) , U_{3}(2^{n}) , which is a contradiction.
Hence \Omega_{1}(Z(S)) is not weakly closed in S with respect to G. Hence there
exists an element h\in G such that h\in N_{G}(H) and \Omega_{1}(Z(S))^{h}\neq\Omega_{1}(Z(S)) , H=
\langle\Omega_{1}(Z(S))^{k}|k\in\langle h\rangle\rangle\underline{\subset}S. If [H, Q]=1 , then N_{G}(H)=C_{G}(H)N_{N_{G^{(H)}}}(Q) . Thus
we may assume that h\in N_{G}(Q) , this follows \Omega_{1}(Z(S))^{h}=\Omega_{1}(Z(S)) , a contra-
diction. Hence we may assume [\Omega_{1}(Z(S))^{h}, Q]\neq 1 . Since \Omega_{1}(Z(S)) is non-
cyclic, Q=\langle C_{Q}(x)|x\in\Omega_{1}(Z(S))^{h\#}\rangle . Since [\Omega_{1}(Z(S))^{h}, Q]\neq 1 , there exist ele-
ments x, y\in\Omega_{1}(Z(S))^{h} and a\in Q such that [a, x]=1 and [a, y]\neq 1 . Then
y\in O_{2}(C_{G}(x)) since C_{G}(x) is solvable and O(C_{G}(x))=1 , y\in Z(S)^{h} , S^{h} is a
S_{2}-subgroup of C_{G}(x) . Hence [a, y]\underline{\subset}O_{2}(C_{G}(x))\cap Q=1 , a contradiction. Sup-
pose C_{Z(S)}(Q)=1 , then we have a contradiction by a similar argument. Hence
O_{3’}(C_{G}(x)) is odd order for each each x\in Q^{\#} .

Lemma 4. 11. G does not exist.
PROOF. Since N_{S}(Q) acts irreducibly on \Omega_{1}(Z(Q)) , there exist elements

u\in N_{S}(Q) and a, b\in\Omega_{1}(Z(Q)) such that u centralizes \langle a\rangle\cross\langle b\rangle and u is an
involution. Then \langle a\rangle\cross\langle b\rangle acts faithully on O_{2}(C_{G}(u)) since C_{G}(u) is solvable
and O(C_{G}(u))=1 . Hence we may assume that there exists an element x\in
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O_{2}(C_{G}(u)) such that [a, x]=1 and [b, x]\neq 1 since O_{2}(C_{G}(u))=\langle C_{O_{2}(c_{G}(u))}(d)|

d\in\langle a\rangle\cross\langle b\rangle^{\#}\rangle . Since b\in O_{3’,3}(C_{G}(a)) and O_{3’,3}(C_{G}(a)) is odd order, [b, x]\underline{\subset}

O_{3’,3}(C_{G}(a))\cap O_{2}(C_{G}(u))=1 , a contradiction.

2. The case SCN_{3}(P)=\phi

Suppose P=1 . Then C_{G}(t) is a \{7, 13\}’ -group for every 2-element and
3-element f of G since G is a 13’ -group. Hence Lemma 4. 9 is satisfied.
By Lemma 4. 9 and 4. 10, we have a contradiction. Hence P\neq 1 . Suppose
Z(P) is a cyclic group, then p=7, in particular L_{2}(7) is not involuved in G.

Hence we may assume that L_{3}(3) is involved in G. Since SCN_{3}(P)=\phi ,

d_{n}(P)\leq 2 , which yields \Omega_{1}(P)\underline{\subset}Z(P) .

Lemma 4. 12. g\in N_{G}(\langle x\rangle) for each x\in\Omega_{1}(P)^{g} .
PROOF. \Omega_{1}(P) is normalized by \langle\alpha\rangle\cross\langle g\rangle . By (2. 5) the number of

Wedderburn components of \Omega_{1}(P) with respect to \langle g\rangle is one since C_{\Omega_{1}(P)}(\alpha)=

1 . Then \Omega_{1}(P)=P_{1}\oplus P_{2} , where P_{i} is a \langle g\rangle -isomorphic cyclic subgroup of
\Omega_{1}(P) for i=1,2 , since g normalizes a cyclic subgroup of \Omega_{1}(P) . Hence g

normalizes every cyclic subgroup of \Omega_{1}(P) .

Lemma 4. 13. C_{Q}(S)=1 .
PROOF. Suppose false. We set Q^{*}=C_{Q}(S) , then Q^{*}\neq 1 . In the first

we prove that C_{G}(x) is odd order for each x\in P^{\#} . Suppose false. Then
there exists an element x\in P^{g} such that C_{G}(x) is even order. P normalizes
a V\in S_{2} subgroup of C_{G}(x) since C_{G}(x) is 13-nilpotent. Let M be a maximal
\alpha-invariant subgroup which contains N_{G}(Q^{*}) . Suppose M is 3-nilpotent, then
N_{G}(Q)=N_{G}(S) is nilpotent, a contradiction. Hence S\underline{\subset}N_{G}(Q) . If S is abe-
lian, then G is JR-type or L_{2}(q) , q\equiv 3,5(8) , L_{2}(2^{n}) , a contradiction. This
follows that C_{S}(Q)\neq 1 since S’\underline{\subset}C_{S}(Q) . We set \Omega_{1}(F)=\langle x\rangle\cross\langle y\rangle , then y
acts fixed point free on a Hall {2, 3} subgroup W of C_{G}(x) which contains
V. Because suppose false, then C_{G}(\Omega_{1}(P)) is even order or 3||C_{G}(\Omega_{1}(P))| .
If C_{G}(\Omega_{1}(P)) is even order, then we see that N_{G}(S)=N_{G}(P) , a contradiction.
If 3||C_{G}(\Omega_{1}(P))| , then we have a contradiction by a similar argument of
Lemma 4. 8. Hence W is nilpotent. Since O_{13’}(C_{G}(x)) is solvable, V\underline{\subset}

O_{\{2,3\}}(C_{G}(x)) . Since W\cap O_{\{2,3\}}(C_{G}(x)) is nilpotent, V=O_{2}(C_{G}(x)) . Now we
prove that C_{G}(V) is 13-nilpotent. Suppose false. Since a S_{13} subgroup of
C_{G}(V) is cyclic, we may assume that N_{C_{G}(V)}(\langle x\rangle)/C_{C_{G}(V)}(x) is not a 13-gr0up.
Since N_{G}(\langle x\rangle)=\langle g\rangle PO_{13’}(C_{G}(x)) , every S_{3} subgroup of N_{G}(\langle x\rangle) is written
by \langle g^{k}\rangle U for some k\in N_{G}(\langle x\rangle) and U\in S_{3} subgroup of O_{13’}(C_{G}(x)) . Then
\langle g^{k}\rangle U\subset C_{G}(V)=U or \langle g^{k}\rangle U since [U, V]=1 . Suppose that [g^{k}, V]=1 , then
[g, V\rfloor=1 since k\in N_{G}(\langle x\rangle) and V\wedge N_{G}(\langle x\rangle) . Since \langle g\rangle \langle y\rangle is a Frobenius
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group, [y, V]=1 , a contradiction. Hence every S_{3}-subgroup of N_{G}(\langle x\rangle)C_{G}

(V) is contained in O_{13’}(C_{G}(x)) . Then N_{c_{G}(V)}(\langle x\rangle)/C_{C_{G}(V)}(x) is a 13-gr0up,
a contradiction. Hence C_{G}(V) is 13-nilpotent. By taking a conjugation of
V, we may assume that V\subseteq S. Then Q^{*}\subseteq C_{G}(V) and h\in C_{G}(V) , where h
is a non-trivial 13-element. Let Q_{0} be a S_{3} -subgroup of C_{G}(V) which contains
Q^{*} . We may assume h\in N_{G}(Q_{0}) since C_{G}(V) is 13-nilpotent. Now C_{G}(Q_{0})

is a 13’ -group since C_{G}(Q_{0})\underline{\subset}C_{G}(Q^{*}) and C_{G}(Q^{*}) is a \alpha-invariant 13’ group,
By taking a conjugation of Q_{0} , we may assume that Q_{0}\underline{\subset}Q and C_{Q}(Q_{0}) is
a S_{3} -subgroup of C_{G}(Q_{0}) . We set Q_{1}=C_{Q}(Q_{0}) , then Z(Q)\underline{\subset}Q_{1} . Since g\subset Zarrow(Q)

C_{S}(Q) is a S_{2}-subgroup of C_{G}(Z(Q)) . Hence C_{S}(Q) is a S_{2}-subgroup of C_{G}

(Q_{1}) . Now C_{G}(Q_{1}) is a 13’ -group since C_{G}(Q_{1})\underline{\subset}C_{G}(Z(Q)) . Hence by the
Frattini argument we may assume that h\in N_{G}(C_{S}(Q)) . Since C_{S}(Q)\neq 1 , we
see that N_{G}(S)=N_{G}(P) is nilpotent, a contradiction. Hence we have C_{G}(x)

is odd order for each x\in P^{g} . In particular C_{G}(t) is solvable for every in-
volution t of G. By (2. 14) we see that O(C_{G}(t))=1 for every involution t .
But now we have a contradiction by a similar argument of Lemma 4. 9.
Hence C_{Q}(S)=1 .

Lemma 4. 14. \Omega_{1}(Z(Q))\subseteq Z(Q) .
PROOF. We set \Phi_{0}(Q)=Q and \Phi_{1}(Q)=\Phi(Q) , \Phi_{i+1}(Q)=\Phi(\Phi_{i}(Q)) , \Phi_{n+1}

(Q)=1 . Let S_{0}=N_{S}(Q) . Now we prove that \langle\alpha\rangle S_{0} acts irreducibly on \Phi_{i}

(Q)/\Phi_{i+1}(Q) , 0\leq i\leq n Suppose false. Since C_{Q}(\alpha) is cyclic, we have C_{Q}(S_{0})\neq

1 . By Lemma 4. 13 S\neq S_{0} . Let M be a maximal \alpha-invariant subgroup of
G which contains N_{G}(S_{0}) , then M is 3-nilpotent, hence N_{G}(S)=N_{G}(Q) , a
contradiction. Hence \langle\alpha\rangle S_{0} acts irreducibly on \Phi_{i}(Q)/\Phi_{i+1}(Q) , 0\leq i\leq n .
Next we consider the structure of \overline{\Phi_{i}(Q)}=\Phi_{i}(Q)/\Phi_{i+2}(Q) , 0\leq i\leq n-1 . Then
class \overline{\Phi_{i}(Q)}\leq 2 and \Omega_{1}\overline{(\Phi_{i}(Q)}) =\overline{\Phi_{i-1}(Q}) or \overline{\Phi_{i}(Q)} . Now the exponent of
\Omega_{1}(\overline{\Phi_{i}(Q)})=3 since class \overline{\Phi_{i}(Q)}\leq 2 . Suppose that \Omega_{1}(\overline{\Phi_{i}(Q}))=\overline{\Phi_{i}(Q)} , then
|C_{\overline{\Phi_{i}(Q)}}(\alpha)|=3 . Since C_{S_{0}}(\overline{\Phi_{i+1}(Q)})=1 , we have C_{\overline{\Phi_{i+1}(Q)}}(\alpha)\neq 1 . Hence C_{\overline{\Phi_{i}(Q)}}(\alpha)

\subseteq\overline{\Phi_{i+1}(Q)}. But now C_{\Phi_{i^{(Q)/\Phi_{i+1}}}}(Q)(\alpha)=1 , a contradiction. Hence we see that
\Omega_{1}(\overline{\Phi_{i}(Q)})=\overline{\Phi_{i+1}(Q)} . Let a\in Q and |a|=3 . Then there exists a number j,
0\leq j\leq n , such that a\in\Phi_{j}(Q)-\Phi_{j+1}(Q) . Suppose that j<n , then a\in\Phi_{j}(Q)/

\Phi_{j+2}(Q) . Since |a|=3 , we see that a\in\Omega_{1}(\Phi_{j}(Q))=\Phi_{j+1}(Q) . Hence a\in\Phi_{j+1}(Q) ,
a contradiction. Hence a\in\Phi_{n}(Q)\underline{\subset}Z(Q) , this implies \Omega_{1}(Q)\subseteq Z(Q) .

Lemma 4. 15. C_{G}(x) is a 3’ -group for each x\in P^{\#} . In particular the
centralizer of every non-trivial 3-element is solvable.

PROOF. Suppose false. Then there exists an element x\in\Omega_{1}(P) such
that 3||C_{G}(x)| . We set L=O_{13’}(C_{G}(x)) , then N_{G}(\langle x\rangle)=\langle g\rangle PL . Let A be
a S_{3} -subgroup of N_{G}(\langle x\rangle) which contains the element g. Then \langle g\rangle P acts
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on O_{3’,3}(L)/O_{3’}(L) . But now O_{3’,3}(L)=O_{3’}(L)(A\cap O_{3’,3}(L)) . Since |g|=3 ,
we have [g, A]=1 by Lemma 4. 14. Hence g centralizes O_{3’,3}(L)/O_{3}, (L) .
Since \langle g\rangle P is a Frobenius group, this follows that [P, O_{3’,3}(L)]\subseteq O_{3} , (L).
Hence 3||C_{G}(P)| . But now we have a contradiction by a similar argument
of Lemma 4. 8. Hence C_{G}(x) is a 3’ -group for each x\in P^{\#} . By Lemma
4. 3 the centralizer of every non-trivial 3-element is solvable.

Lemma 4. 16. C_{G}(x) is odd order for each x\in P^{\#} . In particular C_{G}(t)

is solvable and O(C_{G}(t))=1 for every involution t of G.
PROOF. Suppose false. Then there exists an element x of P\# such

that an S_{2}-subgroup V of C_{G}(x) is non-trivial. Then by Lemma 4. 13 Varrow

C_{G}(x) . We set \Omega_{1}(P)=\langle x\rangle\cross\langle y\rangle , then y acts fixed point free on V. By
Lemma 4. 13 C_{G}(V) is 13-nilpotent. By taking a conjugation of V we may
assume that V\underline{\subset}S and C_{S}(V) is a S_{2}-subgroup of C_{G}(V) . Let S^{*}=C_{S}(V) ,
then Z(V)\underline{\subset}S^{*} . By taking a conjugation of x, we may assume that x\in N_{G}

(S^{*}) . Assume that N_{G}(S^{*}) is solvable, then x normalizes a S_{2}-subgroup K_{1}

of N_{G}(S^{*}) . Futhermore assume that N_{G}(K_{1}) is solvable, then x normalizes
a S_{2} -subgroup K_{2} of N_{G}(K_{1}) . By a similar argument we see that 13||N_{G}(S)| ,
then N_{G}(S)=N_{G}(P) , a contradiction. Hence there exists a 2-group K which
contains S^{*} and such that N_{G}(K) is non-solvable. Hence N_{G}(K) involves
L_{3}(3) , in particular a S_{3} -subgroup of N_{G}(K) is non-cyclic. By taking a con-
jugation of K we may assume that \langle a\rangle\cross\langle b\rangle\underline{\subset}Q\subset N_{G}(K) . Let c\in\langle a\rangle\cross\langle b\rangle^{\#} ,
then C_{G}(c)\underline{\subset}O_{3’}(C_{G}(c))N_{G}(Q) since C_{G}(c) is solvable and \Omega_{1}(Q)\underline{\subset}Z(Q) . By
the Signalizer functor theorem \langle O_{3’}(C_{G}(d))|d\in\Omega_{1}(Q)^{\#}\rangle=L is a \alpha-invariant
solvable 3’ -group. Suppose that L\neq 1 . Let M be a maximal \alpha-invariant
subgroup of G which contains QL. Suppose that M is 3-nilpotent. If L
is even order, then N_{G}(S)=N_{G}(Q) , a contradiction. If L is odd order, then
we yield a contradiction by a similar argument of Lemma 4. 8. Hence M is
3-closed and so L\underline{\subset}N_{G}(Q) . Hence C_{G}(c)\underline{\subset}N_{G}(Q) . In particular K=\langle C_{K}(c)|

c\in\langle a\rangle\cross\langle b\rangle^{\#}\rangle\underline{\subset}N_{G}(Q) . Let W=\Omega_{1}(Z(V)) , then we may assume that W\underline{\subset}

N_{S}(Q) . On the other hand C_{W}(g_{1})\cap C_{W}(g_{1}^{y_{1}})\underline{\subset}C_{W}(y_{1})=1 for some conjugate
elements g_{1} , y_{1} of g, y . Hence C_{W}(g_{1})\oplus C_{W}(g_{1}^{y_{1}})\underline{\subset}W. We set |W|=2^{m} ,
then 2^{m}\geq 2^{12} since y_{1} acts fixed point free on W. Let |C_{W}(g_{1})|=2^{n} , then
2^{2n}\leq 2^{m} . Assume that n^{>}m\neq-6 , then m\geq 2n^{\sim}’\neq 2(m-6) , this follows m_{\nabla^{\angle}}^{\approx}\prime 12 ,
a contradiction. Hence n\leq m-6 . We set W_{0}=W\cap C_{S}(Q) , then |W;W_{0}|\leq 2^{6} ,
hence |W_{0}|\geq 2^{m-6} . Assume that W=W_{0} . Then y_{1}\in N_{G}(W)\underline{\subset}C_{G}(W)N_{G}(Q) .
Hence 13||N_{G}(Q)| , a contradiction. Hence W_{arrow}\supset W_{0} . Let v\in W-W_{0} and
X=\langle v\rangle\cross W_{0} . Then |C_{W}(g_{1})|=2^{n}\leq 2^{m-6<}2^{m-5}\neq\leq|X| . But now C_{G}(X) is
13-nilpotent by a similar argument of Lemma 4. 13. Then C_{Q}(v)=C_{Q}(X)

\neq 1 since L_{3}(3) is involved in G and so Q is non-abelian. Let Q^{*} be
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a S_{3} -subgroup of C_{G}(x) . Since C_{G}(X) is 13-nilpotent, x_{1}\in N_{G}(Q^{*}) for some
x_{1} which is conjugate to x. Let Q_{0} be a S_{3} -subgroup of G which contains
Q^{*} . Since N_{G}(Q^{*}) is 3-constrained by Lemma 4. 15 and \Omega_{1}(Q_{0})\underline{\subset}Z(Q_{0}) ,

we see N_{G}(Q^{*})r\Omega_{1}(Q_{0})O_{3} , (N_{G}(Q^{*})) . Suppose that x_{1}\in O_{3’}(N_{G}(Q^{*})) , then
[x_{1}, Q^{*}]\underline{\subset}Q^{*}\subset O_{3’}(N_{G}(Q^{*}))=1 , which is a contradiction by Lemma 4. 10.
Hence we may assume that x_{1}\in N_{G}(\Omega_{1}(Q_{0}))=N_{G}(Q_{0}) . Hence 13||N_{G}(Q)| ,
then N_{G}(S)=N_{G}(P) is nilpotent, a contradiction. Hence C_{G}(x) is odd order
for each x\in P^{\#} .

Now we see that O_{3’}(C_{G}(y)) is odd order for each y\in Q^{\#} by a similar
argument of Lemma 4. 10. And by a similar argument of Lemma 4. 11
we have a final contradiction. Hence the Theorem is proved.
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