Finite groups admitting an automorphism of prime order I

By Hiroshi Fukushima
(Received April 18, 1978; Revised October 4, 1978)

1. Introduction

Let G be a finite group and q a prime. We say that G is q-closed if G has a normal Sylow q-subgroup and q-nilpotent if G has a normal q complement. In this paper we prove the following theorem.

Theorem. Let G be a finite group. Assume that G admits an automorphism α of order p, p a prime. Assume further that $C_{G}(\alpha)$ is a cyclic q-group for some odd prime q distinct from p. Then G is q-closed or q nilpotent. In particular G is solvable.
B. Rickman [8] prove the case $q \geqslant 5$, so we prove the case $q=3$.

2. Preliminaries

All groups considered in this paper are assumed finite. Our notation corresponds to that of Gorenstein [5].
(2.1) Let A be a π^{\prime}-group of automorphism of the π-group G, and suppose G or A is solvable. Then for each prime p in π, we have
(1) A leaves invariant some S_{p}-subgroup of G.
(2) Any two A-invariant S_{p}-subgroups of G are conjugate by an element of $C_{G}(A)$.
(3) Any A-invariant p-subgroup of G is contained in an A-invariant $S_{p} \cdot$ subgroup of G.
(4) If H is any A-invariant normal subgroup of G, then $C_{G / H}(A)$ is the image of $C_{G}(A)$ in G / H.
(2.2) (Thompson)

A p-group P posseses a characteristic subgroup C with the following properties;
(1) $\quad c 1(C) \leqslant 2$ and $C / Z(C)$ is elementary abelian.
(2) $[P, C] \subseteq Z(C)$.
(3) $C_{P}(C)=Z(C)$.
(4) Every nontrivial p^{\prime}-automorphism of P induces a nontrivial automorphism of C.
(2.3) If A is a p^{\prime}-group of automorphisms of the p-group P with p odd which acts trivially on $\Omega_{1}(P)$, then $A=1$.
(2.4) Let P be a p-group of class at most 2 with p odd. Then $\Omega_{1}(P)$ is of exponent p.
(2.5) (Clifford)

Let V / F be an irreducible G-module and let H be a normal subgroup of G. Then V is the direct sum of H-invariant subspaces $V_{i}, 1 \leqslant i \leqslant r$, which satisfy the following conditions;
(1) $\quad V_{i}=X_{i 1} \oplus X_{i 2} \oplus \cdots \oplus X_{i t}$, where each $X_{i j}$ is an irreducible H-submodule, $1 \leqslant i \leqslant r, t$ is independent of i, and $X_{i j}, X_{i^{\prime} j^{\prime}}$ are isomorphic H modules if and only if $i=i^{\prime}$.
(2) For x in G, the mapping $\pi(x) ; \quad V_{i} \rightarrow V_{i} x, 1 \leqslant i \leqslant r$, is a permutation of the set $S=\left\{V_{1}, \cdots, V_{r}\right\}$ and π induces a transitive permutation representation of G on S.
(2.6) (Thompson)

Assume G is a finite group admitting a fixed point free automorphism of prime order. Then G is nilpotent.
(2.7) (Shult)

Let $G=N Q P$ with $N \triangleright G, Q \triangleright Q P,|P|$ is a prime, $|Q|$ is an odd and $(|Q|,|P|)=1,(|N|,|Q|)=1$. Assume further that $C_{N}(P)=1$. Then $[P, Q] \subseteq$ $C_{Q}(N)$.
(2.8) (Thompson Transitivity Theorem)

Let G be a group in which the centralizer of every p-element is p constrained. Then if $A \in S C N_{3}(P), C_{G}(A)$ permutes transitively under conjugation the set of all maximal A-invariant q-subgroups of G for any prime $q \neq p$.
(2.9) Let G be a group in which the centralizer of every p-element is p-constrained. Let P be an S_{p}-subgroup of G and let A be an element of $S C N_{3}(P)$. Then for any prime $q \neq p, P$ normalizes some maximal A invariant q-subgroup of G.
(2.10) (Glauberman)

Let G be a group, and P be an S_{p}-subgroup of G. If $p \geqslant 5, P \neq 1$, and $N_{G}(P) / C_{G}(P)$ is a p-group, then G has a factor group of order p.

Suppose p is an odd prime and P is an S_{p}-subgroup of G. A normal subgroup T of P is said to control strong fusion in P if T has the following property.
"Whenever $W \subseteq P, g \in G$, and $W^{g} \subseteq P$, then there exist $c \in C_{G}(W)$ and $n \in N_{G}(T)$ such that $c n=g$."

Define the quadratic group for the prime p to be the semidirect product $Q d(p)$ of a two dimentional vector space V over $G F(p)$ by the special linear group $S L(V)$ on V. Let $F(p)$ be the normalizer of some S_{ρ}-subgroup of $Q d(p)$.
(2.11) (Glauberman)

If $F(p)$ is not involved in $N_{G}(Z(J(P)))$, then $Z(J(P))$ controls strong fusion in P with respect to G.
(2.12) (Glauberman)

Let G be a non-abelian simple group. Assume that S_{4} is not involved in G Then. G is a JR-group, $L_{2}(q), q \equiv 3,5(8), L_{2}\left(2^{n}\right), S z\left(2^{n}\right), U_{3}\left(2^{n}\right)$.
(2.13) (Signalizer functor theorem)

Let A be an elementary abelian p-subgroup of G of rank at least 3. If G possesses the solvable A-signalizer functor θ, then the subgroup $<\theta$ $\left(C_{G}(a)\right) \mid a \in A^{\#}>$ of G is a solvable p^{\prime}-group.
(2.14) (Gorenstein, Walter)

Let G be a group with $O(G)=1$ and $S C N_{3}(2) \neq \phi$. Assume further that the centralizer of every involution of G is 2-constrained. Then $O\left(C_{G}\right.$ $(x)=1$ for every involution x of G.

3. The structure of solvable groups satisfying the hypothesis of the theorem

Lemma 3.1. Let G be a solvable group admitting an automorphism α prime order p fixing a cyclic q-group for some odd prime q distinct from p. Then G is q-closed or q-nilpotent.

Proof. Suppose false and G be a minimal counterexample. First of all we prove that $G=O_{q, q^{\prime}}(G) C_{G}(\alpha)$. We may assume that $O_{q}(G)=1$. Let Q be a α-invariant S_{q}-subgroup of G. By (2.7) we have that $[Q, \alpha] \subseteq C_{G}$ $\left(O_{q^{\prime}}(G)\right) \subseteq O_{q^{\prime}}(G)$. Hence $Q=C_{Q}(\alpha)$. Let Q_{0} be a subgroup of Q and M be a α-invariant Hall q^{\prime}-subgroup of $N_{G}\left(Q_{0}\right)$. Let $y \in N_{G}\left(Q_{0}\right)$ and $x \in Q_{0}$. Then $\left(y^{-1}\right)^{\alpha} x y^{\alpha}=\left(y^{-1} x y\right)^{\alpha}=y^{-1} x y$, this implies that $\left[y^{\alpha} y^{-1}, x\right]=1$. Since $M=[M, \alpha]$, we have that $\left[M, Q_{0}\right]=1$. Hence $N_{G}\left(Q_{0}\right) / C_{G}\left(Q_{0}\right)$ is a q-group. Hence G has a normal q-complement and $G=O_{q, q^{\prime}}(G) C_{G}(\alpha)$. Let U be a α-invariant Hall q^{\prime}-subgroup of G. Assume $\left[O_{q}(G), U\right]=1$. Then G is q-nilpotent, a contradiction. So we have $\left[O_{q}(G), U\right] \neq 1$. Hence $C_{o_{q}(G)}(\alpha) \neq 1$. Next we prove that $\Phi\left(O_{q}(G)\right)=1$. Assume $\Phi\left(O_{q}(G)\right) \neq 1$. By the minimality of $G, G / \Phi\left(O_{q}\right.$ $(G))$ is q-closed or q-nilpotent. Assume $G / \Phi\left(O_{q}(G)\right)$ is q-closed. Then G is q-closed, hence $G / \Phi\left(O_{q}(G)\right)$ is q-nilpotent. Hence $\left[O_{q}(G), U\right] \subseteq \Phi\left(O_{q}(G)\right)$,
it follows that $[U, O(G)]$ it follows that $\left[U, O_{q}(G)\right]=1$, a contradiction. Hence $\Phi\left(O_{q}(G)\right)=1$. By the

Frattini argument, $G=O_{q}(G) N_{G}(U)$ since $G=O_{q, q^{\prime}}(G) C_{G}(\alpha)$. Hence $C_{N_{G}(U)}$ $(\alpha) \neq 1$. Let $\langle g\rangle=\Omega_{1}\left(C_{G}(\alpha)\right)$, then $g \in N_{G}(U)$. By Theorem 5.2.3 of [5], $O_{q}(G)=\left[O_{q}(G), U\right] \times C_{o_{q}(G)}(U)$. Since $\quad[g, U] \subseteq U \cap O_{q}(G)=1, \quad\left[O_{q}(G), U, U\right]=$ 1, this implies $\left[O_{q}(G), U\right]=1$, a contradiction.

4. The proof of the theorem

Let G be a minimal counterexample to the Theorem and assume $q=3$.
Lemma 4.1. G is simple.
Proof. By minimality of G, G is characteristic simple. Hence $G=G_{1}$ $\times \cdots \times G_{n}$ where the G_{i} is non-abelian simple. Any normal non-abelian simple subgroup of G coincide with one of the $G_{i} 1 \leqslant i \leqslant n$. Since $G_{1}^{\alpha} \triangleright G$, $G_{1}^{\alpha}=G_{i}$ for some i. Assume that $G_{1}^{\alpha}=G_{1}$. Then by minimality of G, $G=G_{1}$, which implies the conclusion of the Lemma 4.1. Hence we may assume that $G_{1}^{\alpha} \neq G_{1}$. Since $G_{1} \times G_{1}^{\alpha} \times \cdots \times G_{1}^{\alpha^{p-1}} \subseteq G, C_{G}(\alpha)$ is non-solvable, which is a contradiction since $C_{G}(\alpha)$ is cyclic.

Lemma 4. 2. Let ${ }^{\forall} r \in \pi(G)-\{2,3\}$. Then for any r-subgroup R_{0} of $G, N_{G}\left(R_{0}\right) / C_{G}\left(R_{0}\right)$ is a $\{3, r\}$-group whose S_{3}-subgroups are cyclic.

Proof. Let R be a α-invariant S_{r}-subgroup of G. Then $N_{G}(R)$ is solvable. Let V be a α-invariant Hall $\{3, r\}^{\prime}$-subgroup of $N_{G}(R)$. Then $[V, R]=1$ since $C_{V R}(\alpha)=1$. Let Q_{0} be a α-invariant S_{3}-subgroup of $N_{G}(R)$. By (2.7), $\left[Q_{0}, \alpha\right] \subseteq C_{Q_{0}}(R)$. Hence $N_{G}(R) \mathrm{C}_{Q_{0}}(\alpha) R C_{G}(R)$, which implies that $N_{G}(R) / R C_{G}(R)$ is a cyclic 3-group. Next we prove that $N_{G}(Z(J(R)))=N_{G}(R)$. Suppose false. If $N_{G}(Z(J(R)))$ is 3-nilpotent, then $N_{G}(Z(J(R)))=N_{G}(R)$, a contradiction. If $N_{G}(Z(J(R)))$ is 3 -closed, then $R \subseteq N_{G}(Q)$, where Q is a α-invariant S_{3}-subgroup of G, so $Q_{0} \subseteq Q$. Then $N_{G}(R) / C_{G}(R)$ is a r-group since $\left[Q_{0}, R\right] \subseteq R \cap Q=1$. By (2.10) G is non-simple, a contradiction. So we have $N_{G}(Z(J(R)))=N_{G}(R)$. By (2.11) $Z(J(R))$ controls strong fusion in R since $F(r)$ is not involved in $N_{G}(Z(J(R)))$. Hence if $x \in N_{G}\left(R_{0}\right)$, then there exist $c \in C_{G}\left(R_{0}\right)$ and $n \in N_{G}(Z(J(R)))$ such that $x=c n$. Hence we have the conclusion of Lemma 4.2.

Lemma 4.3. Let X be a finite group. For each $r \in \pi(X)-\{2,3\}$, assume that $N_{G}\left(R_{0}\right) / C_{G}\left(R_{0}\right)$ is odd order for any r-subgroup R_{0} of X and that $L_{3}(3)$ and $L_{2}(7)$ are not involved in X. Then X is solvable.

Proof. Let X be a minimal counterexample. If there exists a nontrivial proper normal subgroup K of X, then X / K and K is solvable since X / K and K satisfy the hypothesis of Lemma 4.3, this implies that X is solvable, a contradiction. So X is a minimal simple group since proper subgroups are solvable. By N-paper [11] X is $L_{2}(q), S z\left(2^{n}\right)$ or $L_{3}(3)$. By
the hypothesis of Lemma 4. 3, X is $L_{2}(q)(q \neq 7)$ or $S \mathcal{z}\left(2^{n}\right)$. But $L_{2}(q)(q \neq 7)$ and $S z\left(2^{n}\right)$ have a r-group R_{0} such that $N_{G}\left(R_{0}\right) / C_{G}\left(R_{0}\right)$ is even order for some $r \in \pi(X)-\{2,3\}$, a contradiction. Hence X is solvable.

By Lemma 4. 3 we may assume that $L_{3}(3)$ or $L_{2}(7)$ is involved in G. Let S be a α-invariant S_{2}-subgroup of G and Q be a α-invaiant S_{3}-subgroup of G. Let S_{0} be a α-invariant subgroup of $N_{G}(Q)$.

Lemma 4.4. $N_{G}(Q) / C_{G}(Q)$ is a non-trivial elementary 2-group and $N_{G}(Q)$ is a maximal α-invariant subgroup of G.

Proof. Assume that $N_{G}(Z(J(Q))) \not N_{G}(Q)$, then $N_{G}(Z(J(Q)))$ is 3nilpotent. Hence $N_{G}(Z(J(Q)))$ is $F(3)$-free. By (2.11) $Z(J(Q))$ controls strong fusion in Q. Hence S_{4} is not involved in G. By (2.12) G is a $J R$ group, $L_{2}(q), q \equiv 3,5(8), L_{2}\left(2^{n}\right), S z\left(2^{n}\right), U_{3}\left(2^{n}\right)$. But such simple groups have not an automorphism which satisfy the hypothesis of the Theorem, a contradiction. Hence we have that $N_{G}(Z(J(Q)))=N_{G}(Q)$. If $N_{G}(Q)$ is not a maximal α-invariant subgroup of G, then $N_{G}(Q)$ is 3 -nilpotent. Hence $N_{G}(Z(J(Q)))$ is 3-nilpotent, a contradiction. Therefore $N_{G}(Q)$ is a maximal α-invariant subgroup of G. Assume that $N_{G}(Q) / C_{G}(Q)$ is odd order, then we have similarly prove that S_{4} is not involved in G. Hence $N_{G}(Q) / C_{G}(Q)$ is even order. Let L be a α-invariant Hall 3^{\prime}-subgroup of $N_{G}(Q)$. Then L is nilpotent by (2.6). We set $\bar{Q}=Q / \Phi(Q)$. By Maschke's theorem $\bar{Q}=$ $\bar{Q}_{0} \oplus \bar{Q}_{1} \oplus \cdots \oplus \bar{Q}_{n}$, where \bar{Q}_{i} is $\langle\alpha\rangle L$-irreducible, $1 \leqslant i \leqslant n$. We may assume that $C_{\bar{Q}_{i}}(\alpha)=1$ for $i=1, \cdots n$, since $C_{\bar{Q}}(\alpha)$ is cyclic. Hence $\left[L, \bar{Q}_{i}\right]=1$ for i $=1, \cdots, n$. By (2.5) \bar{Q}_{0} is the direct sum of L-invariant subspace $V_{i}, 1 \leqslant$ $i \leqslant r$, such that $V_{i}=X_{i 1} \oplus \cdots \oplus X_{i t}$, where each $X_{i j}$ is an irreducible L-submodule, $1 \leqslant i \leqslant t$, and $X_{i j}, X_{i^{\prime} j^{\prime}}$ are isomorphic L-module if and only if $i=i^{\prime}$. Assume that $r=1$, then $Z\left(L / C_{L}\left(Q_{0}\right)\right)$ is a α-invariant cyclic group of even order. Hence $C_{G}(\alpha)$ is even order, a contradiction. Since $\langle\alpha\rangle$ induces a transitive permutation of the set $\left\{V_{1}, \cdots, V_{r}\right\}$ by (2.5), we have $\bar{Q}_{0}=V_{1} \oplus$ $V_{1}^{\alpha} \oplus \cdots \oplus V_{1}^{\alpha^{p-1}}$, where $V_{1}^{\alpha^{j}}$ coincides with one of the $V_{i}, 1 \leqslant i \leqslant r$, for $j=$ $0, \cdots, p-1$. Since $C_{Q_{0}}(\alpha)$ is cyclic, $\left|V_{1}\right|=3$, this implies that $L / C_{L}(Q)$ is elementary 2 -group. Hence $N_{G}(Q) / Q C_{G}(Q)$ is an elementary 2 -group.

Lemma 4.5. $\quad C_{N_{G}(S)}(\alpha)=1$. In particular $N_{G}(S)$ is nilpotent and $\{2,3\}$ group.

Proof. Suppose that $C_{N_{G}(S)}(\alpha) \neq 1$. We set $\Omega_{1}\left(C_{G}(\alpha)\right)=\langle g\rangle$, then $g \in$ $N_{G}(S)$. Let S_{0} be a α-invariant S_{2}-subgroup of $N_{G}(Q)$, then by Lemma 4. 4 $\left[S_{0}, Q\right] \neq 1$. By (2.2) there exists a characteristic subgroup C of Q such that class $C \leqslant 2$ and $\left[S_{0}, C\right] \neq 1$. By (2.3) $\left[S_{0}, \Omega_{1}(C)\right] \neq 1$, and $\Omega_{1}(C)$ is of exponent 3 by (2.4). If $g \notin \Omega_{1}(C)$, then $\left[S_{0}, \Omega_{1}(C)\right]=1$, a contradiction, hence
$g \in \Omega_{1}(C)$. On the other hand $\left[S_{0}, g\right] \subseteq S \cap Q=1 .\langle\alpha\rangle S_{0}$ acts on $D=\Omega_{1}(C) / \Phi$ $\left(\Omega_{1}(C)\right)$. Since $\bar{g} \in C_{D}\left(S_{0}\right), \alpha$ acts fixed point free on $D / C_{D}\left(S_{0}\right)$, hence $\left[S_{0}\right.$, $D] \subseteq C_{D}\left(S_{0}\right)$, this implies that $\left[S_{0}, D\right]=1$, which implies $\left[S_{0}, \Omega_{1}(C)\right]=1$, a contracdiction. Hence $C_{N_{G}(S)}(\alpha)=1$. In particular $N_{G}(S)$ is nilpotent. Next assume that $N_{G}(S)$ is not $\{2,3\}$-group, then there exists an element $r \in \pi$ $\left(N_{G}(S)\right)-\{2,3\}$. Let R be a α-invariant S_{r}-subgroup of $G . \quad N_{G}(S)=N_{G}(R)$ is nilpotent. By (2.10) G is non-simple, which is a contradiction.
Let P be a α-invariant S_{13}-subgroup of G and $\langle g\rangle=\Omega_{1}\left(C_{G}(\alpha)\right)$.
Lemma 4.6. Assume $P \neq 1$, then the followings hold;
(i) $g \in N_{G}(P)$,
(ii) $\quad C_{P}(g)=1$.

Proof. Assume $g \notin N_{G}(P)$, then $N_{G}(P)$ is nilpotent, which implies G is non-simple by (2.10), a contradiction. Next we prove that $C_{P}(g)=1$. Suppose false. We set $P_{0}=C_{P}(g) \neq 1$. Let M be a maximal α-invariant subgroup of G which contains $C_{G}(g)$, then M is 3-closed or 3-nilpotent. If M is 3 -closed, then $P_{0} \subseteq N_{G}(Q)$, this implies that $N_{G}(S)=N_{G}(P)$ by Lemma 4.4, a contradiction. Hence M is 3 -nilpotent and we deduce that $M=N_{G}$ (P). Assume that $g \in Z(Q)$, then $Q \subseteq N_{G}(P)$. Hence $[Q, \alpha] \subseteq C_{Q}(P)$, which implies that $\left[\Omega_{1}(Z(Q)), P_{0}\right]=1$. Since $N_{G}(Q)$ is a maximal α-invariant subgroup of $G, P_{0} \subseteq N_{G}(Q)$, a contradiction. Hence $g \notin Z(Q)$. This implies that $[Z(Q), P]=1$. Hence $P \subseteq N_{G}(Q)$, a contradiction.

Lemma 4. 7. $\quad C_{G}(x)$ is 13-nipotent for each $x \in P^{\#}$.
Proof. By taking a conjugation of x we may assume that $C_{P}(x)$ is a S_{13}-subgroup of $C_{G}(x)$. Let P_{0} be a non-trivial 13 -subgroup of $C_{P}(x)$. We set $P_{1}=\langle x\rangle P_{0}$. Assume that $N_{C_{G}(x)}\left(P_{0}\right) / C_{C_{G}(x)}\left(P_{0}\right)$ is not a 13 -group. Then there exists an element y such that $y \in N_{C_{G}(x)}\left(P_{0}\right)-C_{C_{G}(x)}\left(P_{0}\right)$ and y is a 13^{\prime} element. This implies that $y \in N_{G}\left(P_{1}\right)-C_{G}\left(P_{1}\right)$. Assume that $N_{G}(Z(J(P))) き$ $N_{G}(P)$, then $N_{G}(P)$ is nilpotent, a contradiction. Hence $N_{G}(Z(J(P)))=N_{G}$ $(P)=C_{N_{G}(P)}(\alpha) P C_{G}(P)$. Since $F(13)$ is not involved in $N_{G}(Z(J(P))), Z(J(P))$ controls strong fusion in P. Hence there exists $c \in C_{G}\left(P_{1}\right)$ and $n \in N_{G}(Z(J$ $(P))$) such that $y=c n$. Since $N_{G}(P)=C_{N_{G}(P)}(\alpha) P C_{G}(P)$, we may assume $n \in$ $C_{N_{G}(P)}(\alpha)$. By Lemma 4.6 $n=1$ since $C_{P}(g)=1$, which contradicts the choice of y. Hence $N_{C_{G}(x)}\left(P_{0}\right) / C_{C_{G}(x)}\left(P_{0}\right)$ is a 13-group. Hence $C_{G}(x)$ is 13 -nilpotent.

In particular $C_{G}(x)$ is 13 -constrained for each $x \in P^{\#}$ by Lemma 4.7. Assume that $P \neq 1$ and $Z(P)$ is cyclic, then $p(=|\alpha|)$ is 2 or 3 . Hence G is odd order or a 3^{\prime}-group, a contradiction. Hence we may assume that $P=1$ or $Z(P)$ is a non-cyclic group.

1. The case $S C N_{3}(P) \neq \phi$

Lemma 4. 8. $\quad C_{G}(x)$ is a $\{2.3\}^{\prime}$-group for each $x \in P^{\#}$.
Proof. Suppose false. Then there exists an element $x \in P^{\#}$ and r such that $r \in \pi\left(C_{G}(x)\right)$, where $r=2$ or 3 . Since $Z(P)$ is a non-cyclic group, we may assume that $x \in Z(P)$. Then P normalizes some S_{r}-subgroup of $C_{G}(x)$ since $C_{G}(x)$ is 13 -nilpotent. Let $A \in S C N_{3}(P)$. By Transitivity Theorem $C_{G}(A)$ permutes transitively under conjugation the set of all maximal A-invariant r-subgroup. Then all maximal A-invariant r-subgroups are P invariant since $C_{G}(A) \subseteq C_{G}(Z(P)) \subseteq N_{G}(P)$. Since α permutes maximal P invariant r-subgroups and the number of maximal P-invariant r-subgroups is coprime to $13, \alpha$ invariants some maximal P-invariant r-subgroup. Let W be a $\langle\alpha\rangle P$-invariant r-subgroup. If $r=2$, then $N_{G}(P)$ is nilpotent since $N_{G}(P)=N_{G}(S)$, a contradiction. Next we assume $r=3$. Let M be a maximal α-invariant subgroup of G which contains $N_{G}(W)$. If M is 3 -closed, then $P \subseteq N_{G}(Q)$, a contradiction. Hence M is 3 -nilpotent and so $M=N_{G}(P)$. By (2.7) $[Z(Q), \alpha] \subseteq C_{Q}(P)$. Assume that $[Z(Q), \alpha]=1$, then $\left[S_{0}, Z(Q)\right]=1$. Since $g \in Z(Q),\left[S_{0}, Q\right]=1$, a contradiction. Hence we may assume that $[Z(Q)$, $\alpha] \neq 1$. Next we prove that $C_{Z(Q)}\left(S_{0}\right)=1$. Suppose false. Let M be a maximal α-invariant subgroup of G which contains $N_{G}\left(S_{0}\right)$. Since $C_{Z(Q)}\left(S_{0}\right) \subseteq M$ and $N_{G}(S)$ is nilpotent M is 3-closed. Hence $N_{S}\left(S_{0}\right)=S_{0}$, this implies $S=S_{0}$. Hence we see $S \subseteq N_{G}(Q)$, in particular $C_{Z(Q)}(S) \neq 1$. By Glauberman's weakly closed elements theorem [2] $C_{Z(Q)}(S)$ is weakly closed in Q with respect to G since $C_{Z(Q)}(S) \subseteq Z\left(N_{G}(J(Q))\right)$. Let $z \in \Omega_{1}(Z(S))^{\#}$. By $\quad Z^{*}$-theorem there exists an element $x(\neq z)$ of S such that x is conjugate to z in G. Then there exists an element $k \in G$ and subgroup H of S such that $z^{k}=x$ and $k \in N_{G}(H), z, x \in H$. Since $C_{Z(Q)}(S)$ is weakly closed in $S, N_{G}(H)=C_{G}(H)$ $N_{N_{G}(H)}\left(C_{Z(Q)}(S)\right)$ by the Frattini argument. Then we may assume $k \in N_{G}$ $\left(C_{Z(Q)}(S)\right) \subseteq N_{G}(Q)$. Hence $z=z^{k}=x$, a contradiction. Hence $C_{Z(Q)}\left(S_{0}\right)=1$. By $(2.5) \Omega_{1}(Z(Q))=\langle a\rangle \oplus\left\langle a^{\alpha}\right\rangle \oplus \cdots \oplus\left\langle a^{\alpha^{p-1}}\right\rangle$, where $\left\langle a^{\alpha^{i}}\right\rangle$ is a Wedderburn component, $0 \leqslant i \leqslant p-1$. Let $v \in S_{0}^{\#}$. If $a^{v}=a^{-1},\left(a^{a^{i}}\right)^{v}=a^{\alpha^{i}}$ for $i=1, \cdots, p-1$, then $a^{v v^{\alpha}}=a^{-1}$ and $\left(a^{\alpha}\right)^{v v^{\alpha}}=a^{-\alpha}$. We set $b=a^{-1} a^{\alpha}$, then $b^{w}=b^{-1}$ and $b \in$ $[Z(Q), \alpha]$. By the Frattini argument $N_{G}(\langle b\rangle)=C_{G}(b) N_{N_{G}\langle(b\rangle)}(P)$. Hence N_{G} (P) is even order, this implies $N_{G}(S)=N_{G}(P)$, a contradiction. Hence $C_{G}(x)$ is a $\{2,3\}^{\prime}$-group for each $x \in P^{\#}$.

Lemma 4.9. $C_{G}(t)$ is solvable for every 2 -element and 3-element t of G. In particular $O\left(C_{G}(x)\right)=1$ for every involution x of G.

Proof. Let R be a α-invariant S_{7}-subgroup of G. Assume that $R \neq 1$ and $d(Z(R)) \leqslant 2$, then $p=2$ or 3 . Then G is odd order or 3^{\prime}-group, a con-
tradiction. Hence we may assume that $R=1$ or $d(Z(R)) \geqslant 3$. Assume d $(Z(R)) \geqslant 3$. Then we can repeat the proof of Lemma 4.6,4.7 and 4.8 verbatim with R in place of P to obtain that $C_{G}(y)$ is a $\{2,3\}^{\prime}$-group for each $y \in R^{\#}$. Hence $C_{G}(t)$ is a $\{7,13\}^{\prime}$-group for every 2 -element and 3 element t of G. In particular $C_{G}(t)$ is solvable by Lemma 4.3. Assume $S C N_{3}(2)=\phi$. Then $\left|\Omega_{1}(Z(S))\right| \leqslant 4$. Hence $p(=|\alpha|)=3$, a contradiction. Hence we may assume $S C N_{3}(2) \neq \boldsymbol{\phi} . \quad$ By (2.14) $O\left(C_{G}(x)\right)=1$ for every involution x of G. Assume $R=1$.
Then $C_{G}(t)$ is a $\{7,13\}^{\prime}$-group for every 2 -element and 3-element t of G is a 7^{\prime}-group. Hence Lemma 4.9 is proved.

Lemma 4. 10. $O_{3^{\prime}}\left(C_{G}(x)\right)$ is odd order for every element x of $Q^{\#}$.
Proof. Suppose false. Then there exists an element x of $Q^{\#}$ such that $O_{3^{\prime}}\left(C_{G}(x)\right)$ is even order. Since $Z(Q)$ is non-cyclic and the centralizer of every non-trivial 3 -element is solvable, we may assume that $x \in Z(Q)$. By (2.10) $W=\left\langle O_{3^{\prime}}\left(C_{G}(x)\right) \mid x \in Z(Q)^{\#}\right\rangle$ is a solvable 3^{\prime}-group of G. Then W is α-invariant and even order. Let S_{1} be a $\langle\alpha\rangle Q$-invariant S_{2}-subgroup of W. Let K be a maximal α-invariant subgroup of G which contains S_{1} Q. Suppose that K is 3-nilpotent, then $Q \subseteq N_{G}(S)$, a contradiction. Hence K is 3 -closed. It follows $\left[S_{1}, Q\right] \subseteq S_{1} \cap Q=1$. Let L be a maximal α-invariant subgroup which contains $C_{G}\left(S_{1}\right)$. Then L is 3 -closed. Hence $Z(S) \subseteq N_{G}(Q)$. If $C_{Z(S)}(Q) \neq 1$, then $S \subseteq N_{G}(Q)$. If $\Omega_{1}(Z(S))$ is weakly closed in S, then G is a $J R$-group, $L_{2}(q), q \equiv 3,5(8), L_{2}\left(2^{n}\right), S z\left(2^{n}\right), U_{3}\left(2^{n}\right)$, which is a contradiction. Hence $\Omega_{1}(Z(S))$ is not weakly closed in S with respect to G. Hence there exists an element $h \in G$ such that $h \in N_{G}(H)$ and $\Omega_{1}(Z(S))^{h} \neq \Omega_{1}(Z(S)), H=$ $\left\langle\Omega_{1}(Z(S))^{k} \mid k \in\langle h\rangle\right\rangle \subseteq S$. If $[H, Q]=1$, then $N_{G}(H)=C_{G}(H) N_{N_{G}(H)}(Q)$. Thus we may assume that $h \in N_{G}(Q)$, this follows $\Omega_{1}(Z(S))^{h}=\Omega_{1}(Z(S))$, a contradiction. Hence we may assume $\left[\Omega_{1}(Z(S))^{h}, Q\right] \neq 1$. Since $\Omega_{1}(Z(S))$ is noncyclic, $Q=\left\langle C_{Q}(x) \mid x \in \Omega_{1}(Z(S))^{n \#}\right\rangle$. Since $\left[\Omega_{1}(Z(S))^{h}, Q\right] \neq 1$, there exist elements $x, y \in \Omega_{1}(Z(S))^{h}$ and $a \in Q$ such that $[a, x]=1$ and $[a, y] \neq 1$. Then $y \in O_{2}\left(C_{G}(x)\right)$ since $C_{G}(x)$ is solvable and $O\left(C_{G}(x)\right)=1, y \in Z(S)^{h}$, S^{h} is a S_{2}-subgroup of $C_{G}(x)$. Hence $[a, y] \subseteq O_{2}\left(C_{G}(x)\right) \cap Q=1$, a contradiction. Suppose $C_{Z(S)}(Q)=1$, then we have a contradiction by a similar argument. Hence $O_{3^{\prime}}\left(C_{G}(x)\right)$ is odd order for each each $x \in Q^{\#}$.

Lemma 4.11. G does not exist.

Proof. Since $N_{S}(Q)$ acts irreducibly on $\Omega_{1}(Z(Q))$, there exist elements $u \in N_{S}(Q)$ and $a, b \in \Omega_{1}(Z(Q))$ such that u centralizes $\langle a\rangle \times\langle b\rangle$ and u is an involution. Then $\langle a\rangle \times\langle b\rangle$ acts faithully on $O_{2}\left(C_{G}(u)\right)$ since $C_{G}(\mathrm{u})$ is solvable and $O\left(C_{G}(u)\right)=1$. Hence we may assume that there exists an element $x \in$
$O_{2}\left(C_{G}(u)\right)$ such that $[a, x]=1$ and $[b, x] \neq 1$ since $O_{2}\left(C_{G}(u)\right)=\left\langle C_{O_{2}\left(C_{G}(u)\right)}(d)\right|$ $\left.d \in\langle a\rangle \times\langle b\rangle^{\#}\right\rangle$. Since $b \in O_{3^{\prime}, 3}\left(C_{G}(a)\right)$ and $O_{3^{\prime}, 3}\left(C_{G}(a)\right)$ is odd order, $[b, x] \subseteq$ $O_{3^{\prime}, 3}\left(C_{G}(a)\right) \cap O_{2}\left(C_{G}(u)\right)=1$, a contradiction.

2. The case $\operatorname{SCN}_{3}(\mathbf{P})=\phi$

Suppose $P=1$. Then $C_{G}(t)$ is a $\{7,13\}^{\prime}$-group for every 2 -element and 3-element t of G since G is a 13^{\prime}-group. Hence Lemma 4.9 is satisfied. By Lemma 4.9 and 4.10, we have a contradiction. Hence $P \neq 1$. Suppose $Z(P)$ is a cyclic group, then $p=7$, in particular $L_{2}(7)$ is not involuved in G. Hence we may assume that $L_{3}(3)$ is involved in G. Since $S C N_{3}(P)=\phi$, $d_{n}(P) \leq 2$, which yields $\Omega_{1}(P) \subseteq Z(P)$.

Lemma 4.12. $g \in N_{G}(\langle x\rangle)$ for each $x \in \Omega_{1}(P)^{\#}$.
Proof. $\Omega_{1}(P)$ is normalized by $\langle\alpha\rangle \times\langle g\rangle$. By (2.5) the number of Wedderburn components of $\Omega_{1}(P)$ with respect to $\langle g\rangle$ is one since $C_{\Omega_{1}(P)}(\alpha)=$ 1. Then $\Omega_{1}(P)=P_{1} \oplus P_{2}$, where P_{i} is a $\langle g\rangle$-isomorphic cyclic subgroup of $\Omega_{1}(P)$ for $i=1,2$, since g normalizes a cyclic subgroup of $\Omega_{1}(P)$. Hence g normalizes every cyclic subgroup of $\Omega_{1}(P)$.

Lemma 4.13. $C_{Q}(S)=1$.
Proof. Suppose false. We set $Q^{*}=C_{Q}(S)$, then $Q^{*} \neq 1$. In the first we prove that $C_{G}(x)$ is odd order for each $x \in P^{\#}$. Suppose false. Then there exists an element $x \in P^{\#}$ such that $C_{G}(x)$ is even order. P normalizes a $V \in S_{2}$-subgroup of $C_{G}(x)$ since $C_{G}(x)$ is 13 -nilpotent. Let M be a maximal α-invariant subgroup which contains $N_{G}\left(Q^{*}\right)$. Suppose M is 3 -nilpotent, then $N_{G}(Q)=N_{G}(S)$ is nilpotent, a contradiction. Hence $S \subseteq N_{G}(Q)$. If S is abelian, then G is $J R$-type or $L_{2}(q), q \equiv 3,5(8), L_{2}\left(2^{n}\right)$, a contradiction. This follows that $C_{S}(Q) \neq 1$ since $S^{\prime} \subseteq C_{S}(Q)$. We set $\Omega_{1}(F)=\langle x\rangle \times\langle y\rangle$, then y acts fixed point free on a Hall $\{2,3\}$-subgroup W of $C_{G}(x)$ which contains V. Because suppose false, then $C_{G}\left(\Omega_{1}(P)\right)$ is even order or $3 \| C_{G}\left(\Omega_{1}(P)\right) \mid$. If $C_{G}\left(\Omega_{1}(P)\right)$ is even order, then we see that $N_{G}(S)=N_{G}(P)$, a contradiction. If $3\left\|C_{G}\left(\Omega_{1}(P)\right)\right\|$, then we have a contradiction by a similar argument of Lemma 4.8. Hence W is nilpotent. Since $O_{13^{\prime}}\left(C_{G}(x)\right)$ is solvable, $V \subseteq$ $O_{\{2,3\}}\left(C_{G}(x)\right)$. Since $W \cap O_{\{2,3\}}\left(C_{G}(x)\right)$ is nilpotent, $V=O_{2}\left(C_{G}(x)\right)$. Now we prove that $C_{G}(V)$ is 13 -nilpotent. Suppose false. Since a S_{13}-subgroup of $C_{G}(V)$ is cyclic, we may assume that $N_{C_{G}(V)}(\langle x\rangle) / C_{C_{G^{(V)}}}(x)$ is not a 13-group. Since $N_{G}(\langle x\rangle)=\langle g\rangle P O_{13^{\prime}}\left(C_{G}(x)\right)$, every S_{3}-subgroup of $N_{G}(\langle x\rangle)$ is written by $\left\langle g^{k}\right\rangle U$ for some $k \in N_{G}(\langle x\rangle)$ and $U \in S_{3}$-subgroup of $O_{13^{\prime}}\left(C_{G}(x)\right)$." Then $\left\langle g^{k}\right\rangle U \subset C_{G}(V)=U$ or $\left\langle g^{k}\right\rangle U$ since $[U, V]=1$. Suppose that $\left[g^{k}, V\right]=1$, then $[g, V]=1$ since $k \in N_{G}(\langle x\rangle)$ and $V \triangleleft N_{G}(\langle x\rangle)$. Since $\langle g\rangle\langle y\rangle$ is a Frobenius
group, $[y, V]=1$, a contradiction. Hence every S_{3}-subgroup of $N_{G}(\langle x\rangle\rangle C_{G}$ (V) is contained in $O_{13^{\prime}}\left(C_{G}(x)\right)$. Then $N_{G_{G^{(V)}}}\left(\langle x\rangle / C_{\sigma_{G^{(V)}}}(x)\right.$ is a 13-group, a contradiction. Hence $C_{G}(V)$ is 13 -nilpotent. By taking a conjugation of V, we may assume that $V \subseteq S$. Then $Q^{*} \subseteq C_{G}(V)$ and $h \in C_{G}(V)$, where h is a non-trivial 13-element. Let Q_{0} be a S_{3}-subgroup of $C_{G}(V)$ which contains Q^{*}. We may assume $h \in N_{G}\left(Q_{0}\right)$ since $C_{G}(V)$ is 13 -nilpotent. Now $C_{G}\left(Q_{0}\right)$ is a 13^{\prime}-group since $C_{G}\left(Q_{0}\right) \subseteq C_{G}\left(Q^{*}\right)$ and $C_{G}\left(Q^{*}\right)$ is a α-invariant 13^{\prime}-group. By taking a conjugation of Q_{0}, we may assume that $Q_{0} \subseteq Q$ and $C_{Q}\left(Q_{0}\right)$ is a S_{3}-subgroup of $C_{G}\left(Q_{0}\right)$. We set $Q_{1}=C_{Q}\left(Q_{0}\right)$, then $Z(Q) \subseteq Q_{1}$. Since $g \in Z(Q)$ $C_{S}(Q)$ is a S_{2}-subgroup of $C_{G}(Z(Q))$. Hence $C_{S}(Q)$ is a S_{2}-subgroup of C_{G} $\left(Q_{1}\right)$. Now $C_{G}\left(Q_{1}\right)$ is a 13^{\prime}-group since $C_{G}\left(Q_{1}\right) \subseteq C_{G}(Z(Q))$. Hence by the Frattini argument we may assume that $h \in N_{G}\left(C_{S}(Q)\right)$. Since $C_{S}(Q) \neq 1$, we see that $N_{G}(S)=N_{G}(P)$ is nilpotent, a contradiction. Hence we have $C_{G}(x)$ is odd order for each $x \in P^{\#}$. In particular $C_{G}(t)$ is solvable for every involution t of G. By (2.14) we see that $O\left(C_{G}(t)\right)=1$ for every involution t. But now we have a contradiction by a similar argument of Lemma 4.9. Hence $C_{Q}(S)=1$.

Lemma 4.14. $\quad \Omega_{1}(Z(Q)) \subseteq Z(Q)$.
Proof. We set $\Phi_{0}(Q)=Q$ and $\Phi_{1}(Q)=\Phi(Q), \Phi_{i+1}(Q)=\Phi\left(\Phi_{i}(Q)\right), \Phi_{n+1}$ $(Q)=1$. Let $S_{0}=N_{S}(Q)$. Now we prove that $\langle\alpha\rangle S_{0}$ acts irreducibly on Φ_{i} $(Q) / \Phi_{i+1}(Q), 0 \leq i \leq n \quad$ Suppose false. Since $C_{Q}(\alpha)$ is cyclic, we have $C_{Q}\left(S_{0}\right) \neq$ 1. By Lemma 4. $13 S \neq S_{0}$. Let M be a maximal α-invariant subgroup of G which contains $N_{G}\left(S_{0}\right)$, then M is 3 -nilpotent, hence $N_{G}(S)=N_{G}(Q)$, a contradiction. Hence $\langle\alpha\rangle S_{0}$ acts irreducibly on $\Phi_{i}(Q) / \Phi_{i+1}(Q), 0 \leq i \leq n$. Next we consider the structure of $\overline{\Phi_{i}(Q)}=\Phi_{i}(Q) / \Phi_{i+2}(Q), 0 \leq i \leq n-1$. Then class $\overline{\Phi_{i}(Q)} \leq 2$ and $\Omega_{1}\left(\overline{\left.\Phi_{i}(Q)\right)}=\overline{\Phi_{i-1}(Q)}\right.$ or $\overline{\Phi_{i}(Q)}$. Now the exponent of $\Omega_{1}\left(\overline{\Phi_{i}(Q)}\right)=3$ since class $\overline{\Phi_{i}(Q)} \leq 2$. Suppose that $\Omega_{1}\left(\overline{\Phi_{i}(Q)}\right)=\overline{\Phi_{i}(Q)}$, then $\left|C_{\overline{Q_{i}(Q)}}(\alpha)\right|=3$. Since $C_{S_{0}}\left(\overline{\left(\phi_{i+1}(Q)\right.}\right)=1$, we have $C_{\overline{Q_{i+1}(Q)}}(\alpha) \neq 1$. Hence $C_{\overline{\bar{D}_{i}(Q)}}(\alpha)$ $\subseteq \overline{\Phi_{i+1}(Q)}$. But now $C_{Q_{i}(Q) / \sigma_{i+1}(Q)}(\alpha)=1$, a contradiction. Hence we see that $\Omega_{1}\left(\overline{\Phi_{i}(Q)}\right)=\overline{\Phi_{i+1}(Q)} . \quad$ Let $a \in Q$ and $|a|=3$. Then there exists a number j, $0 \leq j \leq n$, such that $a \in \Phi_{j}(Q)-\Phi_{j+1}(Q)$. Suppose that $j<n$, then $a \in \Phi_{j}(Q) /$ $\Phi_{j+2}(Q)$. Since $|a|=3$, we see that $a \in \Omega_{1}\left(\Phi_{j}(Q)\right)=\Phi_{j+1}(Q)$. Hence $a \in \Phi_{j+1}(Q)$, a contradiction. Hence $a \in \Phi_{n}(Q) \subseteq Z(Q)$, this implies $\Omega_{1}(Q) \subseteq Z(Q)$.

Lemma 4.15. $C_{G}(x)$ is a 3^{\prime}-group for each $x \in P^{\#}$. In particular the centralizer of every non-trivial 3-element is solvable.

Proof. Suppose false. Then there exists an element $x \in \Omega_{1}(P)$ such that $3 \| C_{G}(x) \mid$. We set $L=O_{13^{\prime}}\left(C_{G}(x)\right)$, then $N_{G}(\langle x\rangle)=\langle g\rangle P L$. Let A be a S_{3}-subgroup of $N_{G}(\langle x\rangle)$ which contains the element g. Then $\langle g\rangle P$ acts
on $O_{3^{\prime}, 3}(L) / O_{3^{\prime}}(L)$. But now $O_{3^{\prime}, 3}(L)=O_{3^{\prime}}(L)\left(A \cap O_{3^{\prime}, 3}(L)\right)$. since $|g|=3$, we have $[g, A]=1$ by Lemma 4.14. Hence g centralizes $O_{3^{\prime}, 3}(L) / O_{3^{\prime}}(L)$. Since $\langle g\rangle P$ is a Frobenius group, this follows that $\left[P, O_{3^{\prime}, 3}(L)\right] \subseteq O_{3^{\prime}}(L)$. Hence $3 \| C_{G}(P) \mid$. But now we have a contradiction by a similar argument of Lemma 4. 8. Hence $C_{G}(x)$ is a 3^{\prime}-group for each $x \in P^{\#}$. By Lemma 4.3 the centralizer of every non-trivial 3 -element is solvable.

Lemma 4. 16. $C_{G}(x)$ is odd order for each $x \in P^{\#}$. In particular $C_{G}(t)$ is solvable and $O\left(C_{G}(t)\right)=1$ for every involution t of G.

Proof. Suppose false. Then there exists an element x of $P^{\#}$ such that an S_{2}-subgroup V of $C_{G}(x)$ is non-trivial. Then by Lemma 4. $13 V \triangleleft$ $C_{G}(x)$. We set $\Omega_{1}(P)=\langle x\rangle \times\langle y\rangle$, then y acts fixed point free on V. By Lemma 4. $13 C_{G}(V)$ is 13 -nilpotent. By taking a conjugation of V we may assume that $V \subseteq S$ and $C_{S}(V)$ is a S_{2}-subgroup of $C_{G}(V)$. Let $S^{*}=C_{S}(V)$, then $Z(V) \subseteq S^{*}$. By taking a conjugation of x, we may assume that $x \in N_{G}$ $\left(S^{*}\right)$. Assume that $N_{G}\left(S^{*}\right)$ is solvable, then x normalizes a S_{2}-subgroup K_{1} of $N_{G}\left(S^{*}\right)$. Futhermore assume that $N_{G}\left(K_{1}\right)$ is solvable, then x normalizes a S_{2}-subgroup K_{2} of $N_{G}\left(K_{1}\right)$. By a similar argument we see that $13 \| N_{G}(S) \mid$, then $N_{G}(S)=N_{G}(P)$, a contradiction. Hence there exists a 2 -group K which contains S^{*} and such that $N_{G}(K)$ is non-solvable. Hence $N_{G}(K)$ involves $L_{3}(3)$, in particular a S_{3}-subgroup of $N_{G}(K)$ is non-cyclic. By taking a conjugation of K we may assume that $\langle a\rangle \times\langle b\rangle \subseteq Q \subset N_{G}(K)$. Let $c \in\langle a\rangle \times\langle b\rangle^{\#}$, then $C_{G}(c) \subseteq O_{3^{\prime}}\left(C_{G}(c)\right) N_{G}(Q)$ since $C_{G}(c)$ is solvable and $\Omega_{1}(Q) \subseteq Z(Q)$. By the Signalizer functor theorem $\left\langle O_{3^{\prime}}\left(C_{G}(d)\right) \mid d \in \Omega_{1}(Q)^{\#}\right\rangle=L$ is a α-invariant solvable 3^{\prime}-group. Suppose that $L \neq 1$. Let M be a maximal α-invariant subgroup of G which contains $Q L$. Suppose that M is 3 -nilpotent. If L is even order, then $N_{G}(S)=N_{G}(Q)$, a contradiction. If L is odd order, then we yield a contradiction by a similar argument of Lemma 4.8. Hence M is 3 -closed and so $L \subseteq N_{G}(Q)$. Hence $C_{G}(c) \subseteq N_{G}(Q)$. In particular $K=\left\langle C_{K}(c)\right|$ $\left.c \in\langle a\rangle \times\langle b\rangle^{\#}\right\rangle \subseteq N_{G}(Q)$. Let $W=\Omega_{1}(Z(V))$, then we may assume that $W \subseteq$ $N_{S}(Q)$. On the other hand $C_{W}\left(g_{1}\right) \cap C_{W}\left(g_{1} y_{1}\right) \subseteq C_{W}\left(y_{1}\right)=1$ for some conjugate elements g_{1}, y_{1} of g, y. Hence $C_{W}\left(g_{1}\right) \oplus C_{W}\left(g_{1}^{y_{1}} \subseteq W\right.$. We set $|W|=2^{m}$, then $2^{m} \geq 2^{12}$ since y_{1} acts fixed point free on W. Let $\left|C_{W}\left(g_{1}\right)\right|=2^{n}$, then $2^{2 n} \leq 2^{m}$. Assume that $n \ngtr m-6$, then $m \geq 2 n>2(m-6)$, this follows $m_{>2}>12$, a contradiction. Hence $n \leq m-6$. We set $W_{0}=W \cap C_{S}(Q)$, then $\left|W ; W_{0}\right| \leq 2^{6}$, hence $\left|W_{0}\right| \geq 2^{m-6}$. Assume that $W=W_{0}$. Then $y_{1} \in N_{G}(W) \subseteq C_{G}(W) N_{G}(Q)$. Hence $13 \| N_{G}(Q) \mid$, a contradiction. Hence $W \supsetneq W_{0}$. Let $v \in W-W_{0}$ and $X=\langle v\rangle \times W_{0}$. Then $\left|C_{W}\left(g_{1}\right)\right|=2^{n} \leq 2^{m-6} \lesseqgtr 2^{m-5} \leq|X|$. But now $C_{G}(X)$ is 13 -nilpotent by a similar argument of Lemma 4. 13. Then $C_{Q}(v)=C_{Q}(X)$ $\neq 1$ since $L_{3}(3)$ is involved in G and so Q is non-abelian. Let Q^{*} be
a S_{3}-subgroup of $C_{G}(x)$. Since $C_{G}(X)$ is 13 -nilpotent, $x_{1} \in N_{G}\left(Q^{*}\right)$ for some x_{1} which is conjugate to x. Let Q_{0} be a S_{3}-subgroup of G which contains Q^{*}. Since $N_{G}\left(Q^{*}\right)$ is 3 -constrained by Lemma 4. 15 and $\Omega_{1}\left(Q_{0}\right) \subseteq Z\left(Q_{0}\right)$, we see $N_{G}\left(Q^{*}\right) \triangleright \Omega_{1}\left(Q_{0}\right) O_{3^{\prime}}\left(N_{G}\left(Q^{*}\right)\right)$. Suppose that $x_{1} \in O_{3^{\prime}}\left(N_{G}\left(Q^{*}\right)\right)$, then $\left[x_{1}, Q^{*}\right] \subseteq Q^{*} \subset O_{3^{\prime}}\left(N_{G}\left(Q^{*}\right)\right)=1$, which is a contradiction by Lemma 4.15. Hence we may assume that $x_{1} \in N_{G}\left(\Omega_{1}\left(Q_{0}\right)\right)=N_{G}\left(Q_{0}\right)$. Hence $13\left|\left|N_{G}(Q)\right|\right.$, then $N_{G}(S)=N_{G}(P)$ is nilpotent, a contradiction. Hence $C_{G}(x)$ is odd order for each $x \in P^{\#}$.

Now we see that $O_{3^{\prime}}\left(C_{G}(y)\right)$ is odd order for each $y \in Q^{\#}$ by a similar argument of Lemma 4.10. And by a similar argument of Lemma 4.11 we have a final contradiction. Hence the Theorem is proved.

References

[1] M. J. Collins: Finite Groups admitting almost fixed point free automorphisms, Proceedings of Symposia in Pure Mathematics, Volume XXI, Amer. Math. Soc.
[2] G. Glauberman: Weakly closed elements of Sylow subgroups, Math. Zeit, 107 (1968), 1-20.
[3] G. Glauberman: A sufficient condition for p-stabillity, Proc. London Math. Soc, 25 (1972), 253-287.
[4] G. Glauberman : Global and Local Properties of Finite Groups, "Finite Simple Groups," edited by M. B. Powell and G. Higman. Academic Press, London and New York, 1971.
[5] D. Gorenstein: Finite Groups, Harper and Row, New York, 1968.
[6] D. Gorenstein: Centralizers of Involutions in Finite Simple Groups, "Finite Simple Groups," See [4].
[7] D. M. Goldschmidt : Solvable Signalizer Functor on Finite Groups, J. Algebra, 21 (1972), 137-148.
[8] B. RICKMAN: Groups admitting an automorphism of prime order fixing a cyclic subgroup of prime power order, Quart. J. Math, Oxford (2) 26 (1975), 47-59.
[9] E. Shult: On groups admitting fixed point free operator groups, I'll. J. Math, 9 (1965), 702-720.
[10] J. G. THOMPSON : Finite groups with fixed point free automorphisms of prime order, Proc. Nat. Acad. Sci, 45 (1959), 578-581.
[11] J. G. THOMPSON: Non-solvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc. 74 (1968). 383-437.

Hiroshi Fukushima
Department of Mathematics
Faculty of Science
Hokkaido University
Sapporo, Japan

