Projectively connected manifolds admitting groups of projective transformations of dimension $\boldsymbol{n}^{2}+\boldsymbol{n}$

By Keizo Yamaguchi
(Received October 16, 1978)

Introduction

Let M be a manifold of dimension n with a projective structure. It is well known that the group $\mathfrak{P}(M)$ of projective transformations of M is a Lie transformation group such that $\operatorname{dim} \mathfrak{F}(M) \leqq n^{2}+2 n$ ([2], [3]).

The main purpose of this paper is to determine globally projectively connected manifolds admitting groups of projective transformations of the second largest dimension $n^{2}+n$.

Our main result is stated as follows;
Theorem 7.11. Let M be a connected manifold of dimension $n(n \geqq$ 3) with a projective structure. If M admits a group of projective transformations of dimension $n^{2}+n$, then M is projectively equivalent to one of the following spaces;
(1) $P^{n}(\boldsymbol{R})$; the real projective space,
(2) S^{n}; the universal covering space of (1),
(3) $S^{n} \backslash\{$ one point $\}$,
(4) \boldsymbol{R}^{n}; the affine space,
(5) $Q=P^{n}(\boldsymbol{R}) \backslash\{$ one point $\}$,
(6) \tilde{Q}; the universal covering space of (5).

The local version of this theorem is obtained by S. Ishihara [1].
Our main emphasis is that the method, developed by the author [6], for Cartan connections associated with graded Lie algebras works equally well to the projective and conformal geometry.

Throughout this paper we always assume the differentiability of class C^{∞}. We use the notations and terminology in S. Kobayashi [2] without special references.

§ 1. Projective connection

In this section we will recall the notion of the normal projective connection and fix our terminology, following [2] and [3].

Let $P^{n}(\boldsymbol{R})=L / L_{0}$ be the real projective space of dimension n with its homogeneous coordinate $\left(x_{0}, x_{1}, \cdots, x_{n}\right)$, where

$$
\begin{aligned}
& L=P G L(n, \boldsymbol{R})=G L(n+1, \boldsymbol{R}) / \text { center, } \\
& L_{0} ; \text { the isotropy subgroup of } L \text { at } o=(0, \cdots, 0,1) \in P^{n}(\boldsymbol{R}) .
\end{aligned}
$$

The Lie algebra \mathfrak{l} of L has a gradation given by

$$
\begin{array}{ll}
\mathfrak{l}=\mathfrak{g l}(n+1, \boldsymbol{R}), & \mathfrak{l}_{0}=\mathfrak{g}_{0}+\mathfrak{g}_{1}, \\
\mathfrak{g}_{-1}=\left\{\left(\begin{array}{ll}
0 & v \\
0 & 0
\end{array}\right)\right\}, & \mathfrak{g}_{0}=\left\{\left(\begin{array}{ll}
A & 0 \\
0 & -\operatorname{tr}
\end{array}\right)\right\}, \quad \mathfrak{g}_{1}=\left\{\left(\begin{array}{cc}
0 & 0 \\
t \mathfrak{t} & 0
\end{array}\right)\right\},
\end{array}
$$

where $v, \xi \in \boldsymbol{R}^{n}, A \in \mathfrak{g l}(n, \boldsymbol{R})$. Moreover the graded Lie algebra \mathfrak{l} can be described as follows. Let $V\left(=\boldsymbol{R}^{n}\right)$ be the n-dimensional vector space and V^{*} be the dual space of V. Then

$$
\mathfrak{l}=V+\mathfrak{g l}(V)+V^{*},
$$

under the identification (p. 132 [2]) ;

$$
\begin{aligned}
& \left(\begin{array}{ll}
0 & v \\
0 & 0
\end{array}\right) \in \mathfrak{g}_{-1} \longmapsto \longrightarrow v \in V, \quad\left(\begin{array}{cc}
0 & 0 \\
t \xi & 0
\end{array}\right) \in \mathfrak{g}_{1} \longmapsto \longrightarrow \xi \in V^{*}, \\
& \left(\begin{array}{cc}
A & 0 \\
0 & a
\end{array}\right) \in \mathfrak{g}_{0} \longrightarrow \longrightarrow A-a I_{n} \in \mathfrak{g l}(V)
\end{aligned}
$$

The element $E \in \mathfrak{g}_{0}$, which defines the gradation of \mathfrak{l}, is given by $-\mathrm{id}_{V} \in$ $\mathfrak{g l}(V)$.

Let $G^{2}(n)$ be the group of 2 -frames at $0 \in \boldsymbol{R}^{n}$. L_{0} can be considered as a subgroup of $G^{2}(n)$ ([2], [3]). Let M be a manifold of dimension n and $P^{2}(M)$ be the bundle of 2 -frames over M. Then a projective structure on M is, by definition, a subbundle P of $P^{2}(M)$ with structure group L_{0}. Let θ be the canonical form on $P^{2}(M)$. Then (P, ω) is called a projective connection if (P, ω) is a Cartan connection of type $\left(L, L_{0}\right)$ (cf. Definition 1.9 [6] I) and $\omega_{-1}+\omega_{0}$ coincides with the restriction of θ to P, where ω_{i} is the \mathfrak{g}_{i}-component of ω.

Theorem A ([2], [3]). Let M be a manifold of dimension $n(n \geqq 2)$. For each projective structure P of M, there exists a unique projective connection ω such that the curvature Ω satisfies the following condition;

$$
\Sigma K_{j i l}^{i}=0, \quad \text { where } \quad \Omega_{j}^{i}=\frac{1}{2} \Sigma K_{j k l}^{i} \omega^{k} \wedge \omega^{l}, \omega_{-1}=\left(\omega^{i}\right), \Omega_{0}=\left(\Omega_{j}^{i}\right)
$$

This unique projective connection is called the normal projective connection.
Let $\mathfrak{P}(M)$ be the group of projective transformations of M. We consider the Lie algebra $\mathfrak{p}(M)$ of infinitesimal projective transformations of M that generate (global) 1-parameter subgroups of $\mathfrak{P}(M) . \mathfrak{p}(M)$ is naturally isomor-
phic with the Lie algebra of $\mathfrak{P}(M)$. Set $\mathfrak{p}(P)=\left\{X \in \mathfrak{X}(P) \mid L_{X} \omega=0, R_{a_{*}} X=X\right.$ for $a \in L_{0}$, and X is complete $\}$. Then Theorem A implies that $\mathfrak{p}(P)$ is isomorphic with $\mathfrak{p}(M)$ under the bundle projection.

\S 2. Filtration of $\mathfrak{p}(M)$

In this section we will define a filtration of $\mathfrak{p}(M)$ at $x \in M$, following [6], and give an isomorphism of the associated graded Lie algebra of $\mathfrak{p}(M)$ (at x) into \mathfrak{l}.

First we set $\mathfrak{l}_{-1}=\mathfrak{l}, \mathfrak{l}_{0}=\mathfrak{g}_{0}+\mathfrak{g}_{1}$ and $\mathfrak{l}_{1}=\mathfrak{g}_{1}$. With respect to this filtration $\mathfrak{l}=\mathfrak{l}_{-1}$ becomes a filtered Lie algebra. Note that L_{0} preserves this filtration.

Let M be a manifold of dimension n. And let (P, ω) be the normal porjective connection over M.

Lemma 2.1. (Lemmas 2.2 and 2.3 [6] I). For $X, Y \in \mathfrak{p}(P)$, and $u \in$ P, we have
(1) $\omega_{u}(X) \in Y_{0}$ if and only if $\pi_{*_{u}}(X)=0$,
(2) $\Omega_{u}(X, Y)=0$ if $\pi_{*_{u}}(X)=0$ or $\pi_{*_{u}}(Y)=0$,
(3) $-\omega_{u}([X, Y])=\left[-\omega_{u}(X),-\omega_{u}(Y)\right]-2 \Omega_{u}(X, Y)$,
where Ω is the curvature form of the connection and π is the bundle projection of P onto M.

The proof is immediate, hence is omitted.
Now let us fix a point x of M and choose a point u of the fibre $\pi^{-1}(x)$ over x. We set

$$
\mathfrak{h}_{k}(x)=\mathfrak{p}(P) \cap \omega_{u}^{-1}\left(\mathfrak{l}_{k}\right), \quad \text { for } \quad k=-1, \quad 0 \text { and } 1
$$

Note that this definition is independent of the choice of u in $\pi^{-1}(x)$. Hence the above defines a filtration of $\mathfrak{p}(M)$ at x. From Lemma 2.1 we have

Proposition 2.2. With respect to the above filtration, $\mathfrak{p}(M)$ becomes a filtered Lie algebra.

Let $\tilde{\mathfrak{h}}(x)$ be the associated graded Lie algebra of the filtered Lie algebra $\mathfrak{h}_{-1}(x)=\mathfrak{p}(P)$. Setting $\tilde{\mathfrak{h}}_{k}=\mathfrak{h}_{k} / \mathfrak{h}_{k+1}$ for $k=-1,0$ and 1 , we have $\tilde{\mathfrak{h}}(x)=\tilde{\mathfrak{h}}_{-1}+$ $\tilde{\mathfrak{h}}_{0}+\tilde{\mathfrak{h}}_{1}$.

First observe that there exists an injective linear map ν_{u}^{k} of $\tilde{\mathfrak{h}}_{k}(x)$ into \mathfrak{g}_{k} which satisfies the following commutative diagram

where μ_{k} is the natural projection of \mathfrak{h}_{k} onto $\tilde{\mathfrak{h}}_{k}=\mathfrak{h}_{k} / \mathfrak{h}_{k+1}$ and p_{k} is the projection of \mathfrak{l} onto \mathfrak{g}_{k} corresponding to $\mathfrak{l}=\Sigma \mathfrak{g}_{k}$. We define an injective linear map ν_{u} of $\tilde{\mathfrak{h}}(x)$ into \mathfrak{l} by setting;

$$
\nu_{u}=\nu_{u}^{-1} \times \nu_{u}^{0} \times \nu_{u}^{1}
$$

Lemma 2.3. (Lemma 2.5. [6] I). Notations being as above, ν_{u} is an isomorphism of $\check{\mathfrak{h}}(x)$ into \mathfrak{Y}.

This is immediate from Lemma 2.1. Hence setting $\tilde{\mathfrak{h}}(u)=\nu_{u}(\tilde{\mathfrak{h}}(x))$, we see that $\tilde{\mathfrak{h}}(u)$ is a graded subalgebra of \mathfrak{l} such that $\operatorname{dim} \tilde{\mathfrak{h}}(u)=\operatorname{din} \mathfrak{p}(M)$.

Remark 2.4. It is easily seen that the above filtration is nothing but the filtration in terms of jets (or Taylor expansions).

§ 3. Graded subalgebras of \mathfrak{l}

First recall that the bracket operation of $\mathfrak{l}=V+\mathfrak{g l}(V)+V^{*}$ can be described as follows (p. 133 [2]) ;

$$
\begin{aligned}
& {\left[v, v^{\prime}\right]=0, \quad\left[\xi, \xi^{\prime}\right]=0, \quad[U, v]=U v, \quad[\xi, U]=U^{*} \xi} \\
& {\left[U, U^{\prime}\right]=U U^{\prime}-U^{\prime} U, \quad[v, \xi]=v \xi+\langle\xi, v\rangle I_{n}}
\end{aligned}
$$

where $v, v^{\prime} \in V, \xi, \xi^{\prime} \in V^{*}, U, U^{\prime} \in \mathfrak{g l}(V) U^{*}$ is the adjoint linear map of U and \langle,$\rangle is the canonical pairing of V$ and V^{*}. Hence we have

$$
\begin{align*}
& {\left[[v, \xi], v^{\prime}\right]=\left\langle\xi, v^{\prime}\right\rangle v+\langle\xi, v\rangle v^{\prime}} \tag{3.1}\\
& {\left[\xi^{\prime},[v, \xi]\right]=\left\langle\xi^{\prime}, v\right\rangle \xi+\langle\xi, v\rangle \xi^{\prime}} \tag{3.2}
\end{align*}
$$

Now we will consider a graded subalgebra $\mathfrak{f}=\mathfrak{f}_{-1}+\mathfrak{f}_{0}+\mathfrak{f}_{1}$ of \mathfrak{Y}. First, from $g_{0}=\left[g_{-1}, g_{1}\right]$, we have

Lemma 3.1. If $\mathfrak{f}_{-1}=\mathfrak{g}_{-1}$ and $\mathfrak{f}_{1}=\mathfrak{g}_{1}$, then $\mathfrak{f}=\mathfrak{l}$.
We set $\mathfrak{b}\left(\mathfrak{f}_{-1}\right)=\mathfrak{f}_{-1}+\mathfrak{g l}\left(V, \mathfrak{f}_{-1}\right)+V^{*}$, where $\mathfrak{g l}\left(V, \mathfrak{f}_{-1}\right)=\left\{A \in \mathfrak{g l}(V) \mid A\left(\mathfrak{f}_{-1}\right) \subset\right.$ $\left.\mathfrak{f}_{-1}\right\}$. Then we have

Lemma 3.2. $\mathfrak{b}\left(\mathfrak{t}_{-1}\right)$ is a graded subalgebra of \mathfrak{l} containing \mathfrak{f} and dim $\mathfrak{b}\left(\mathfrak{f}_{-1}\right)=r^{2}-(n-1) r+n^{2}+n$, where $r=\operatorname{dim} \mathfrak{f}_{-1}$.

Proof. From (3.1), we have $\left[\mathfrak{f}_{-1}, V^{*}\right] \subset \mathfrak{g l}\left(V, \mathfrak{f}_{-1}\right)$. Hence $\mathfrak{b}\left(\mathfrak{f}_{-1}\right)$ is a graded subalgebra of \mathfrak{l}, which obviously contains \mathfrak{f}. Last assertion follows from $\operatorname{dim} \mathfrak{g l}\left(V, \mathfrak{f}_{-1}\right)=r^{2}+n(n-r)$.
q. e. d.

Similarly setting $\mathfrak{b}\left(\mathfrak{f}_{1}\right)=V+\mathfrak{g l}\left(V, \mathfrak{f}_{1}^{*}\right)+\mathfrak{f}_{1}$, where

$$
\mathfrak{g l}\left(V, \mathfrak{l}_{1}^{*}\right)=\left\{A \in \mathfrak{g l}(V) \mid A^{*}\left(\mathfrak{l}_{1}\right) \subset \mathfrak{f}_{1}\right\},
$$

we have

Lemma 3.3. $\mathfrak{b}\left(\mathfrak{f}_{\mathfrak{1}}\right)$ is a graded subalgebra of \mathfrak{l} containing \mathfrak{f} and dim $\mathfrak{b}\left(\mathfrak{t}_{1}\right)=r^{2}-(n-1) r+n^{2}+n$, where $r=\operatorname{dim} \mathfrak{f}_{1}$.

Take the natural base $\left\{e_{i}\right\}_{1 \leq i \leq n}$ of $V=\boldsymbol{R}^{n}$. We denote by H (resp. W) the linear subspace of V spanned by the vectors e_{2}, \cdots, e_{n} (resp. e_{1}). Let W^{\perp} be the annihilator of W in V^{*}. We set

$$
\begin{aligned}
& \mathfrak{b}_{*}=V+\mathfrak{g l}(V), \\
& \mathfrak{b}_{o}=V+\mathfrak{g l}(V, W)+W^{\perp}, \\
& \mathfrak{b}_{* *}=H+\mathfrak{g l}(V, H)+V^{*},
\end{aligned}
$$

where $\mathfrak{g l}(V, W)=\{A \in \mathfrak{g l}(V) \mid A(W) \subset W\}$ and $\mathfrak{g l}(V, H)=\{A \in \mathfrak{g l}(V) \mid A(H) \subset H\}$. $\mathfrak{b}_{*}, \mathfrak{b}_{o}$ and $\mathfrak{b}_{* *}$ are graded subalgebras of \mathfrak{l}. We set $G_{0}=\left\{\sigma \in L_{0} \mid \operatorname{Ad}(\sigma)\left(\mathfrak{g}_{i}\right)=\mathfrak{g}_{i}\right.$ for $i=-1,0,1\}(\cong G L(V))$.

Summarizing above discussion we obtain
Proposition 3.4. Let \mathfrak{f} be a proper graded subalgebra of 1 . Then $\operatorname{dim} \mathfrak{f} \leqq n^{2}+n$. The equality holds if and only if there exists $\sigma \in G_{0}$ such that $\operatorname{Ad}(\sigma) \mathfrak{f}=\mathfrak{b}_{*}, \mathfrak{b}_{o}, \mathfrak{b}_{* *}$ or \mathfrak{I}_{0}.

Remark 3.5. H and W being as above, we denote by S (resp. R) the linear subspace of V spanned by the vectors e_{3}, \cdots, e_{n} (resp. e_{1}, e_{2}). Then using Proposition 5.7, Lemmas 3.2 and 3.3, we can obtain the following

Proposition 3.6. Let be a proper graded subalgebra of $\mathfrak{l}=V+\mathfrak{g l}(V)+$ V^{*}. If $\operatorname{dim} \mathfrak{f} \geqq n^{2}+2(n \geqq 4)$, then $\operatorname{dim} \mathfrak{f}=n^{2}+n, n^{2}+n-1$ or $n^{2}+2$ and there exists $\sigma \in G_{0}$ such that $\operatorname{Ad}(\sigma) \mathfrak{f}$ coincides with one of the following subalgebras of \mathfrak{l};
(1) $\quad \operatorname{dim} \mathfrak{f}=n^{2}+n \quad \mathfrak{b}_{*}, \mathfrak{b}_{o}, \mathfrak{b}_{* *}$ or \mathfrak{l}_{0},
(2) $\operatorname{dim} \mathfrak{f}=n^{2}+n-1 \quad V+\mathfrak{g l}(V), V+\left[V, W^{\perp}\right]+W^{\perp}$,

$$
H+\left[H, V^{*}\right]+V^{*} \text { or } \mathfrak{l l}(V)+V^{*}
$$

(3) $\quad \operatorname{dim} \mathfrak{f}=n^{2}+2 \quad V+\mathfrak{g l}(V, H)+H^{\perp}, V+\mathfrak{g l}(V, R)+R^{\perp}$,

$$
W+\mathfrak{g l}(V, W)+V^{*} \text { or } S+\mathfrak{g l}(V, S)+V^{*}
$$

§ 4. Structure of g

In this section we will consider a subalgebra \mathfrak{g} of $\mathfrak{p}(M)$, and will determine the structure of \mathfrak{g} with $\operatorname{dim} \mathfrak{g} \geqq n^{2}+n$, following the method of [6] I.

Let M be a manifold of dimension n and (P, ω) be the normal projective connection over M. We will consider a subalgebra \mathfrak{g} of $\mathfrak{p}(M)$. We set $\hat{\mathfrak{g}}=\pi_{*}^{-1}(\mathfrak{g}) \subset \mathfrak{p}(P)$.

Now let us fix a poit x of M. As in $\S 2$, we introduce the filtration of $\mathfrak{p}(M)$ (hence of \mathfrak{g}) at x through the connection. We first consider the associated graded Lie algebra $\tilde{\mathfrak{g}}(x)$ of \mathfrak{g} at x. Setting $\tilde{\mathfrak{g}}(u)=\nu_{u}(\tilde{\mathfrak{g}}(x))$, where $u \in \pi^{-1}(x)$, we have

Lemma 4.1. (1) If $\operatorname{dim} \mathfrak{g}=n^{2}+2 n$, then $\tilde{\mathfrak{g}}(u)=\mathfrak{l}$ for any $u \in \pi^{-1}(x)$,
(2) If $\operatorname{dim} \mathrm{g}<n^{2}+2 n$, then we have $\operatorname{dim} \mathrm{g} \leqq n^{2}+n$. The equality holds if and only if there exists $u \in \pi^{-1}(x)$ such that

$$
\tilde{\mathfrak{g}}(u)=\mathfrak{b}_{*}, \mathfrak{b}_{0}, \mathfrak{b}_{* *} \text { or } \mathfrak{I}_{0} .
$$

This is immediate from Proposition 3.4 and $\operatorname{dim} \mathfrak{g}=\operatorname{dim} \tilde{\mathfrak{g}}(u)$.
In order to determine the structure of g , we have
Lemma 4.2. (Lemma 5.5 [6] I). If $\tilde{\mathfrak{g}}\left(u^{\prime}\right)$ contains E for some point u^{\prime} of $\pi^{-1}(x)$, then there exists a point u of $\pi^{-1}(x)$ such that $\mathrm{g}(u)=\omega_{u}(\hat{\mathfrak{g}})$ coincides with $\tilde{\mathfrak{g}}\left(u^{\prime}\right)$ as a vector subspace of \mathfrak{l}, where E is the element of \mathfrak{l} which defines the gradation of \mathfrak{I}.

Lemma 4.3. (IV Theorem 3.2 [2]). If $\mathrm{g}\left(u_{0}\right)$ contains E for some point u_{o} of $\pi^{-1}(x)$, then $\Omega_{u}=0$ for any $u \in \pi^{-1}(x)$, where Ω is the curvature form of the connection.

For the proofs of these lemmas, see those of Lemma 5. 5 and Proposition 5.6 [6] I.

Summarizing the above results we obtain
Proposition 4.4. Let M be a manifold of dimension n and (P, ω) be the nor mal projective connection over M. Let \mathfrak{g} be a subalgebra of $\mathfrak{p}(M)$. Let x be an arbitrary point of M.
(1) If $\operatorname{dim} \mathfrak{g}=n^{2}+2 n$, then M is projectively flat and $\mathfrak{g}=\mathfrak{p}(M)$. Moreover $-\omega_{u}$ is a Lie algebra isomorphism of $\mathfrak{p}(P)(\cong \mathfrak{p}(M))$ onto \mathfrak{l} Jor any $u \in \pi^{-1}(x)$.
(2) If $\operatorname{dim} \mathfrak{g}<n^{2}+2 n$, then $\operatorname{dim} \mathfrak{g} \leqq n^{2}+n$. The equality holds if and only if M is projectively flat and there exists $u \in \pi^{-1}(x)$ such that $-\omega_{u}$ is

(1) is now well known ([1], [2]) and (2) is first obtained by S. Ishihara by a different method (cf. Theorem 1 and Remark 3 [1]).

§ 5. Model spaces

Let \mathfrak{g} be a graded subalgebra of \mathfrak{l} satisfying $\operatorname{dim} \mathfrak{g} \geqq n^{2}+n$. We will construct a model space for g .
5.1. The case $\operatorname{dim} g=n^{2}+2 n$. We consider $P^{n}(\boldsymbol{R})=L / L_{0}$ as the model space for $\mathfrak{g}=1$. Let χ be the natural projection of $G L(n+1, \boldsymbol{R})$ onto $L=$ $G L(n+1, \boldsymbol{R}) / \boldsymbol{R}^{\times}$. We set

$$
L_{\Delta}=\left\{\left.\left(\begin{array}{ll}
A & 0 \\
t \xi & a
\end{array}\right) \in S L(n+1, \boldsymbol{R}) \right\rvert\, a=\operatorname{det} A^{-1}, A \in G L(n, \boldsymbol{R}), \xi \in \boldsymbol{R}^{n}\right\}
$$

First we observe
Lemma 5.1. If n is even, we have
(1) L is isomorphic with $S L(n+1, \boldsymbol{R})$ under χ.
(2) L_{0} is isomorphic with the group $A(n, \boldsymbol{R})$ of affine transformations of \boldsymbol{R}^{n}. Moreover L_{0} is identified, under χ, with L_{Δ}.
(3) The center $Z(L)$ of L is reduced to the unit.
(4) The normalizer $N_{L}(B)$ of B in L coincides with L_{0}, where B is the identity component of L_{0}.

Proof. (1), (2) and (3) are elementary. In order to prove (4), we consider $L / B \approx S^{n}$. The action of $L=S L(n+1, \boldsymbol{R})$ on S^{n} is given through identifying S^{n} with $\boldsymbol{R}^{n+1} \backslash\{0\} / \boldsymbol{R}^{+}$. It is easily seen that the orbital decomposition of S^{n} by B consists of two fixed points and an open orbit (cf. Lemma 5.5 (1) and (3)). From this we conclude that the identity component of $N_{L}(B)$ coincides with B and the number of connected components $N_{L}(B)$ is at most two. On the other hand it is obvious $L_{0} \subset N_{L}(B)$. Hence we must have $L_{0}=N_{L}(B)$.
q. e. d.

Lemma 5. 2. If n is odd, we have
(1) L has two connected components. Let L^{0} be the identity compoenet of $L . \quad \chi$ is a covering homomorphism of $S L(n+1, \boldsymbol{R})$ onto L^{o} with Ker $\chi=\boldsymbol{Z}_{2}$, where $\boldsymbol{Z}_{2}=\left\{I_{n},-I_{n}\right\}$ is the center of $S L(n+1, \boldsymbol{R})$.
(2) $\quad L_{0}$ is isomorphic with $A(n, \boldsymbol{R})$. Moreover $B=L^{0} \cap L_{0}$ is connected and is identified, under χ, with the identity component L_{Δ}^{+}of L_{Δ}.
(3) The center $Z\left(L^{0}\right)$ of L^{o} is reduced to the unit.
(4) The normalizer $N_{L^{\circ}}(B)$ of B in L^{o} coincides with B.

Proof. (1) and (2) are elementary. (3) and (4) can be proved quite analogously as in Proposition 6.7 [6] I, hence the proofs are omitted. q. e.d.

Moreover we note
Lemma 5.3. If ϕ is an automorphism of L_{0} satisfying $\phi_{*}=\mathrm{id}_{\mathrm{r}_{0}}$, then $\phi=\mathrm{id}_{L_{0}}$.

Proof. Since $L_{0} \cong A(n, \boldsymbol{R})$, we can replace L_{0} by $A(n, \boldsymbol{R})$. We identify $A(n, \boldsymbol{R})$ with a closed subgroup of $G L(n+1, \boldsymbol{R})$ consisting of the matrices of the following form ;

$$
\left(\begin{array}{ll}
A & \xi \\
0 & 1
\end{array}\right) \quad A \in G L(n, \boldsymbol{R}), \xi \in \boldsymbol{R}^{n}
$$

Take an element $\sigma_{o} \in A(n, \boldsymbol{R})$, which does not belong to the identity component $A^{+}(n, \boldsymbol{R})$;

$$
\sigma_{o}=\left(\begin{array}{ll}
J & 0 \\
0 & 1
\end{array}\right), \quad J=\left(\begin{array}{rr}
-1 & 0 \\
0 & I_{n-1}
\end{array}\right) .
$$

Then σ_{o} is characterized by the following relations;
(1) $\sigma_{o}^{2}=I_{n+1}$ and $\sigma_{o} \notin A^{+}(n, \boldsymbol{R})$,
(2) σ_{o} commutes with the following elements of $A^{+}(n, \boldsymbol{R})$;

$$
\left(\begin{array}{cc}
I_{n} & e_{i} \\
0 & 1
\end{array}\right) 1 \leqq i \leqq n-1, \quad\left(\begin{array}{ll}
I & 0 \\
0 & 1
\end{array}\right), \quad I=\left(\begin{array}{cc}
2 & 0 \\
0 & I_{n-1}
\end{array}\right) .
$$

Let ϕ be an automorphism of $A(n, \boldsymbol{R})$ satisfying $\phi_{*}=\mathrm{id}_{\alpha(n, R)}$. Obviously we have $\left.\phi\right|_{A^{+}(n, \boldsymbol{R})}=\mathrm{id}_{A^{+}(n, \boldsymbol{R})}$. Then $\phi\left(\boldsymbol{\sigma}_{o}\right)$ also satisfies the above relations (1) and (2). Hence we get $\phi\left(\boldsymbol{\sigma}_{o}\right)=\sigma_{0}$. Therefore we have $\phi=\mathrm{id}_{A(n, \boldsymbol{R})}$.
q. e. d.

Now we consider the normal projective connection over $P^{n}(\boldsymbol{R})$ or S^{n}. S^{n} has the natural projective structure induced by the covering projection; $p: S^{n} \rightarrow P^{n}(\boldsymbol{R})$ (p. 144 [2]). Let ω_{L} and $\omega_{S L}$ be the Maurer-Cartan form on L and $S L(n+1, \boldsymbol{R})$ respectively. Recall that the principal bundle L over $L / L_{0}=P^{n}(\boldsymbol{R})$ can be naturally identified with the projective structure on $P^{n}(\boldsymbol{R})$, and $\left(L, \omega_{L}\right)$ defines the normal projective connection on $P^{n}(\boldsymbol{R})$. Moreover the principal bundle $S L(n+1, \boldsymbol{R})$ over $S^{n}=S L(n+1, \boldsymbol{R}) / L_{ \pm}^{+}$can be identified with a connected component of the projective structure on S^{n}, and $\left(S L(n+1, \boldsymbol{R}), \omega_{S L}\right)$ defines the normal projective connection on S^{n} ([2]).
5.2. The case $\operatorname{dim} g=n^{2}+n$. We will first consider the model space for \mathfrak{b}_{*}. Let B_{*} be the analytic subgroup of L corresponding to \mathfrak{b}_{*}. We consider the (open) orbit Q_{*} of B_{*} passing through $o \in P^{n}(\boldsymbol{R})$ as the model space corresponding to \mathfrak{b}_{*}.

Lemma 5.4. (1) B_{*} is isomorphic with $A^{+}(n, \boldsymbol{R})$.
(2) The orbital decomposition of $P^{n}(\boldsymbol{R})=L / L_{0}$ by B_{*} is given by;

$$
P^{n}(\boldsymbol{R})=Q_{*} \cup P^{n-1}(\boldsymbol{R}),
$$

where $P^{n-1}(\boldsymbol{R})$ is the hyperplane defined by $x_{n}=0$.
(3) Q_{*} is projective equivalent to the affine space \boldsymbol{R}^{n}.
(4) The center $Z\left(B_{*}\right)$ of B_{*} is reduced to the unit.
(5) The normalizer $N_{B_{*}}\left(C_{*}\right)$ of C_{*} in B_{*} coincides with C_{*}, where C_{*} is the isotropy subgroup of B_{*} at $o \in Q_{*}$.

Proof. (1) Since $\mathfrak{b}_{*}=\left\{\left(\begin{array}{cc}A & v \\ 0 & -\operatorname{tr} A\end{array}\right) \in \mathfrak{H}(n+1, \boldsymbol{R})\right\}$, we have $B_{*}=$ identity component of $\left\{\left(\begin{array}{ll}A & \xi \\ 0 & a\end{array}\right) \in G L(n+1, \boldsymbol{R})\right\} / \boldsymbol{R}^{\times}=\left\{\left.\left(\begin{array}{ll}A & \xi \\ 0 & a\end{array}\right) \in G L^{+}(n+1, \boldsymbol{R}) \right\rvert\, a>0\right\} / \boldsymbol{R}^{+}$.

From $\left\{\left.\left(\begin{array}{ll}A & \xi \\ 0 & a\end{array}\right) \in G L^{+}(n+1, \boldsymbol{R}) \right\rvert\, a>0\right\}=\boldsymbol{R}^{+} \cdot A^{+}(n, \boldsymbol{R})$, we have

$$
B_{*}=\boldsymbol{R}^{+} \cdot A^{+}(n, \boldsymbol{R}) / \boldsymbol{R}^{+} \cong A^{+}(n, \boldsymbol{R}) .
$$

(2), (3) and (4) are elementary. (5) can be shown quite analogously as in Proposition 6.7 [6] I.

Let B_{0} be the analytic subgroup of L corresponding to \mathfrak{b}_{0}. Let Q be the (open) orbit of B_{o} passing through $o \in P^{n}(\boldsymbol{R})$ and C be the isotropy subgroup of B_{o} at \boldsymbol{o}. Moreover let \tilde{B}_{0} be the analytic subgroup of $S L(n+1, \boldsymbol{R})$ corresponding to $\mathfrak{b}_{o}(\subset \mathfrak{G l}(n+1, \boldsymbol{R}))$. Let \tilde{Q} be the (open) orbit of \tilde{B}_{o} passing through $e_{n} \in S^{n}$ and \tilde{C} be the isotropy subgroup of \tilde{B}_{0} at e_{n}.

Lemma 5.5. (1) B_{0} is the identity component of the isotropy subgroup of L at $\boldsymbol{o}^{\prime}=(1,0, \cdots, 0) \in P^{n}(\boldsymbol{R})$. \tilde{B}_{o} is isomorphic with B_{o} under χ.
(2) The orbital decomposition of $P^{n}(\boldsymbol{R})$ by B_{0} is given by;

$$
P^{n}(\boldsymbol{R})=Q \cup\left\{o^{\prime}\right\} .
$$

(3) The orbital decomposition of $S^{n}=S L(n+1, \boldsymbol{R}) / L_{ \pm}^{+}$by \tilde{B}_{0} is given by;

$$
S^{n}=\widetilde{Q} \cup\left\{e_{0}\right\} \cup\left\{-e_{0}\right\} .
$$

\tilde{Q} is the $(2-$ fold $)$ universal covering space of $Q(n \geqq 3)$.
(4) \tilde{C} is isomorphic with the identity component C_{o} of C under χ. And C has two connected components.
(5) The center $Z\left(B_{0}\right)$ of B_{o} is reduced to the unit.
(6) The normalizer $N_{B_{0}}\left(C_{0}\right)$ of C_{o} in B_{0} coincides with C.
(7) If ϕ is an automorphism of C satisfying $\phi_{*}=\mathrm{id}_{\mathrm{c}}$, then $\phi=\mathrm{id}_{C}$.

Proof. (1) From $\mathfrak{b}_{o}=V+\mathfrak{g l}(V, W)+W^{\perp}$, we have more explicitly

$$
\begin{aligned}
\mathfrak{V}_{o} & =\left\{\left.\left(\begin{array}{cc}
A & v \\
\mathfrak{\xi} \boldsymbol{\xi} & -\operatorname{tr}
\end{array}\right) \in \mathfrak{A l}(n+1, \boldsymbol{R}) \right\rvert\, \mathfrak{\xi}=\binom{0}{\xi^{\prime}} \in \boldsymbol{R}^{n}, A=\left(\begin{array}{ll}
a & * \\
0 & A^{\prime}
\end{array}\right) \in \mathfrak{g l}(n, \boldsymbol{R})\right\}, \\
& =\left\{\left.\left(\begin{array}{cc}
-\operatorname{tr} B & \eta \\
0 & B
\end{array}\right) \in \mathfrak{H l}(n+1, \boldsymbol{R}) \right\rvert\, \eta \in \boldsymbol{R}^{n}, B \in \mathfrak{g l}(n, \boldsymbol{R})\right\} .
\end{aligned}
$$

Hence B_{o} is the identity component of the isotropy subgroup of L at $o^{\prime} \in$ $P^{n}(\boldsymbol{R})$. Moreover from Lemma 5.1 (2) and Lemma 5.2 (2) we see that \tilde{B}_{o} is isomorphic with B_{o} under χ.
(2), (3) and (4) are elementary. (5) can be proved quite analogously as in Proposition 6.7 [6] I. In order to prove (6) we consider the orbital decomposition of $\tilde{Q}=\tilde{B}_{o} / \tilde{C}$ by \tilde{C}. From

$$
\begin{aligned}
\tilde{C}= & \left\{\left.\left(\begin{array}{ccc}
a & { }^{t} v & 0 \\
0 & B & 0 \\
0 & { }^{t} \xi & b
\end{array}\right) \in G L(n+1, \boldsymbol{R}) \right\rvert\, a=(b \cdot \operatorname{det} B)^{-1}>0, b>0,\right. \\
& \left.B \in G L^{+}(n-1, \boldsymbol{R}), v, \xi \in \boldsymbol{R}^{n-1}\right\},
\end{aligned}
$$

we easily see that the orbital decomposition of \tilde{Q} by \tilde{C} is given by ;

$$
\tilde{Q}=W \cup R_{1} \cup R_{2} \cup R_{3} \cup R_{4} \cup\left\{e_{n}\right\} \cup\left\{-e_{n}\right\} \quad(n \geqq 3),
$$

where

$$
\begin{aligned}
& W=\left\{\left(x_{0}, x^{\prime}, x_{n}\right) \in \tilde{Q} \subset S^{n} \mid x_{0}, x_{n} \in \boldsymbol{R}, x^{\prime} \in \boldsymbol{R}^{n-1} \backslash\{0\}\right\}, \\
& R_{1}=\left\{\left(x_{0}, 0, x_{n}\right) \in \tilde{Q} \mid x_{0}>0, x_{n}>0\right\}, \\
& R_{2}=\left\{\left(x_{0}, 0, x_{n}\right) \in \tilde{Q} \mid x_{0}<0, x_{n}>0\right\}, \\
& R_{3}=\left\{\left(x_{0}, 0, x_{n}\right) \in \tilde{Q} \mid x_{0}<0, x_{n}<0\right\},
\end{aligned}
$$

and

$$
R_{4}=\left\{\left(x_{0}, 0, x_{n}\right) \in \tilde{Q} \mid x_{0}>0, x_{n}<0\right\} .
$$

Hence as in the proof of Lemma 5.1 (4), we get $N_{B_{0}}\left(C_{0}\right)=C$.
(7) can be proved quite analogously as in Lemma 5. 3, hence its proof is omitted.
q. e. d.

It is obvious that B_{*}, B_{o} and \tilde{B}_{o} are the identity component of the group of projective transformations of Q_{*}, Q and \tilde{Q} respectively. Here Q_{*}, Q and \widetilde{Q} are endowed with the natural projective structure induced from those of $P^{n}(\boldsymbol{R})$ and S^{n}.

As for $\mathfrak{b}_{* *}$ and \mathfrak{l}_{0} we note
Lemma 5.6. (1) $\mathfrak{b}_{*}, \mathfrak{b}_{* *}, \mathfrak{b}_{o}$ and \mathfrak{l}_{0} are all isomorphic with $\mathfrak{a}(n, \boldsymbol{R})$.
(2) \mathfrak{b}_{*} and $\mathfrak{b}_{* *}$ are conjugate under an element of L.
(3) \mathfrak{b}_{o} and \mathfrak{Y}_{0} are conjugate under an element of L.

This is easily seen from the orbital decompositions of $P^{n}(\boldsymbol{R})$ by B_{*} and B_{0} (cf. Proposition 3.2 [6] II).

Moreover forgetting about the gradation of $\mathfrak{l}=\mathfrak{l l}(n+1, \boldsymbol{R})$, we have
Proposition 5.7. Let \mathfrak{g} be a proper subalgebra of $\mathfrak{g l}(n+1, \boldsymbol{R})(n \geqq 2)$. Then $\operatorname{dim} \mathfrak{g} \leqq n^{2}+n$, and the equality holds if and only if \mathfrak{g} is conjugate to \mathfrak{b}_{*} or \mathfrak{b}_{o} under an inner automorphism of $\mathfrak{l l}(n+1, \boldsymbol{R})$.

Proof. If we identify $\left(L, \omega_{L}\right)$ with the normal projective connection over $P^{n}(\boldsymbol{R}), \mathfrak{p}(L)$ coincides with the Lie algebra of right invariant vector fields on L. Let $\hat{\mathfrak{g}}$ be the subalgebra of $\mathfrak{p}(L)$ correspoding to $\mathfrak{g} \subset \mathfrak{l}=\mathfrak{g l}(n+1, \boldsymbol{R})$. Let e be the unit element of L and set $\pi_{L}(e)=x$, where π_{L} is the bundle projection of L onto $P^{n}(\boldsymbol{R})$. Then from Proposition 4. 4, $\operatorname{dim} g \leqq n^{2}+n$ and the equality holds if and only if there exists $\sigma \in \pi_{L}^{-1}(x)=L_{0}$ such that $-\omega_{\sigma}$ is a Lie algebra isomorphism of $\hat{\mathfrak{g}}$ onto $\mathfrak{b}_{*}, \mathfrak{b}_{o}, \mathfrak{b}_{* *}$ or \mathfrak{l}_{0}.

Let $A \in \hat{\mathfrak{g}}$ and set $X=-\omega_{e}(A) \in \mathfrak{g} \subset \mathfrak{l}, Y=-\omega_{\sigma}(A)$. Since A is a right invariant vector field we get

$$
Y=-\omega_{\sigma}(A)=-R_{\sigma}^{*} \omega(A)=-\operatorname{Ad}\left(\sigma^{-1}\right) \omega_{e}(A)=\operatorname{Ad}\left(\sigma^{-1}\right)(X)
$$

Hence $\operatorname{Ad}\left(\sigma^{-1}\right) \mathfrak{g}=\mathfrak{b}_{*}, \mathfrak{b}_{o}, \mathfrak{b}_{* *}$ or \mathfrak{l}_{0}. Therefore from Lemma 5.6, \mathfrak{g} is conjugate to \mathfrak{b}_{*} or \mathfrak{b}_{o} under an element of $L^{o}=\operatorname{Int}(\mathfrak{F l}(n+1, \boldsymbol{R}))$. q. e.d.

§6. Transitive case

6.1. Let M be a connected manifold of dimension n and (P, ω) be the normal projective connection over M. We denote by $\tilde{\sigma}$ the connection preserving bundle isomorphism of $P\left(M, L_{0}\right)$ induced by $\sigma \in \mathfrak{P}(M)$.

Let us fix a point $x \in M$ and take a point $u \in \pi^{-1}(x)$. And we define $\iota_{u}: \mathfrak{B}(M) \rightarrow P$ by $\iota_{u}(\sigma)=\tilde{\sigma}(u), \sigma \in \mathfrak{F}(M)$. Then it is well known ([2]) that ι_{u} is an imbedding of $\mathfrak{P}(M)$ as a closed submanifold of P.

Let $\mathfrak{P}_{x}(M)$ be the isotropy subgroup of $\mathfrak{P}(M)$ at $x \in M$. Obviously we have

$$
\ell_{u}\left(\mathfrak{P}_{x}(M)\right) \subset \pi^{-1}(x) .
$$

On the other hand the fiber $\pi^{-1}(x)$ of $P\left(M, L_{0}\right)$ is diffeomorphic with L_{0} via a diffeomorphism γ_{u} of L_{0} onto $\pi^{-1}(x)$, where $\gamma_{u}(a)=u a, a \in L_{0}$. Therefore the composite map $\rho_{u}=\gamma_{u}^{-1} \cdot \iota_{u}$ is an imbedding of $\mathfrak{\Re}_{x}(M)$ into L_{0} and $\rho_{u}\left(\mathfrak{F}_{x}(M)\right)$ is closed in L_{0}. Moreover we have

Lemma 6.1. $\rho_{u} ; \mathfrak{P}_{x}(M) \rightarrow L_{0}$ is an injective homomorphism. And $\rho_{u}\left(\mathfrak{S}_{x}(M)\right)$ is a closed subgroup of L_{0}. Moreover $\left(\rho_{u_{*}}\right)_{e}=\omega_{u} \cdot\left(\ell_{u_{*}}\right)_{\text {e }}$, where e is the unit of $\mathfrak{P}_{x}(M)$.

If we assume that $\mathfrak{P}(M)$ acts transitively on $M, \mathfrak{B}(M)$ is a principal $\mathfrak{P}_{x}(M)$-bundle over M. Then we have

Lemma 6.2. The imbedding $\iota_{u} ; \mathfrak{P}(M) \rightarrow P$ is an injective bundle homomorphism of $\mathfrak{P}(M)\left(M, \mathfrak{P}_{x}(M)\right)$ into $P\left(M, L_{0}\right)$ corresponding to $\rho_{u} ; \mathfrak{P}_{x}(M) \rightarrow L_{0}$, which preserves the base space M.

When the curvature of the normal projective connection vanishes, we have

Proposition 6.3. Suppose that the curvature form Ω of the normal projective connection vanishes identically. Then the linear map $\iota_{u}^{*} \omega ; \mathfrak{p}(M) \rightarrow$ \mathfrak{l} is a Lie algebra isomorphism of $\mathfrak{p}(M)$ into \mathfrak{l}. Hence $\mathfrak{h}(u)=\iota_{u}^{*} \omega(\mathfrak{p}(M))$ $\left(=\omega_{u}(\mathfrak{p}(P))\right)$ is a subalgebra of \mathfrak{l} which is isomorphic with $\mathfrak{p}(M)$. Moreover if we identify $\mathfrak{p}(M)$ with $\mathfrak{h}(u)$, $\iota_{u}^{*} \omega$ is the Maurer-Cartan form of $\mathfrak{P}(M)$.

For the proofs of above lemmas and proposition, see those of Lemma 3. 1, Proposition 3.2 and Proposition 3.4 of [6] I.

Now we will consider an equivalence of two projectively connected homogeneous manifolds. Let M (resp. M^{\prime}) be a connected manifold of dimension n vith the normal projective connection (P, ω) (resp. $\left(P, \omega^{\prime}\right)$). We assume that $\mathfrak{P}(M)$ (resp. $\mathfrak{P}\left(M^{\prime}\right)$) acts transitively on M (resp. $\left.M^{\prime}\right)$. We denote by $\mathfrak{B}^{0}(M)$ the identity component of $\mathfrak{B}(M)$, and set $\mathfrak{B}_{x}^{0}(M)=\mathfrak{B} 0(M) \cap \mathfrak{F}_{x}(M)$. Note that the identity component $\mathfrak{P}^{0}(M)$ acts transitively on M.

Proposition 6.4. Notations being as above, let $x \in M$ and $x^{\prime} \in M^{\prime}$. Suppose that for points, $u \in \pi^{-1}(x), u^{\prime} \in \pi^{-1}\left(x^{\prime}\right)$ suitably chosen, there exists a group isomorphism ϕ of $\mathfrak{B}^{0}(M)$) onto $\mathfrak{B}^{0}\left(M^{\prime}\right)$ satisfying i), ii);
i) $\phi\left(\mathfrak{F}_{x}^{0}(M)\right)=\mathfrak{F}_{x^{\prime}}^{0}\left(M^{\prime}\right)$ and $\rho_{u}=\left.\rho_{u^{\prime}} \cdot \phi\right|_{\mathfrak{F}_{x}^{0}(M)}$,
ii) $\phi^{*} \iota_{u^{\prime}}^{*} \omega^{\prime}=\iota_{u}^{*} \omega$.

Then the bundle isomorphism ϕ of $\mathfrak{P}^{0}(M)\left(M, \mathfrak{P}_{x}^{0}(M)\right)$ onto $\mathfrak{P}^{0}\left(M^{\prime}\right)$ $\left(M^{\prime}, \mathfrak{P}_{x^{\prime}}^{0}\left(M^{\prime}\right)\right)$ induces a projective isomorphism of M onto M^{\prime}.

For the proof, see that of Proposition 3.5 [6] I.
6.2. In this paragraph we will determine projectively connected manifolds M with $\operatorname{dim} \mathfrak{P}(M)=n^{2}+2 n$. Though the sketch of the proof of the following theorem is already given in [2], we will give another proof for the sake of completeness.

Theorem 6.5. (cf. Theorem 6.2 [2], Theorem 3 [1]). Let M be a connected manifold of dimension $n(n \geqq 2)$ with a projective structure. Let $\mathfrak{P}(M)$ be the group of projective transformations of M. If $\operatorname{dim} \mathfrak{P}(M)=$ $n^{2}+2 n$, then M is projectively equivalent to the real projective space $P^{n}(\boldsymbol{R})$ or its universal covering space S^{n}.

Proof. From Proposition 4.4 (1), it is obvious that $\mathfrak{S}^{0}(M)$ acts transitively on M. Let (P, ω) be the normal projective connection over M. Let us fix a point $x \in M$ and take a point $u \in \pi^{-1}(x)$. Then from Proposition 4. 4 and Proposition 6.3, we see that $\iota_{u}^{*} \omega$ is a Lie algebra isomorphism of $\mathfrak{p}(M)$ onto \mathfrak{l}, where $\mathfrak{p}(M)$ is the Lie algebra of $\mathfrak{P}(M)$. In particular we have $\iota_{u}^{*} \omega\left(\mathfrak{p}_{x}(M)=\mathfrak{l}_{0}\right.$.

Now we compare $\mathfrak{P}^{0}(M)$ with L^{o}. Since L^{o} is connected and $Z\left(L^{o}\right)=$ $\{e\}$, the adjoint representation $\operatorname{Ad}_{L^{o}}$ of L^{o} is a isomorphism of L^{o} onto
the adjoint group $\operatorname{Int}(\mathfrak{l})$. On the other hand the adjoint representation $\operatorname{Ad}_{\mathfrak{p}^{0}(M)}$ of $\mathfrak{P}^{0}(M)$ is a homomorphism of $\mathfrak{B}^{0}(M)$ onto $\operatorname{Int}(\mathfrak{p}(M))$. Set $h=\iota_{u}^{*} \omega$. Then since h is a Lie algebra isomorphism of $\mathfrak{p}(M)$ onto \mathfrak{l}, h naturally induces a group isomorphism \tilde{h} of $\operatorname{Int}(\mathfrak{p}(M))$ onto Int (\mathfrak{l}). More precisely we set $(\tilde{h}(\tau))(X)=h \cdot \tau \cdot h^{-1}(X)$ for $\tau \in \operatorname{Int}(\mathfrak{p}(M)), X \in \mathfrak{l}$. Then we have $\tilde{h}_{*} \cdot \operatorname{ad}_{\mathfrak{p}(M)}=$ $\operatorname{ad}_{\mathfrak{v}} \cdot h$. We set $\phi=\left(\operatorname{Ad}_{L}\right)^{-1} \cdot \tilde{h} \cdot \operatorname{Ad}_{\mathfrak{P}^{0}(M)}$. Then ϕ is a covering homomorphism, of $\mathfrak{P}^{0}(M)$ onto L^{0} such that $\phi_{*}=h$.

In the following we divide the proof according as n is even or odd.
(1) The case n is even. From Lemma 5. 1, we identify $S L(n+1, \boldsymbol{R})$ with L through χ. Let ω_{L} be the Maurer-Cartan form on L. Then $\left(L, \omega_{L}\right)$ can be identified with the normal projective connection over $P^{n}(\boldsymbol{R})=L / L_{0}$. Moreover $\left(L, \omega_{L}\right)$ can be identified with a connected component of the normal projective connection over $S^{n}=L / B$, where B is the identity component of L_{0}.

Let $\left(\mathfrak{P}_{x}(M)\right)^{0}$ be the identity component of $\mathfrak{P}_{x}(M)$. Since $\phi_{*}=\iota_{u}^{*} \omega$ as a Lie algebra isomorphism, we have $\phi\left(\left(\mathfrak{F}_{x}(M)\right)^{0}\right)=B$, i. e. $\left(\mathfrak{F}_{x}(M)\right)^{0} \subset \phi^{-1}(B)$. On the other hand we have $\mathfrak{P}^{0}(M) / \phi^{-1}(B) \approx L / B \approx S^{n}$. Since S^{n} is simply connected, $\phi^{-1}(B)$ is connected. Hence we have $\left(\mathfrak{P}_{x}(M)\right)^{0}=\phi^{-1}(B)$. In particular Ker $\phi \subset \mathfrak{P}_{x}^{0}(M)=\mathfrak{P}^{0}(M) \cap \mathfrak{P}_{x}(M)$. Hence $\operatorname{Ker} \phi$ is a normal subgroup of $\mathfrak{P}^{0}(M)$ contained in $\mathfrak{P}_{x}^{0}(M)$. Since $\mathfrak{P}^{0}(M)$ acts effectively on $M=\mathfrak{P}^{0}(M) /$ $\mathfrak{P}_{x}^{0}(M)$, we conclude that $\operatorname{Ker} \phi$ is trivial, i. e. ϕ is an isomorphism of $\mathfrak{P}^{0}(M)$ onto L.

From Lemma 5. 1 (4), we know that $N_{L}(B)=L_{0}$. Hence Lie subgroups of L with Lie algebra $\mathfrak{I}_{0} \subset \mathfrak{l}$ are B and L_{0}. Then it follows that $\phi\left(\mathfrak{P}_{x}^{0}(M)\right)$ coincides with B or L_{0}.
(1.1) In case $\phi\left(\mathfrak{P}_{x}^{30}(M)\right)=B . \quad \phi$ is a bundle isomorphism, of $\mathfrak{P}^{0}(M)(M$, $\mathfrak{B}_{x}^{0}(M)$) onto $L\left(S^{n}, B\right)$. Moreover from Lemma 6. 1 and $\phi_{*}=\iota_{u}^{*} \omega$, we have $\rho_{u}=\left.\phi\right|_{\Re_{x}^{(}(M)}$. Therefore from Proposition 6.4, we conclude that M is projectively equivalent to S^{n}.
(1.2) In case $\phi\left(\mathfrak{F}_{x}^{0}(M)\right)=L_{0} . \quad \phi$ is a bundle isomorphism, of $\mathfrak{B}^{0}(M)(M$, $\mathfrak{P}_{x}^{0}(M)$) onto $L\left(P^{n}(\boldsymbol{R}), L_{0}\right)$. Moreover from Lemma 5. 3, Lemma 6.1 and $\phi_{*}=\iota_{u}^{*} \omega$, we have $\rho_{u}=\left.\phi\right|_{\mathfrak{F}_{x}^{0}(M)}$. Therefore from Proposition 6.4, M is projectively equivalent to $P^{n}(\boldsymbol{R})$.
(2) The case n is odd. Recall from Lemma 5.2 that χ is a covering homorphism of $S L(n+1, \boldsymbol{R})$ onto L^{o} with $\operatorname{Ker} \chi=\boldsymbol{Z}_{2}$ (the center of $S L(n+1$, $\boldsymbol{R})$). And χ induces an isomorphism of L_{Δ}^{+}onto B. Let $\omega_{L^{o}}$ and $\omega_{S L}$ be the Maurer-Cartan form on L^{o} and $S L(n+1, \boldsymbol{R})$. Then ($L^{o}, \omega_{L^{o}}$) (resp. ($S L$ $\left.\left.(n+1, \boldsymbol{R}), \omega_{S L}\right)\right)$ can be identified with a connected component of the normal projective connection over $P^{n}(\boldsymbol{R})=L^{o} / B$ (resp. $\left.S^{n}=S L(n+1, \boldsymbol{R}) / L_{\Delta}^{+}\right)$.

From $N_{L^{o}}(B)=B((4)$ of Lemma 5.2) and the connectedness of B, we
see that B is the only Lie subgroup of L^{o} with Lie algebra $\mathfrak{l}_{0}=\phi_{*}\left(\mathfrak{p}_{x}(M)\right)$. Hence we have $\phi\left(\mathfrak{F}_{x}^{0}(M)\right)=B$. Let ϕ^{\prime} be the restriction of ϕ to $\mathfrak{F}_{x}^{0}(M)$. Since $\operatorname{Ker} \phi^{\prime}=\operatorname{Ker} \phi \cap \mathfrak{P}_{x}^{0}(M)$ is a central subgroup of $\mathfrak{P}^{0}(M)$, the effectiveness of the action of $\mathfrak{P}^{0}(M)$ on M implies that $\operatorname{Ker} \phi^{\prime}$ is trivial, i. e. ϕ^{\prime} is an isomorphism of $\mathfrak{P}_{x}^{0}(M)$ onto B. Moreover from Lemma 5.3, Lemma 6. 1 and $\phi_{*}=\iota_{u}^{*} \omega$, we have $\rho_{u}=\phi^{\prime}$. Since $\mathfrak{P}_{x}^{0}(M)$ is the identity component of $\phi^{-1}(B), M=\mathfrak{P}^{0}(M) / \mathfrak{F}_{x}^{0}(M)$ is a covering space over $\mathfrak{P}^{0}(M) / \phi^{-1}(B) \approx L^{0} / B=$ $P^{n}(\boldsymbol{R})$. From $\pi_{1}\left(P^{n}(\boldsymbol{R})\right) \cong \boldsymbol{Z}_{2}(n \geqq 2)$, we see that $\phi^{-1}(B)$ has at most two connected components, i. e. $\operatorname{Ker} \phi=\{e\}$ or \boldsymbol{Z}_{2}.
(2.1) In case $\operatorname{Ker} \phi=\{e\} . \quad \phi$ induces a bundle isomorphism of $\mathfrak{P}^{0}(M)$ $\left(M, \mathfrak{P}_{x}^{0}(M)\right)$ onto $L^{o}\left(P^{n}(\boldsymbol{R}), B\right)$. Therefore M is projectively equivalent to $P^{n}(\boldsymbol{R})$.
(2.2) In case $\operatorname{Ker} \phi=\boldsymbol{Z}_{2} . \quad M=\mathfrak{B}^{0}(M) / \mathfrak{F}_{x}^{0}(M)$ is homeomorphic with S^{n}. Hence the natural inclusion c of $\mathfrak{P}_{x}^{0}(M)$ into $\mathfrak{P}^{0}(M)$ induces a homomorphism ι_{*} of $\pi_{1}\left(\mathfrak{P}_{x}^{0}(M), e\right)$ onto $\pi_{1}\left(\mathfrak{P}^{0}(M), e\right)$. Then we have

$$
\phi_{*}\left(\pi_{1}\left(\mathfrak{P}^{0}(M), e\right)\right)=\phi^{\prime} *\left(\pi_{1}\left(\mathfrak{P}_{x}^{0}(M), e\right)\right)=\pi_{1}(B, e)
$$

Similarly we have

$$
\chi_{*}\left(\pi_{1}\left(S L(n+1, \boldsymbol{R}), I_{n}\right)\right)=\pi_{1}(B, e) .
$$

Hence we get

$$
\phi_{*}\left(\pi_{1}\left(\mathfrak{P}^{0}(M), e\right)\right)=\chi_{*}\left(\pi_{1}\left(S L(n+1, \boldsymbol{R}), I_{n}\right)\right)
$$

From this there exists a unique isomorphism $\tilde{\phi}$ of $\mathfrak{P}^{0}(M)$ onto $S L(n+1, \boldsymbol{R})$ satisfying $\phi=\chi \cdot \tilde{\phi}$. Then $\tilde{\phi}$ induces a bundle isomorphism of $\mathfrak{B}^{0}(M)(M$, $\left.\mathfrak{S}_{x}^{0}(M)\right)$ onto $S L(n+1, \boldsymbol{R})\left(S^{n}, L_{\Delta}^{+}\right)$. Therefore M is projectively equivalent to S^{n}.
q. e. d.
6.3. In this paragraph we will determine projectively connected homogeneous manifolds M with $\operatorname{dim} \mathfrak{P}(M)=n^{2}+n$.

ThEOREM 6.6. Let M be a connected manifold of dimension $n(n \geqq 3)$ with a projective structure. Let $\mathfrak{P}(M)$ be the group of projective transformations of M. If $\operatorname{dim} \mathfrak{P}(M)<n^{2}+2 n$, then $\operatorname{dim} \mathfrak{P}(M) \leqq n^{2}+n$. Moreover if $\operatorname{dim} \mathfrak{P}(M)=n^{2}+n$ and $\mathfrak{P}(M)$ acts transitively on M, then M is projectively equivalent to the affine space \boldsymbol{R}^{n}, Q or \tilde{Q}, where $Q=P^{n}(\boldsymbol{R}) \backslash\{0\}$ and $\tilde{Q}=$ $S^{n} \backslash(\{e\} \cup\{-e\})$ (the universal covering space of Q).

Proof. First assertion is clear from Proposition 4.4. Let (P, ω) be the normal projective connection over M. Let us fix a point x of M. Then from Proposition 4.4 and Proposition 6.3, there exists $u \in \pi^{-1}(x)$ such that
$\iota_{u}^{*} \omega$ is a Lie algebra isomorphism of $\mathfrak{p}(M)$ onto \mathfrak{b}_{*} or \mathfrak{b}_{0}.
(1) The case $\iota_{u}^{*} \omega(\mathfrak{p}(M))=\mathfrak{b}_{*}$. From $Z\left(B_{*}\right)=\{e\}$ ((4) of Lemma 5.4), we get a covering homomorphism ϕ of $\mathfrak{S}^{0}(M)$ onto B_{*} satisfying $\phi_{*}=\iota_{u}^{*} \omega$, as in the proof of Theorem 6.5. From $N_{B_{*}}\left(C_{*}\right)=C_{*}$ ((5) of Lemma 5. 4) and the connectedness of C_{*}, we have $\phi\left(\mathfrak{F}_{x}^{0}(M)\right)=C_{*}$. On the other hand $\left.\mathfrak{B}^{0}(M)\right) / \phi^{-1}\left(C_{*}\right)$ is homeomorphic with $B_{*} / C_{*}=Q_{*} \approx \boldsymbol{R}^{n}$. Since \boldsymbol{R}^{n} is simply connected we see that $\phi^{-1}\left(C_{*}\right)$ is connected. Hence we have $\mathfrak{B}_{x}^{0}(M)=\phi^{-1}\left(C_{*}\right)$. In particular Ker $\phi \subset \mathfrak{B}_{x}^{0}(M)$. Then the effectiveness of the action of $\mathfrak{B}^{0}(M)$ on M implies that $\operatorname{Ker} \phi$ is trivial, i. e. ϕ is an isomorphism of $\mathfrak{B}^{0}(M)$ onto B_{*}. Therefore ϕ induces a bundle isomorphism of $\mathfrak{P}^{0}(M)\left(M, \mathfrak{P}_{x}^{0}(M)\right)$ onto $B_{*}\left(\boldsymbol{R}^{n}, C_{*}\right)$ such that $\phi_{*}=\iota_{u}^{*} \omega$. From Proposition 6.4, we conclude that M is projectively equivalent to the affine space \boldsymbol{R}^{n}.
(2) The case $\iota_{u}^{*} \omega(\mathfrak{p}(M))=\mathfrak{b}_{0}$. From $Z\left(B_{0}\right)=\{e\}$ ((5) of Lemma 5.5), we get a covering homomorphism ϕ of $\mathfrak{P}^{0}(M)$ onto B_{o} satisfying $\phi_{*}=\iota_{u}^{*} \omega$. Let $\left(\mathfrak{P}_{x}(M)\right)^{0}$ be the identity component of $\mathfrak{P}_{x}(M)$. Then we have $\left.\phi\left(\mathfrak{P}_{x}(M)\right)^{0}\right)$ $=C_{o}$. On the other hand $\mathfrak{B}^{0}(M) / \phi^{-1}\left(C_{o}\right)$ is homeomorphic with $B_{o} / C_{o} \approx \widetilde{Q}$ (Lemma 5. 5). Since \tilde{Q} is simply connected ($n \geqq 3$), we see that $\phi^{-1}\left(C_{0}\right)$ is connected. Hence we have $\phi^{-1}\left(C_{o}\right)=\left(\mathfrak{P}_{x}(M)\right)^{0}$. In particular Ker $\phi \subset \mathfrak{F}_{x}^{0}(M)$. From this we see that ϕ is an isomorphism of $\mathfrak{S}^{0}(M)$ onto B_{0}. From $N_{B_{o}}\left(C_{o}\right)=C\left((6)\right.$ of Lemma 5.5), we have $\phi\left(\mathfrak{P}_{x}^{0}(M)\right)=C_{o}$ or C.
(2.1) In case $\phi\left(\mathfrak{P}\left({ }_{x}^{0} M\right)\right)=C_{0} . \quad \phi$ is a bundle isomorphism of $\mathfrak{P}^{0}(M)$ $\left(M, \mathfrak{B}_{x}^{0}(M)\right)$ onto $B_{o}\left(\tilde{Q}, C_{o}\right)((1),(4)$ of Lemma 5. 5). Moreover from Lemma 6.1 and $\phi_{*}=\iota_{u}^{*} \omega$, we have $\rho_{u}=\left.\phi\right|_{\mathfrak{F}_{x}^{0}(M)}$. Therefore M is projectively equivalent to \widetilde{Q}.
(2.2) In case $\phi\left(\mathfrak{P}_{x}^{0}(M)\right)=C . \quad \phi$ is a bundle isomorphism of $\mathfrak{S}^{0}(M)(M$, $\mathfrak{P}_{x}^{0}(M)$) onto $B_{0}(Q, C)$. Moreover from Lemma 5. 5 (7), Lemma 6.1 and $\phi_{*}=\iota_{u}^{*} \omega$, we have $\rho_{u}=\left.\phi\right|_{\mathfrak{F}_{x}^{0}(M)}$. Therefore M is projectively equivalent to Q. q.e.d.

$\S 7$. Intransitive case

In this section we will determine n-dimensional projectively connected manifolds admitting groups of projective transformations of dimension $n^{2}+n$.
7.1. Let M be a connected manifold of dimension $n(n \geqq 3)$ and (P, ω) be the normal projective connection over M. We assume that M admits a group of projective transormations of dimension $n^{2}+n$. Then without loss of generality we may assume that there exists a connected Lie subgroup G of $\mathfrak{B}(M)$ of dimension $n^{2}+n$. Let \mathfrak{g} be the subalgebra of $\mathfrak{p}(M)$ corresponding to $G \subset \mathfrak{B}(M)$. Let us fix a point $x \in M$. From Proposition 4.4 and Proposition 6.3, we have
(1) M is projectively fiat,
(2) There exists a point $u \in \pi^{-1}(x)$ such that $\iota_{u}^{*} \omega$ is a Lie algebra isomorphism of \mathfrak{g} onto one of the following four subalgebras of \mathfrak{l};
(a) $\mathfrak{b}_{*}=V+\mathfrak{g l}(V)$,
(b) $\mathfrak{b}_{o}=V+\mathfrak{g l}(V, W)+W^{\perp}$,
(c) $\mathfrak{b}_{* *}=H+\mathfrak{g l}(V, H)+V^{*}$,
(d) $\mathfrak{l}_{0}=\mathfrak{g l}(V)+V^{*}$.

Hence the orbit of G passing through x is an open orbit (in case $\iota_{u}^{*} \omega(\mathfrak{g})=\mathfrak{b}_{*}$ or \mathfrak{b}_{o}), a hyperorbit (in case $\iota_{u}^{*} \omega(\mathfrak{g})=\mathfrak{b}_{* *}$) or a fixed point (in case $\iota_{u}^{*} \omega(\mathrm{~g})=\mathfrak{l}_{0}$). We say that an open orbit O is of type (a) (resp. of type (b)), if $\iota_{u}^{*} \omega(\mathrm{~g})=\mathfrak{b}_{*}\left(\right.$ resp. $\left.=\mathfrak{b}_{0}\right)$ for $x \in O$.

As for open orbits we have
Lemma 7.1. (1) The open orbit of G of type (a) is projectively equivalent to the affine space \boldsymbol{R}^{n}.
(2) The open orbit of G of type (b) is projectively equivalent to Q or \tilde{Q}.

Proof. It is easily seen that G acts effectively and transitively on the open orbit O. Hence O is a projectively connected homogeneous manifold with $\operatorname{dim} \mathfrak{P}(O) \geqq n^{2}+n$. On the other hand from Lemma 5.4, Lemma 5.5 and Proposition 5.7 it is easily seen that a connected Lie subgroup of L (resp. $S L(n+1, \boldsymbol{R})$) of dimension $n^{2}+n$ never acts transitively on $P^{n}(\boldsymbol{R})$ (resp. on S^{n}). Hence we get $\operatorname{dim} \mathfrak{P}(O)=n^{2}+n$. Then the lemma follows from Theorem 6.6.
q. e. d.
7. 2. Now we will recall the notion of the (projective) normal coordinates of M. Let $L(M)$ be the linear frame bundle over M. Let \bar{l} be the bundle homomorphism of P onto $L(M)$ corresponding to the linear isotropy representation l of L_{0} onto $G L(n, \boldsymbol{R})$ (cf. $\S 5$ of Chapter IV [2]). l can be identified with the homomorphism of L_{0} onto $G L\left(\mathfrak{g}_{-1}\right)$ defined by the following commutative diagram;
where p is the projection corresponding to $\mathfrak{l}=\mathfrak{g}_{-1}+\mathfrak{l}_{0}$. We set $G_{0}=\{a \in$ $L_{0} \mid \operatorname{Ad}(a)$ preserves the gradation of $\left.\mathfrak{l}\right\}$. Then l induces an isomorphism of G_{0} onto $G L\left(\mathfrak{g}_{-1}\right)$.

Let us fix a point u of P. Let U be a sufficiently small neighbourhood
of $T_{x}(M)$ around 0 , where $x=\pi(u)$. For a vector $X \in U$, we consider the horizontal vector field $B(\xi)$ such that $X=\bar{l}(u) \xi$. Let $\phi_{i}^{\hat{\varepsilon}}$ be the (local) 1 parameter subgroup generated by $B(\xi)$. Then the exponential map $\exp _{u}$ of U into M is defined by

$$
\exp _{u} X=\pi\left(\phi_{\mathrm{i}}^{\hat{1}}(u)\right) .
$$

It is clear that $\exp _{u}$ is a local diffeomorphism around $0 \in T_{x}(M)$. $\left(U, \exp _{u}\right)$ is called the normal ocordinate relative to u (cf. §5 [1] or § 7 [3]).

Lemma 7.2. Notations being as above, we have
(1) $\sigma \cdot \exp _{u}=\exp _{\sigma \text { }}^{(z u)} \cdot \sigma_{*} \quad$ for $\sigma \in \mathfrak{P}(M)$,
(2) $\exp _{u}=\exp _{u a} \quad$ for $a \in G_{0}$,
(3) $\sigma \cdot \exp _{u}=\exp _{u} \cdot \sigma_{*} \quad$ for $\sigma \in \rho_{u}^{-1}\left(G_{0}\right) \subset \mathfrak{B}_{x}(M)$.

Proof. (1) $\sigma \cdot \exp _{u} X=\sigma \cdot \pi \cdot \phi_{1}^{\hat{\xi}}(u)=\pi \cdot \tilde{\sigma} \cdot \phi_{i}^{\hat{\xi}}(u)$. Hence from $\tilde{\sigma}_{*}(B(\xi))=$ $B(\xi)$, we have $\left.\sigma \cdot \exp _{u} X=\pi \cdot \phi_{\hat{1}}^{\hat{(}} \tilde{\sigma}(u)\right)$. On the other hand $\sigma_{*}(X)=\sigma_{*} \cdot \bar{l}(u) \xi=$ $\bar{l}(\tilde{\boldsymbol{\sigma}}(u)) \xi$. Therefore we get $\sigma \cdot \exp _{u} X=\exp _{\tilde{\sigma}(u)} \sigma_{*} X$.
(2) $\quad \omega\left(R_{a_{*}} B(\xi)\right)=R_{a}^{*} \omega(B(\xi))=\operatorname{Ad}\left(a^{-1}\right) \omega(B(\xi))=\operatorname{Ad}\left(a^{-1}\right) \xi$. Since $a \in G_{0}$ we get $\operatorname{Ad}\left(a^{-1}\right) \xi \in \mathfrak{g}_{-1}$. Hence we have $R_{a_{*}} B(\xi)=B\left(a^{-1} \xi\right)$, i. e. $R_{a} \cdot \rho_{i}^{\hat{\xi}} \cdot R_{a^{-1}}=$ $\phi_{t}^{a^{-1} \xi}$. From $X=\bar{l}(u) \xi=\bar{l}(u a) a^{-1} \xi$, we have $\exp _{u a} X=\pi \cdot \phi_{1}^{a^{-1} \xi}(u a)=\pi \cdot R_{a}$. $\phi_{\mathrm{i}}^{\hat{\mathrm{E}}}(u)=\pi \cdot \phi_{1}^{\hat{1}}(u)=\exp _{u} \mathrm{X}$.
(3) follows from (1) and (2).
q. e. d.

Now we will consider the orbital decomposition of M by G. The following Lemmas $7.3,7.4$ and 7.5 are due to S. Ishihara [1].

Lemma 7.3. (cf. Remark 2 [1]). If M has a fixed point x of G, then there exists a neighbourhood W of z such that $W \backslash\{x\}$ belongs to an open orbit of G of type (b). In particular x is an isolated fixed point of G.

Proof. We consider a normal coordinate $\left(U, \exp _{u}\right)$ around $x=\pi(u)$. We set $W=\exp _{u}(U)$. First we have $\rho_{u}(G)=B$. Hence setting $\tilde{G}=G \cap \rho_{u}^{-1}\left(G_{0}\right)$, we see that $\rho_{u}(\tilde{G})$ coincides with the identity component of G_{0}, which is identified with $G L^{+}\left(\mathfrak{g}_{-1}\right)$ through l. From (3) of Lemma 7. 2, it is seen that the action of \tilde{G} on M is realized on U as the linear isotropy action of \tilde{G}. Moreover from $\sigma_{*}(X)=\bar{l}(\tilde{\sigma}(u))(\xi)=\bar{l}(u)\left(l \cdot \rho_{u}(\sigma)(\xi)\right)$, we see that the linear isotropy action of \tilde{G} on $T_{x}(M)$ is identified, through the frame $\bar{l}(u)$, with the action of $G L^{+}\left(\mathfrak{g}_{-1}\right)$ on \mathfrak{g}_{-1}. Hence in order to see the action of \tilde{G} around x, we have only to see the action of $G L^{+}\left(g_{-1}\right)$ on U through $\bar{l}(u)$. Then it is easily seen that $W \backslash\{x\}$ belongs to an open orbit of \tilde{G}, hence of G.

Now we consider the isotropy subgroup G_{y} of G at $y \in W \backslash\{x\}$. Since $\tau \in G_{y}$ fixes the points x and y, τ carries a geodesic C joining x and y into
C. Hence τ_{*} leaves invariant the 1 -dimensional subspace $\langle\dot{C}(y)\rangle$. On the other hand if G / G_{y} is an open orbit of type (a), the linear isotropy representation at y is irreducible, which is easily seen from $\mathfrak{b}_{*}=V+\mathfrak{g l}(V)$. Therefore G / G_{y} is an open orbit of type (b).
q. e. d.

Lemma 7. 4. (cf. Remark 1 [1]). If M has a hyperorbit S of G, then for each point x of S there exists a neighbourhood W of z such that $W \backslash S$ belongs to one or two open orbits of G of type (a).

Proof. Let us fix $x \in S$. From Proposition 4.4, there exists $u \in \pi^{-1}(x)$ such that $c_{u}^{*} \omega$ is a Lie algebra isomorphism of g onto $\mathfrak{b}_{* *}$. We consider a normal coordinate $\left(U, \exp _{u}\right)$ around x. We set $W=\exp _{u}(U)$. Let G_{x} be the isotropy subgroup of G at x. We denote by \tilde{G}_{x} the identity component of $G_{x} \cap \rho_{u}^{-1}\left(G_{0}\right)$. Then from $\iota_{u}^{*} \omega(\mathfrak{g})=\mathfrak{b}_{* *}=H+\mathfrak{g l}(V, H)+V^{*}$, we get $l \cdot \rho_{u}\left(\widetilde{G}_{x}\right)$ $=\left\{a \in G L^{+}(V) \mid a(H)=H\right\}$. Obviously we have $\bar{l}(u)(H)=T_{x}(S) \subset T_{x}(M)$. The orbital decomposition of V by $l \cdot \rho_{u}\left(\tilde{G}_{u}\right)$ consists of the hyperplane H and two open orbits divided by H. Hence as in the proof of Lemma 7. 3, we conclude that $W \backslash S$ belongs to one or two open orbits of G.

Recall that H is spanned by the vectors e_{2}, \cdots, e_{n} of V. Take a point $y=\exp _{u} \bar{l}(u)\left(\varepsilon e_{1}\right) \in W$. We consider the subgroup $K_{y}=\left\{\sigma \in \widetilde{G}_{x} \mid \sigma(y)=y\right\}$ of \tilde{G}_{x}. Note that $l \cdot \rho_{u}\left(K_{y}\right)$ fixes each point on the line $\left\langle e_{1}\right\rangle$ and carries each hyperplane parallel to H into itself. Now assume that y belongs to an open orbit of type (b). Then there exists a 1-dimensional subspace of $T_{y}(M)$ which is invariant by G_{y}. Since $K_{y} \subset G_{y}$, this subspace must coincide with $\left\langle\bar{l}(u)\left(e_{1}\right)\right\rangle$. We consider a geodesic C joining y and x defined by $C(t)=$ $\exp _{u} \bar{l}(u)\left((1-t) \varepsilon e_{1}\right)$. Let G_{y}^{0} be the identity component of G_{y}. Then $\sigma \in G_{y}^{0}$ preserves the direction $\dot{C}(0)$. Hence we have $\sigma(C(t))=C(t)$. In particular $\sigma(x)=x$, i. e. $G_{y}^{0} \subset G_{x}$. On the other hand we have $K_{y}=\widetilde{G}_{x} \cap G_{y}$. Moreover, under the isomorphism $\tau_{\tilde{u}}^{*} \omega$ of \mathfrak{g} onto $\mathfrak{b}_{* *}, \mathfrak{g l}(V, H)+V^{*}$ (resp. $\left.\mathfrak{g l}(V, H)\right)$ corresponds to G_{x} (resp. \tilde{G}_{x}). Let \mathfrak{g}^{\prime} be the subalgebra of $\mathfrak{b}_{* *}$ corresponding to $G_{y}^{0} \subset G_{x}$. Then we have $\mathfrak{g}^{\prime} \subset \mathfrak{g l}(V, H)+V^{*}$ and $\operatorname{dim} \mathfrak{g l}(V, H) \cap \mathfrak{g}^{\prime}=\operatorname{dim}$ $K_{y}=(n-1)^{2}$. Let p_{1} be the projection of $\mathfrak{g l}(V, H)+V^{*}$ onto V^{*}. Since $\operatorname{Ker} p_{1}=\mathfrak{g l}(V, H)$, we have

$$
\begin{aligned}
\operatorname{dim} p_{1}\left(g^{\prime}\right) & =\operatorname{dim} g^{\prime}-\operatorname{dim} \operatorname{Ker} p_{1} \cap g^{\prime} \\
& =n^{2}-(n-1)^{2}=2 n-1>n=\operatorname{dim} V^{*} .
\end{aligned}
$$

This contradiction shows that y belongs to an open orbit of type (a).
q. e. d.

Summarizing the above discussion we obtain
Lemma 7.5. (cf. Remark 4 [1]). (1) If M has a fixed point of G,
then the orbital decomposition of M by G consists of isolated fixed points and a unique open orbit of type (b).
(2) If M has a hyperorbit of G, then the orbital decomposition of M by G consists of hyperorbits and open orbits of type (a).
7.3. In this paragraph we will prove the main theorem of this paper. First we have

Proposition 7.6. Let M be a connected manifold of dimension n $(n \geqq 3)$ with a projectiove structure. Let G be a (connected) Lie subgroup of $\mathfrak{\beta}(M)$ with $\operatorname{dim} G=n^{2}+n$. If M has a fixed point of G, then M is projectively equivalent to $P^{n}(\boldsymbol{R}), S^{n}$ or $S^{n} \backslash\{e\}$.

Proof. From Lemma 7.5, M has a unique open orbit O of type (b). This open orbit is projectively equivalent to Q or \widetilde{Q} according to Lemma 7.1. Then as in the proof of Theorem 3.4 [6] II, this equivalence induces a projective imbedding of M into $P^{n}(\boldsymbol{R})$ or S^{n} according as $O=Q$ or \tilde{Q}, which is compatible with the action of G and B_{0}. Since M has a fixed point of G, we conclude that M is projectively equivalent to $P^{n}(\boldsymbol{R}), S^{n}$ or $S^{n} \backslash\{$ one point $\}$.
q. e.d.

Proposition 7.7. Let M be a connected manifold of dimension n $(n \geqq 3)$ with a projective structure. Let G be a connected Lie subgroup of $\mathfrak{B}(M)$ with $\operatorname{dim} G=n^{2}+n$. If M has a hyperorbit of G, then M is projectively equivalent to $P^{n}(\boldsymbol{R})$ or S^{n}.

Proof. From Lemma 7.1, 7.4 and 7.5, there exists an open orbit O_{1} of G, which is projectively equivalent to the affine space \boldsymbol{R}^{n}.

Now the proof is divided into several lemmas.
Lemma 7.8. Each hyperorbit H of G in M is diffeomorphic with $P^{n-1}(\boldsymbol{R})$ or S^{n-1}. In particular each hyperorbit is compact.

Proof. Let ∇ be a torsion free affine connection of M which induces the given projective structure on M. Then from the consideration of normal coordinates around H it is easily seen that H is a totally geodesic submanifold of M. Since ∇ is torsion free, H is an autoparallel submanifold of M (cf. Theorem 8.4 of Chapter VII [4]). Hence V induces a torsion free affine connection ∇^{H} on H, which finally induces a projective structure on H. Moreover G acts on H as a group of projective transformations with respect to this projective structure on H. It is easily seen that the effective kernel of G is of dimension $n+1$, which is the radical of G. Hence H is a connected ($n-1$)-dimensional projectively connected manifold with $\operatorname{dim} \mathfrak{P}(H)=$ $n^{2}-1=(n-1)^{2}+2(n-1)$. Therefore from Theorem 6.5, H is projectively equivalent to $P^{n-1}(\boldsymbol{R})$ or S^{n-1}.
q. e. d.

From Lemma 7.4 it is obvious that $\bar{O}_{1} \backslash O_{1}$ consists of hyperorbits of G. Take a hyperorbit H which is a member of $\bar{O}_{1} \backslash O_{1}$. Then since H is connected we see that the following two cases can occur;
(1) $N=O_{1} \cup H$ is an open submanifold of M,
(2) $N=O_{1} \cup H$ is a manifold with a boundary H.

We will study the above two cases separately.
Case (1). First we have
Lemma 7.9. $\quad M=O_{1} \cup H$.
Proof. we have only to show that N is compact. Let $D(H)$ be the normal disk bundle of H in N and $\check{D}(H)$ be the interior of $D(H)$. Then if we identify $O_{1}=N \backslash H$ with $\boldsymbol{R}^{n}, N \backslash D(H)$ is identified with a bounded closed subset of \boldsymbol{R}^{n}. Hence $N \backslash \check{D}(H)$ is compact. On the other hand since H is compact, $D(H)$ is compact. Therefore N is compact. q.e.d.

Let $\hat{p}(M)$ be the Lie algebra of all infinitesimal projective transformations of M. Since O_{1} is projectively equivalent to \boldsymbol{R}^{n}, we have $\operatorname{dim} \hat{p}\left(O_{1}\right)=n^{2}+2 n$. Moreover since M is flat, for each point x of H, there exists an open neighbourhood U_{x} of x such that $\operatorname{dim} \hat{p}\left(U_{x}\right)=n^{2}+2 n$. On the other hand two (local) infinitesimal projective transformations coincide in the whole intersection of their domains if they coincide in an open subset. Hence from $\operatorname{dim} \hat{p}\left(O_{1}\right)=\operatorname{dim} \hat{p}\left(U_{x}\right)=n^{2}+2 n$ for $x \in H$, we get $\operatorname{dim} \hat{p}(M)=n^{2}+2 n$. In other words each element of $\hat{p}\left(O_{1}\right)$ can be continued wholly on M. Since M is compact, we conclude that $\operatorname{dim} \mathfrak{P}(M)=n^{2}+2 n$.

From Proposition 5.7, we see easily that a $\left(n^{2}+n\right)$-dimensional connected Lie subgroup of L (resp. $S L(n+1, \boldsymbol{R})$) is conjugate to B_{*} or B_{o} $\left(\right.$ resp. \tilde{B}_{o} or $\left.\tilde{B}_{*}=\left\{\left(\begin{array}{cc}A & \xi \\ 0 & a\end{array}\right) \in S L(n+1, \boldsymbol{R})\right\}^{+}\right)$. Then since M has a unique open orbit, M is projectively equivalent to $P^{n}(\boldsymbol{R})$.

Case (2). First we have
Lemma 7.10. (1) N is compact.
(2) There exists another open orbit O_{2} of G such that $M=O_{1} \cup H \cup O_{2}$.

Proof. (1) By considering a collar neighbourhood of $\partial N=H$ in N, we easily see that N is compact as in Lemma 7.9.
(2) Considering a normal coordinate around $x \in H$, we see that there exists another open orbit O_{2} of G such that $H \subset \bar{O}_{2}$. Then $O_{2} \cup H$ is a manifold with boundary, since otherwise we have $M=O_{2} \cup H . \quad O_{1} \cup H \cup O_{2}$ is an open submanifold of M which is compact. Hence we get $M=O_{1} \cup$ $H \cup O_{2}$.

Similarly as in Case (1), we have $\operatorname{dim} \mathfrak{P}(M)=n^{2}+2 n$. Since M has two open orbits we see that M is projectively equivalent to S^{n}. q. e.d.

Summarizing the above propositions and Theorem 6.6, we obtain the main theorem of this paper.

Theorem 7. 11. Let M be a connected manifold of dimension $n(n \geqq 3)$ with a projective structure. If M admits a group of projective transformations of dimension $n^{2}+n$, then M is projectively equivalent to one of the following spaces;
(1) $P^{n}(\boldsymbol{R})$; the real projective space,
(2) S^{n}; the universal covering space of (1),
(3) $S^{n} \backslash\{$ one point $\}$,
(4) R^{n}; the affine space,
(5) $Q=P^{n}(\boldsymbol{R}) \backslash\{$ one point $\}$,
(6) \widetilde{Q}; the universal covering space of (5).

§ 8. Remarks on the conformal case

In this section we will obseve that we can determine Riemannian manifolds of dimension n admitting groups of conformal transformations of the second largest dimension $\frac{1}{2} n(n+1)+1$ by the same method as above. In particular we note that this case has a close resemblance to the case of strongly pseudo-convex hypersurfaces (cf. [6]).

Let $\quad S^{n}=\left\{\left(x_{0}, \cdots, x_{n+1}\right) \in P^{n+1}(\boldsymbol{R}) \mid 2 x_{0} \cdot x_{n+1}=x_{1}^{2}+\cdots+x_{n}^{2}\right\}$
be the Möbius space of dimension n, where $\left(x_{0}, \cdots, x_{n+1}\right)$ is the homogenous coordinate of $P^{n+1}(\boldsymbol{R})$. Then $S^{n}=L / L_{0}$, where

$$
\begin{aligned}
& L=O(n+1,1) \\
& L_{0} ; \text { the isotropy subgroup of } L \text { at } o=(0, \cdots, 0,1) \in S^{n} .
\end{aligned}
$$

The Lie algebra \mathfrak{l} of L has a gradation given by

$$
\left.\begin{array}{l}
\mathfrak{l}=\left\{X \in \mathfrak{g l}(n+2, \boldsymbol{R}) \left\lvert\, X=\left(\begin{array}{r}
-a \\
a^{t} v
\end{array}\right.\right.\right. \\
\xi \\
A
\end{array}\right)
$$

Moreover the graded Lie algebra \mathfrak{l} can be described as follows. Let $V\left(\cong \boldsymbol{R}^{n}\right)$ be the n-dimensional euclidean vector space and V^{*} be the dual space of V. We denote by ξ_{*} the image of $\xi \in V$ under the isomorphism of V onto V^{*} induced from the innerproduct of V, i. e. $\left\langle\xi^{*}, v\right\rangle=(\xi, v)$ for $v \in V$, where $($,$) is the innersproduct of V$. Then

$$
\mathfrak{l}=V+\operatorname{co}(V)+V^{*},
$$

under the identification (p 134 [2]) ;

$$
\begin{aligned}
& \left(\begin{array}{ccc}
0 & t_{v} v & 0 \\
0 & 0 & v \\
0 & 0 & 0
\end{array}\right) \in \mathrm{g}_{-1} l \longrightarrow v \in V, \quad\left(\begin{array}{ccc}
0 & 0 & 0 \\
\xi & 0 & 0 \\
0 & t \xi & 0
\end{array}\right) \in \mathfrak{g}_{1} \longrightarrow \longrightarrow \xi_{*} \in V^{*}, \\
& \left(\begin{array}{rrr}
-a & 0 & 0 \\
0 & A & 0 \\
0 & 0 & a
\end{array}\right) \in \mathfrak{g}_{0} \longrightarrow \longrightarrow A-a I_{n} \in \operatorname{co}(V) .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
& {\left[v, v^{\prime}\right]=0,\left[\xi_{*}, \xi^{\prime} *\right]=0,[U, v]=U v,\left[\xi_{*}, U\right]=\left({ }^{t} U \xi\right)_{*},} \\
& {\left[U, U^{\prime}\right]=U U^{\prime}-U^{\prime} U,\left[v, \xi_{*}\right]=v \xi_{*}-{ }^{t}\left(v \xi_{*}\right)+(v, \xi) I_{n},}
\end{aligned}
$$

where $v, v^{\prime}, \xi, \xi^{\prime} \in V$ and $U, U^{\prime} \in \operatorname{co}(V)$. Hence we have

$$
\begin{equation*}
\left[\mathrm{g}_{-1}, \mathrm{~g}_{1}\right]=\mathrm{g}_{0}, \tag{8.1}
\end{equation*}
$$

$$
\begin{equation*}
\left[\left[v, \xi_{*}\right], \xi^{\prime} *\right]=\left(\xi, \xi^{\prime}\right) v_{*}-\left(v, \xi^{\prime}\right) \xi_{*}-(v, \xi) \xi^{\prime}, \tag{8.2}
\end{equation*}
$$

$$
\begin{equation*}
\left[v,\left[v^{\prime}, \xi_{*}\right]\right]=(v, \xi) v^{\prime}-\left(v, v^{\prime}\right) \xi+\left(v^{\prime}, \xi\right) v . \tag{8.3}
\end{equation*}
$$

Let \notin be a graded subalgebra of \mathfrak{l}. Then we get easily
Lemma 8.1. Assume that $\mathfrak{f}_{-1} \neq\{0\}$ and $\mathfrak{f}_{1} \neq\{0\}$, then we have
(1) $\left(\mathfrak{f}_{-1}\right) *=\mathfrak{f}_{1}$. In particular if $\mathfrak{f}_{-1}=\mathfrak{g}_{-1}$ or $\mathfrak{f}_{1}=\mathfrak{g}_{1}$, then $\mathfrak{f}=\mathfrak{l}$.
(2) \quad Set $\operatorname{co}\left(V, \mathfrak{f}_{-1}\right)=\left\{U \in \operatorname{co}(V) \mid U\left(\mathfrak{f}_{-1}\right) \subset \mathfrak{f}_{-1}\right\}$, then $\tilde{k}=\mathfrak{f}_{-1}+\operatorname{co}\left(V, \mathfrak{f}_{-1}\right)+\mathfrak{f}_{1}$ is a graded subalgebra of \mathfrak{l} containing \mathfrak{f} such that $\operatorname{dim} \tilde{\mathfrak{f}}=\operatorname{dim} \mathfrak{l}-(n-s)(s+2)$, where $s=\operatorname{dim} \mathfrak{f}_{-1}$.

From this lemma we get
Proposition 8.2. Let \mathfrak{f} be a proper graded subalgebra of $\mathfrak{1}$. Then $\operatorname{dim} \mathfrak{f} \leqq \frac{1}{2} n(n+1)+1(=\operatorname{dim} \mathfrak{l}-n)$. The equality holds if and only if $\mathfrak{f}=\mathfrak{l}_{0}$ or $\mathfrak{b}=\mathrm{g}_{-1}+\mathrm{g}_{0}$.

Let B be the analytic subgroup of L corresponding to $\mathfrak{b} \subset \mathfrak{l}$. Then we have

Proposition 8.3. (1) B is the identity component of the isotropy subgroup of L at $o^{\prime}=(1,0, \cdots, 0) \in S^{n}$.
(2) The orbital decomposition of S^{n} by B consists of a unique open orbit Q and a fixed point o^{\prime}. Q is conformally equivalent io the equclidean space \boldsymbol{R}^{n}.
(3) There exists $\sigma \in B$ such that o is the only fixed point of σ in Q.

Now using the above propositions in the proofs of Proposition 7.1 [6] I and Theorem 3.4 [6] II and form the unique existence theorem of the normal conformal connection (Theorem 4.2 [2]), we obtain

Theorem 8.4. Let M be a connected manifold of dimension $n(n \geqq 3)$ with a conformal structure. If M admits a group of conformal transformations of the second largest dimension $\frac{1}{2} n(n+1)+1$, then M is conformally equivalent to the Möbius space S^{n} or the euclidean space \boldsymbol{R}^{n}.

The above theorem is first obtained by T. Nagano [5] by a different method.

References

[1] S. ISHIHARA: Groups of projective transformations on a projectively connected manifold, Japan. J. Math. 25 (1955), 37-80.
[2] S. Kobayashi: Transformation Groups in Differential Geometry, Springer, Berlin-Heidelberg-New York, 1972.
[3] S. Kobayashi and T. Nagano: On projective connections, J. Math. Mech. 13 (1964), 215-236.
[4] S. Kobayashi and K. Nomizu : Foundations of Differential Geometry, John Wiley \& Sons, New York, vol. 1, 1963, vol. 2, 1969.
[5] T. NaGANO: On conformal transformations in Riemannian spaces, J. Math. Soc. Japan 10 (1958), 79-93.
[6] K. Yamaguchi : Non-degenerate real hypersurfaces in complex manifolds admitting large groups of peudo-conformal transformations, I. Nagoya Math. J. 62 (1976), 55-96 ; II. 69 (1978), 9-31.

Department of Mathematics
Hokkaido University

