# Extension of involutions on spheres 

By Yoshinobu Kamishima<br>(Received May 12, 1978)

## Introduction

Let $Z_{2 q}$ be a cyclic group of order $2 q$ generated by $T^{\prime \prime}$. Suppose that a free involution $T$ is given on the sphere $S^{n}$. If there exists a free $Z_{2 q^{-}}$ action on $S^{n}$ such that the restriction of the $Z_{2 q}$-action to the $Z_{2}$-action coincides with $T$ on $S^{n}$, i. e., $T^{\prime} \mid Z_{2}=T^{\prime q}=T$, then we call that the involution $T$ on $S^{n}$ extends to a free $Z_{2 q}$-action. In this paper, we show that:

Theorem. Let $q$ be any integer and $n \geqq 1$. Then, every picewise linear (resp. topological) free involution on $S^{2 n+1}$ extends to a picerwise linear (resp. topological) free $Z_{2 q}$-action on $S^{2 n+1}$.

The theorem follows from a similar method to the proof of the following proposition.

Proposition 3.1. Let $T$ be a free involution on a homotopy sphere $\sum^{2 n+1}$ such that the normal invariant $\eta\left(\Sigma^{2 n+1} / T\right) \in \operatorname{Im}\left\{p^{*}:\left[L^{2 n+1}(2 q), G / H\right]\right.$ $\left.\rightarrow\left[p^{2 n+1}, G / H\right]\right\}$ and $\left(q,\left|\Theta_{2 n+1}(\partial \pi)\right|\right)=1$, where $p: p^{2 n+1} \rightarrow L^{2 n+1}(2 q)$ is the projection and $H=O, P L$ or TOP and $n \geqq 2$. Then, $T$ extends to a free $Z_{2 q^{-}}$ action on $\sum^{2 n+1}$.
$\S 1$ and $\S 2$ will be devoted to the preliminaries of the above proposition. In §3, we shall prove it and the above theorem.

The author would like to thank Professor Y. Kitada and Professor H. Suzuki for many valuable suggestions.

## 1. Definition of transfer

Let $X^{2 n-1}$ be a $(2 n-1)$-dimensional closed oriented manifold with fundamental group $\pi$. Denote by $\mathscr{\mathscr { S }}_{H}^{f}(X)$ the set of $\varepsilon$-homotopy structures on $X$, where $H=O$ or $P L$ and $\varepsilon=h$ or $s$. An $\varepsilon$-homotopy equivalence $f: M \rightarrow$ $X$ determines a normal map


$$
\begin{aligned}
\tau\left(\theta\left(F_{y} H\right)\right) & =\theta\left(\left(F_{y}\right)_{1} H_{1}\right)=\theta\left(\left(F_{y}\right)_{1}\right) \\
& =\tau\left(\theta\left(F_{y}\right)\right)
\end{aligned}
$$

we have

$$
\tau(x+y)=\tau(x)+\tau(y)
$$

REMARK 1.2. The inclusion $i: \pi_{1} \subset \pi$ induces a homomorphism $i_{*}$ : $L_{2 n}^{f}\left(\pi_{1}\right) \rightarrow L_{2 n}^{f}(\pi)$. Then we have the following as a property of the transfer (See [2, p. 54]).

Proposition 1.3. Let $C(\pi)$ be the center of $\pi$. If $\pi_{1} \subset C(\pi)$, then

$$
\tau i^{*}(x)=\left[\pi ; \pi_{1}\right] x: \quad L_{2 n}^{e}\left(\pi_{1}\right) \xrightarrow{i_{*}} L_{2 n}^{e}(\pi) \xrightarrow{\tau} L_{2 n}^{e}\left(\pi_{1}\right),
$$

where $\left[\pi ; \pi_{1}\right]$ is the index of $\pi_{1}$ in $\pi$.
The trivial map $p: \pi \rightarrow 1$ induces the homorphism $p_{*}: L_{*}^{e}(\pi) \rightarrow L_{*}(1)$ which is onto, and so we have

$$
L_{*}^{\dot{*}}(\pi)=L_{*}^{c} \widetilde{(\pi)} \oplus L_{*}(1)
$$

where $L_{*}^{*} \widetilde{(\pi)}=\operatorname{Ker}\left[p_{*}: L_{*}^{*}(\pi) \rightarrow L_{*}(1)\right]$ is the reduced Wall group.
Our goal in this section is the following lemma.
Lemma 1.4. $\tau: L_{0}^{\dot{f}}\left(Z_{2 q}\right) \rightarrow L_{0}\left(Z_{2}\right)$ is onto modulo $L_{0}(1)$. Here $L_{0}(1) \subset$ $L_{0}\left(Z_{2}\right)$.

Proof. $\quad L_{0}\left(Z_{2}\right)$ is isomorphic to $8 Z \oplus 8 Z$. The correspondence is given by

$$
x=\theta(F, W) \longmapsto(I(W), I(\widetilde{W}))
$$

where $F: W \rightarrow P^{4 k-1} \times I$ is a normal map, $P^{4 k-1}$ the standard projective ( $4 k-$ $1)$-space, and $I(W)($ resp. $I(\widetilde{W}))$ is the index of $W$ (resp. $\widetilde{W}), \widetilde{W}$ the universal cover of $W$.

Let $T$ be a generator of $Z_{2}$. The multi-signature invariant $\rho(\mathrm{T}, \mathrm{x})$ for $x \in L_{0}\left(Z_{2}\right)$ is given by

$$
\begin{equation*}
\rho(T, x)=\operatorname{Sign}(T, \widetilde{W})=2 I(W)-I(\widetilde{W}) \tag{1}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\rho(T,-): L_{0}\left(\widetilde{Z_{2}}\right) \longrightarrow 8 Z \tag{2}
\end{equation*}
$$

is an isomorphism, and $\operatorname{Ker} \rho=L_{0}(1)$ which is isomorphic to $\{(m, 2 m)\}_{m \in Z} \subset$ $L_{0}\left(Z_{2}\right)$. For the Atiyah-Singer invariants $\sigma\left(T, \partial_{ \pm} \widetilde{W}\right)$ of $\partial_{ \pm} \widetilde{W}$, we have

$$
\begin{equation*}
\rho(T, x)=\sigma\left(T, \partial_{-} \widetilde{W}\right)-\sigma\left(T, \partial_{+} \widetilde{W}\right) \tag{3}
\end{equation*}
$$

by taking $\xi=g^{*} \nu_{M}$, where $\nu_{M}$ is the normal bundle of $M$ and $g$ is an $\varepsilon$-homotopy inverse of $f$. Take $x \in L_{2 n}^{\delta}(\pi)$. By the realization theorem of Wall [9], there is a $\operatorname{triad}\left(W, \partial_{+} W, \partial_{-} W\right)$ and a map $F$ of this to the triad $(X \times I, X \times 0, X \times 1)$ satisfying that
(1) There is a bundle map $B$ covering $F$ of the normal bundle of $W$ which extends the bundle map $b$.
(2) $\quad\left(\partial_{-} W, F \mid \partial_{-} W\right)=(M, f)$.
(3) $F \mid \partial_{+} W$ is an $\varepsilon$-homotopy equivalence.
(4) $\theta(F, W)=x \in L_{2 n}^{\varepsilon}(\pi)$.

Let $\pi_{1}$ be a subgroup of $\pi$ and let $\tilde{X}$ be the universal cover of $X$. Put $X_{1}=\tilde{X} / \pi_{1}$. For the projection $p: X_{1} \rightarrow X$, we consider the following pull-back diagram


The pair $\left(F_{1}, W_{1}\right)$ has the same properties corresponding with (1), (2) and (3). We set

$$
\tau(x)=\theta\left(F_{1}\right) \in L_{2 n}^{s}\left(\pi_{1}\right)
$$

It is easy to see that the definition of $\tau$ is independent of choices of the cobordisms which represent $x$. In particular, we may start from $(X, i d) \in$ $\mathscr{S}_{H}(X)$ in place of $(M, f)$.

Lemma 1.1. $\tau: L_{2 n}^{f}(\pi) \rightarrow L_{2 n}^{f}\left(\pi_{1}\right)$ is a well-defined homomorphism.
Proof. We can show that $\tau$ is a homomorphism similarly as the proof of the theorem [7, p. 50]. Let $x, y \in L_{2 n}^{*}(\pi)$, and let $F_{x}: W_{x} \rightarrow X \times I$ be the cobordism between id: $X \rightarrow X$ and $f_{x}: M_{x} \rightarrow X$ such that $\theta\left(F_{x}\right)=x$. We represent $y$ by the cobordism $F_{y}: W_{y} \rightarrow X \times I$ similarly. We consider cobordisms
(i) $F_{-x}: W_{-x} \rightarrow X \times I$ between $f_{x}$ and id such that $\theta\left(F_{-x}\right)=-x$.
(ii) $F_{y x}: W_{y x} \rightarrow M_{y} \times I$ between $i d: M_{y} \rightarrow M_{y}$ and $f_{y x}: M_{y x} \rightarrow M_{y}$ such that $\theta\left(F_{y x}\right)=x$.
Combining these with id: $W_{y} \rightarrow W_{y}$, we have a map

$$
H^{\prime}: W_{-x} \cup W_{y} \cup W_{y x} \longrightarrow W_{y}
$$

It follows that $\theta\left(H^{\prime}\right)=\theta\left(F_{-x}\right)+\theta(i d)+\theta\left(F_{y x}\right)=0$. We have an $\varepsilon$-homotopy equivalence $H: W_{y}^{\prime} \rightarrow W_{y}$. We take $F_{x} \cup F_{y} H: W_{x} \cup W_{y}^{\prime} \rightarrow X \times I$ as the normal map $F_{x+y}: W_{x+y} \rightarrow X \times I$ corresponding to $x+y$. Since

By [8], there exists a homotopy equivalence $f_{i}$ of a homotopy complex projective 3 -space $H C P^{3}$ into the complex projective 3 -space $C P^{3}$ which is transverse regular to $C P^{2}$ and such that the restricted normal map

$$
\bar{f}_{i}: N^{4}=f_{i}^{-1}\left(C P^{2}\right) \longrightarrow C P^{2} \quad \text { satisfies }
$$

$$
\begin{equation*}
\theta\left(\bar{f}_{i}\right)=8 i \quad \text { for any } \quad i \in Z \tag{4}
\end{equation*}
$$

Consider the $S^{1}$-fibration $p: L^{7}(2 q) \rightarrow C P^{3}$, where $L^{7}(2 q)$ being the 7 dimensional standard lens space. Pulling back this fibration by $f_{i}$, we have a homotopy lens space $L_{i}^{7}$ and an $\varepsilon$-homotopy equivalence

$$
\begin{equation*}
g_{i}: L_{i}^{7} \rightarrow L^{7}(2 q), \tag{5}
\end{equation*}
$$

which is transverse to $L^{5}(2 q), L_{i}^{5}=g_{i}^{-1}\left(L^{5}(2 q)\right)$, and $\bar{g}_{i}=g_{i} \mid L_{i}^{5}: L_{i}^{5} \rightarrow L^{5}(2 q)$ is the restricted normal map. Since the surgery obstruction $\theta\left(\bar{g}_{i}\right)=0$ in $L_{5}^{f}\left(Z_{2 q}\right), \bar{g}_{i}$ is normally cobordant to an $\varepsilon$-homotopy equivalence $g_{i}^{\prime}: L_{i}^{5 \prime} \rightarrow$ $L^{5}(2 q)$. By the normal cobordism extension property (See [7, p. 45]), we may extend the normal cobordism between $\bar{g}_{i}: L_{i}^{5} \rightarrow L^{5}(2 q)$ and $g_{i}^{\prime}: L_{i}^{5 \prime} \rightarrow$ $L^{5}(2 q)$ to a cobordism between $g_{i}: L_{i}^{7} \rightarrow L^{7}(2 q)$ and $h_{i}: L_{i}^{7 \prime} \rightarrow L^{7}(2 q)$ such that $h_{i}^{-1}\left(L^{5}(2 q)\right)=L_{i}^{5 \prime}$, and $h_{i} \mid L_{i}^{5 \prime}=g_{i}^{\prime}$. Let $N\left(L^{5}(2 q)\right)$ be a tubular neighbourhood of $L^{5}(2 q)$ in $L^{7}(2 q)$. Then the surgery obstruction of $h_{i}, \theta\left(h_{i}\right)$ is equal to the surgery obstruction of the restriction map

$$
h_{i}: L_{i}^{7 \prime}-\operatorname{int} N\left(L_{i}^{5 \prime}\right) \longrightarrow L^{7}(2 q)-\operatorname{int} N\left(L^{5}(2 q)\right) \cong D^{6} \times S^{1}
$$

which is a homotopy equivalence on the boundary, i. e.,

$$
\theta\left(h_{i}\right)=\theta\left(h_{i} \mid L_{i}^{7 \prime}-\operatorname{int} N\left(L_{i}^{5 \prime}\right)\right) \in L_{7}(Z) \cong L_{6}(1)=Z_{2}
$$

Here $N\left(L_{i}^{5 \prime}\right)$ is a tubular neighbourhood of $L_{i}^{5 \prime}$ in $L_{i}^{7 \prime}$. Since $\theta\left(h_{i}\right)=\theta\left(g_{i}\right)=0$, there exists a normal cobordism rel. boundary between $h_{i} \mid\left(L_{i}^{7 \prime}-\right.$ int $\left.N\left(L_{i}^{5 \prime}\right)\right)$ and a homotopy equivalence $h_{i}^{\prime}: E \rightarrow D^{6} \times S^{1}$. Put $M_{i}^{7}=E \cup N\left(L_{i}^{5 \prime}\right)$. There is an $\varepsilon$-homotopy equivalence

$$
k: M_{i}^{7} \longrightarrow L^{7}(2 q)
$$

defined to be $h_{i}^{\prime}$ on $E$ and $h_{i}$ on $N\left(L_{i}^{5 \prime}\right)$. Combining these cobordisms, there is a normal cobordism

$$
F: V^{8} \longrightarrow L^{7}(2 q) \times I
$$

between $g_{i}: L_{i}^{7} \rightarrow L^{7}(2 q)$ and $k: M_{i}^{7} \rightarrow L^{7}(2 q)$. It follows that $\theta(F, V) \in L_{8}^{\dot{8}}\left(Z_{2 q}\right)$. We have

$$
\begin{equation*}
\tau \theta(F, V)=\theta\left(F_{1}, V_{1}\right) \in L_{8}\left(z_{2}\right) \tag{6}
\end{equation*}
$$

where $F_{1}: V_{1} \rightarrow P^{7} \times I$ is a normal map, and the universal cover $\partial \tilde{V}_{1}=\widetilde{L}_{i}^{7} \cup \widetilde{M}_{i}^{7}$.
Since $L_{i}^{7} \rightarrow H C P^{3}$ is the $S^{1}$-fibration, so $\sigma\left(T, \widetilde{L}_{i}^{7}\right)$ is the value $\sigma\left(-1, \widetilde{H C P^{3}}\right)$ of the Atiyah-Singer invariant $\sigma\left(t, \widetilde{H C P^{3}}\right), t \in S^{1}$ at $t=-1$. Hence from (4) we have

$$
\begin{equation*}
\sigma\left(T, \widetilde{L}_{i}^{7}\right)=\sigma\left(-1, \widetilde{H C P^{3}}\right)=8 i \tag{7}
\end{equation*}
$$

On the other hand, the Atiyah-Singer invariant $\sigma\left(T, Q^{4 k-1}\right)$ is equal to the Browder-Livesay invariant $\sigma\left(Q^{4 k-1}\right)$ for a homotopy projective ( $4 k-1$ )-space $Q^{4 k-1}$ (See [3]). If we note that the Browder-Livesay invariant $\sigma\left(Q^{4 k-1}\right)$ is the desuspension invariant of $Q^{4 k-1}$, we see that the $q$-fold covering manifold $\bar{M}_{i}^{7}$ is a homotopy projective space which desuspends (in fact, ( $T, \widetilde{M}_{i}^{7}$ ) is a double suspension). Hence we have

$$
\begin{equation*}
\sigma\left(T, \widetilde{M}_{i}^{7}\right)=0 \tag{8}
\end{equation*}
$$

By (3), (6), (7) and (8), it follows that

$$
\tau(\theta(F, V))=8 i
$$

Therefore, by (2), $\tau: L_{0}^{f}\left(Z_{2 q}\right) \rightarrow L_{0}\left(Z_{2}\right)$ is onto modulo $L_{0}(1)$. This completes the proof of the lemma.

## 2. Surgery exact sequence

Let $\mathscr{S}_{H}^{\prime}(X)$ be the set of $\varepsilon$-homotopy structures on $X$ and let $[X, G / H]$ be the set of normal cobordisms classes of normal maps into $X$. We consider the surgery exact sequences for $X=P^{2 n+1}$ and $L^{2 n+1}(2 q)$ (See [9]). The projection $p: P^{2 n+1} \rightarrow L^{2 n+1}(2 q)$ induces a map

$$
p!: \mathscr{S}_{H}\left(L^{2 n+1}(2 q)\right) \longrightarrow \mathscr{S}_{H}^{\xi}\left(P^{2 n+1}\right)
$$

by taking $q$-fold covering. Similarly, $p$ induces a map

$$
p^{*}:\left[L^{2 n+1}(2 q), G / H\right] \longrightarrow\left[P^{2 n+1}, G / H\right]
$$

Then we have the following commutative diagram of exact sequences for $n \geqq 2$.

$$
\begin{equation*}
 \tag{2.1}
\end{equation*}
$$

Lemma 2.2. $p^{*}:\left[L^{2 n+1}(2 q), G / H\right] \rightarrow\left[P^{2 n+1}, G / H\right]$ is onto for $H=P L$, TOP.

Proof. The projection $p: L^{2 n+1}(s) \rightarrow C P^{n}$ induces a map $p^{*}:\left[C P^{n}, G / H\right]$ $\rightarrow\left[L^{2 x+1}(s), G / H\right]$ for each integer $s \in Z$. The lemma follows from the fact that $p^{*}$ is onto (See [9, Lemma 14 A. 2, p 186]).

The natural projection $d: Z_{2 q} \rightarrow Z_{2}$ induces the isomorphism

$$
\begin{equation*}
d: L_{3}^{\varepsilon}\left(Z_{2 q}\right) \cong Z_{2} \longrightarrow L_{3}\left(Z_{2}\right) \cong Z_{2} \tag{2.3}
\end{equation*}
$$

We have the following lemma.
Lemma 2.4. There is a following commutative diagram for $H=O$, $P L$, or $T O P$ and $k \geqq 1$.


Remarks. The lemma of $P L$ case is seen in [9, Theorem 14. 4] and the smooth case is seen in [5, Theorem 3.7]. Throughout the cases $H=$ $O, P L$, or $T O P$, the proof of this lemma is to determine the nontrivial obstruction for the fundamental group of a cyclic group of even order in place of a cyclic group of odd order in [1, Theorem $\left.1^{\prime}\right]$.

Proof. Take a normal map $f: L^{4 k+3} \rightarrow L^{4 k+3}(2 q)$. As in the proof of the lemma 1.4, there is a normal map $g: L_{1}^{4 k+3} \rightarrow L^{4 k+3}(2 q)$ which is normally cobordant to $f$ such that $g: g^{-1}\left(L^{4 k+1}(2 q)\right) \rightarrow L^{4 k+1}(2 q)$ is an $\varepsilon$-homotopy euivalence. Let $N\left(g^{-1}\left(L^{4 k+1}(2 q)\right)\right.$ be a tubular neighbourhood of $\left.g^{-1} L^{4 k+1}(2 q)\right)$ in $L_{1}^{4 k+3}$. It follows that

$$
\theta(f)=\theta\left(g \mid L_{1}^{4 k+3}-\operatorname{int} N\left(g^{-1}\left(L^{4 k+1}(2 q)\right)\right)\right)
$$

where $g: L_{1}^{4 k+3}$-int $N\left(g^{-1}\left(L^{4 k+1}(2 q)\right)\right) \rightarrow D^{4 k+2} \times S^{1}$ is a normal map which is a homotopy equivalence on the boundary. Make $g$ transverse to $D^{4 k+2} \times$ $t \subset D^{4 k+2} \times S^{1}$ such that $g^{-1}\left(S^{4 k+1} \times t\right)$ is a homotopy sphere and $g: g^{-1}\left(S^{4 k+1} \times\right.$ $t) \rightarrow S^{4 k+1}$ is a homotopy equivalence. Let $d^{\prime \prime}: L_{3}^{\varepsilon}\left(Z_{2 q}\right) \rightarrow L_{2}(1)$ be the homomorphism defined by the composition of $L_{3}^{\varepsilon}\left(Z_{2 q}\right) \rightarrow L_{3}(Z)$ and $L_{3}(Z) \xrightarrow{\cong} L_{2}(1)$. We have

$$
d^{\prime \prime} \theta(f)=\theta\left(g \mid g^{-1}\left(D^{4 k+2} \times t\right)\right) \in L_{2}(1) \cong Z_{2}
$$

The $q$-fold covering map of $f$ induces a normal map $p^{*}(f): Q \rightarrow P^{4 k+3}$. Here $Q$ is the $q$-fold cover of $L^{4 k+3}$. Then it follows that the surgery obstruction
$\theta\left(p^{*}(f)\right)$ is equal to $\theta\left(g \mid g^{-1}\left(D^{4 k+2} \times t\right)\right)$, i. e., $d^{\prime} \theta\left(p^{*}(f)\right)=\theta\left(g \mid g^{-1}\left(D^{4 k+2} \times t\right)\right)$, where $d^{\prime}: L_{3}\left(Z_{2}\right) \rightarrow L_{2}(1)$ is the isomorphism. From the commutative diagram

we have $d \theta(f)=\theta\left(p^{*}(f)\right)$. This proves the lemma.

## 3. Proof of Theorem

First we prove the following.
Proposition 3.1. Let $H=O, P L$, or $T O P$ and $n \geqq 2$. Let $T$ be a free involution on a homotopy sphere $\sum^{2 n+1}$ such that $\eta\left(\sum^{2 n+1} / T\right) \in \operatorname{Im}\left[p^{*}\right.$ : $\left.\left[L^{2 n+1}(2 q), G / H\right] \rightarrow\left[P^{2 n+1}, G / H\right]\right]$ and $\left(q,\left|\Theta_{2 n+1}(\partial \pi)\right|\right)=1$, where $\Theta_{2 n+1}(\partial \pi)$ is the group of homotopy $(2 n+1)$-spheres which bound parallelizable manifolds, and $\left|\Theta_{2 n+1}(\partial \pi)\right|$ is the order of $\Theta_{2 n+1}(\partial \pi)$. Then, T extends to a free $Z_{2 q^{-}}$ action on $\Sigma$.

Remark. For example, $q=3$ satisfies $\left(q,\left|\Theta_{2 n+1}(\partial \pi)\right|\right)=1$ for any $n \geqq 2$.
Proof. Case 1. $n \equiv 0(2)$. Let $T$ be a free involution on $\Sigma^{4 k+1}$ such that $\eta\left(\Sigma^{4 k+1} / T\right) \in \operatorname{Im} p^{*}$. Since $\theta:\left[L^{4 k+1}(2 q), G / H\right] \rightarrow L_{4 k+1}^{\varepsilon}\left(Z_{2 q}\right)$ is zero, there exists an element $L_{1}^{4 k+1} \in \mathscr{S}_{H}{ }^{\xi}\left(L^{4 k+1}(2 q)\right)$ such that

$$
\eta\left(p!\left(L_{1}^{4 k+1}\right)\right)=\eta\left(\Sigma^{4 k+1} / T\right)
$$

Since the action $\omega$ of $L_{2}\left(Z_{2}\right) \cong L_{2}(1)$ is to add the Kervaire manifold, we have

$$
\Sigma^{4 k+1} / T \cong p!\left(L_{1}^{4 k+1}\right)
$$

or

$$
\Sigma^{4 k+1} / T \cong p!\left(L_{1}^{4 k+1}\right) \# \Sigma_{K}^{4 k+1}
$$

where $\Sigma_{K}^{4 k+1}$ is the Kervaire sphere.
If $p!\left(L_{1}^{4 k+1}\right) \# \sum_{K}^{4 k+1} \cong \Sigma^{4 k+1} / T$, we take $L_{2}^{4 k+1}=L_{1}^{4 k+1} \# \Sigma_{K}^{4 k+1} \in \mathscr{S}_{H}{ }^{\xi}\left(L^{4 k+1}(2 q)\right)$. Since ( $\left.q,\left|\Theta_{4 k+1}(\partial \pi)\right|\right)=1$ and the order of $\Theta_{4 k+1}(\partial \pi)$ is at most 2 , we have

$$
\begin{aligned}
p!\left(L_{2}^{4 k+1}\right) & \cong p!\left(L_{1}^{4 k+1}\right) \# q \Sigma_{K}^{4 k+1} \\
& \cong p!\left(L_{1}^{4 k+1}\right) \# \Sigma_{K}^{4 k+1} \cong \Sigma^{4 k+1} / T .
\end{aligned}
$$

Hence $T$ extends to a free $Z_{2 q}$-action.
Case 2. $n \equiv 1(2)$. Let $T$ be a free involution on $\sum^{4 k+3}$ such that $\eta\left(\Sigma^{4 k+3} / T\right) \in \operatorname{Im} p^{*} . \quad$ By Lemma 2. 4 , there exists an element $L_{1}^{4 k+3} \in \mathscr{\mathscr { G }}_{H}^{f}\left(L^{4 k+3}\right.$
$(2 q))$ such that $\eta\left(p!\left(L_{1}^{4 k+3}\right)\right)=\eta\left(\sum^{4 k+3} / T\right)$. From (2.1), we have $\Sigma^{4 k+3} / T=\omega$ $\left(x, p!\left(L_{1}^{4 k+3}\right)\right)$ for some $x \in L_{0}\left(Z_{2}\right)$. By Lemma 1.4, there exists $y \in L_{0}^{!}\left(Z_{2 q}\right)$ such that $x-\tau(y)=x_{0}$ for some $x_{0} \in L_{0}(1) \subset L_{0}\left(Z_{2}\right)$. Put $L_{2}=\omega\left(y, L_{1}^{4 k+3}\right) \in \mathscr{S}_{H}{ }_{H}$ $\left(L^{4 k+3}(2 q)\right)$. We have from the commutativity of (2.1) that

$$
\Sigma^{4 k+3} / T=\omega\left(x_{0}, p!\left(L_{2}\right)\right) .
$$

Since the action $\omega$ of $L_{0}(1)$ is to add the Milnor manifolds, it follows that

$$
\Sigma^{4 k+3} / T=p!\left(L_{2}\right) \# m \Sigma_{1}^{4 k+3}
$$

for some $m \in Z$, where $\Sigma_{1}^{4 k+3}$ is a generator of $\Theta_{4 k+3}(\partial \pi)$. By the condition $\left(q,\left|\Theta_{4 k+3}(\partial \pi)\right|\right)=1$, there is an integer $n$ such that $n q \equiv 1 \bmod \left|\Theta_{4 k+3}(\partial \pi)\right|$. We take $L_{3}=L_{2} \# n m \Sigma_{1}^{4 k+3} \in \mathscr{S}_{H}\left(L^{4 k+3}(2 q)\right)$. Then we have

$$
\begin{aligned}
p!\left(L_{3}\right) & \cong p!\left(L_{2}\right) \# q n m \Sigma_{1}^{4 k+3} \\
& \cong p!\left(L_{2}\right) \# m \Sigma_{1}^{4 k+3} \cong \Sigma^{4 k+3} / T .
\end{aligned}
$$

Hence $T$ extends to a free $Z_{2 q}$-action. This proves the proposition.
Proof of Theorem in Introduction.
By [6], any free involution on $S^{3}$ is conjugate to the antipodal map. Therefore, $T$ extends to a free $Z_{2 q}$-action on $S^{3}$. Let $T$ be a free involution on $S^{2 n+1}$ for $n \geqq 2$. It follows from Lemma 2.2 that $\eta\left(S^{2 n+1} / T\right) \in \operatorname{Im} p^{*}$. Similarly to Proposition 3.1, $S^{2 n+1} / T \cong \omega(x, p!(M))$ for some $M \in \mathscr{S}_{H}\left(L^{2 n+1}\right.$ $(2 q))$ and $x \in L_{2 n+2}\left(Z_{2}\right)$. Since the action $\omega$ of $L_{2 n+2}(1)$ on $\mathscr{S}_{H}\left(P^{2 n+1}\right)$ is trivial for $H=P L, T O P$, we have $S^{2 n+1} / T \cong p!\left(M_{1}\right)$ for some $M_{1} \in \mathscr{S}_{H}^{e}\left(L^{2 n+1}(2 q)\right)$. Hence $T$ extends to a free $Z_{2 q}$-action.

Corollary. (See [4]) There exist non-triangulable (simple) homotopy lens spaces $\bar{L}^{2 n+1}(2 q)$ for $n \geqq 2$ and $q \geqq 1$.

Proof. From the computations of $\left[P^{2 n+1}, G / H\right]$ for $H=P L, T O P$, there is an exact sequence

$$
\mathscr{S}_{P L}\left(P^{2 n+1}\right) \xrightarrow{\Phi} \mathscr{S}_{T O P}\left(P^{2 n+1}\right) \xrightarrow{\Psi} Z_{2} \longrightarrow 0,
$$

where $\Phi$ is the obvious map, and $\Psi$ is the obstruction map (See [7]).

## References

[1] W. BRowder: Free $Z_{p}$-actions on homotopy spheres, Topology of manifolds, Proc. Univ. Georgia, 217-226 (1969).
[2] P. E. Conner and E. E. Floyd: Differentiable periodic maps, Springer Verlag, 1964.
[3] F. Hirzebruch and K. JÄnich: Involutions and singularities, Proc. Int. Colloq. on Algebraic Geometry, Bombay, 1968.
[4] K. Kawakubo: Topological $S^{1}$ and $Z_{2 k}$ actions on spheres, Proceedings of the Conference on Transformation Groups, Amherst, Springer, 14-18 (1971).
[5] Y. Kitada: Determination of homotopy spheres that admit free actions of finite cyclic groups, J. Math. Soc. of Japan, 28, 343-359 (1976).
[6] G. R. Livesay: Fixed point free involutions on the 3-spheres, Ann. of Math. 72, 603-611 (1960).
[7] López De Medrano: Involutions on manifolds, Springer, 1971.
[8] P. Montgomery and C. T. Yang: Free differentiable actions on homotopy spheres, Proceedings of the Conference on Transformation Groups, New Orleans Springer-Verlag 175-192 (1967).
[9] C. T. C. Wall: Surgery on Compact manifolds, Academic Press, 1970.
Yoshinobu Kamishima
Department of Mathematics
Faculty of Science
Hokkaido University
Sapporo Japan

