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Extension of involutions on spheres

By Yoshinobu KAMISHIMA
(Received May 12, 1978)

Introduction

Let Z_{2q} be a cyclic group of order 2q generated by T’- Suppose that
a free involution T is given on the sphere S^{n} . If there exists a free Z_{2q} -

action on S^{n} such that the restriction of the Z_{2q}-action to the Z_{2} -action
coincides with T on S^{n} , i . e. , T’|Z_{2}=T^{\prime q}=T. then we call that the involu-
tion T on S^{n} extends to a free Z_{2q}-action. In this paper, we show that:

THEOREM. Let q be any integer and n\geqq 1 . Then, every picewise linear
(resp. topological) free involution on S^{2n+1} extends to a picewise linear (resp.
topological) free Z_{2q}-action on S^{2n+1} .

The theorem follows from a similar method to the proof of the follow-
ing proposition.

PROPOSITION 3. 1. Let T be a free involution on a homotopy sphere
\Sigma 2n\dagger 1 such that the normal invariant \eta(\Sigma 2n+1/T)\in Im\{p^{*}: [L^{2n+1}(2q), G/H]

arrow[p^{2n\dagger 1}, G/H]\} and (q, |\Theta_{2n+1}(\partial\pi)|)=1 , where p:p^{2n\dagger 1}arrow L^{2n+1}(2q) is the prO-
jection and H=O, PL or TOP and n\geqq 2 . Then, ’\Gamma extends to a free Z_{2q} -

action on \Sigma 2n+1 .
\S 1 and \S 2 will be devoted to the preliminaries of the above prop0-

sition. In \S 3, we shall prove it and the above theorem.
The author would like to thank Professor Y. Kitada and Professor H.

Suzuki for many valuable suggestions.

1. Definition of transfer

Let X^{2n-1} be a (2n-1) -dimensional closed oriented manifold with fun-
damental group \pi . Denote by .f_{H}c\epsilon(X) the set of \epsilon -homotopy structures on
X, where H=O or PL and \epsilon=h or s . An \epsilon homotopy equivalence f:Marrow
X determines a normal map

\nu_{M}\underline{b}\xi

MX\downarrow\underline{f}\downarrow

,
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\tau(\theta(F_{y}H))=\theta((F_{y})_{1}H_{1})=\theta((F_{y})_{1})

=\tau(\theta(F_{y}))’.

we have
\tau(x+y)=\tau(x)+\tau(y)

REMARK 1. 2. The inclusion i:\pi_{1}\subset\pi induces a homomorphism i_{*}:

L_{2n}^{\epsilon}(\pi_{1})arrow L_{2n}^{\epsilon}(\pi) . Then we have the following as a property of the transfer
(See [2, p. 54]).

PROPOSITION 1. 3. Let C(\pi) be the center of \pi . If \pi_{1}\subset C(\pi) , then

\tau i^{*}(x)=[\pi;\pi_{1}]x : L_{2n}^{\epsilon}(\pi_{1})L_{2n}^{\epsilon}(\pi)L_{2n}^{\epsilon}(\pi_{1})\underline{i_{*}}\underline{\tau}

where [\pi;\pi_{1}] is the index of \pi_{1} in \pi .
The trivial map p:\piarrow 1 induces the homorphism p_{*} : L_{*}^{\epsilon}(\pi)-L_{*}(1)

which is onto, and so we have
L_{*}^{\epsilon}‘(\pi)=L_{*}^{\epsilon}\overline{(\pi)}\oplus L_{*}(1) ,

where L_{\star}^{\epsilon}\overline{(\pi)}=Ker[p_{*} : L_{*}^{\epsilon}(\pi)-L_{*}(1)] is the reduced Wall g\sigma roup .
Our goal in this section is the following lemma.
Lemma 1. 4. \tau:L_{0}^{\epsilon}(Z_{2q})arrow L_{0}(Z_{2}) is onto modulo L_{0}(1) . Here L_{0}(1)\subset

L_{0}(Z_{2}) .
Proof. L_{0}(Z_{2}) is isomorphic to 8Z\oplus 8Z. The correspondence is given by

x=\theta(F, W)|-(I(W), I(\overline{W})) .

where F:Warrow P^{4k-1}\cross I is a normal map, P^{4k-1} the standard projective (4k-
1) -space, and I(W) (resp. I(\overline{W}) ) is the index of W (resp. \overline{W}), \overline{W} the universal
cover of W.

Let T be a generator of Z_{2} . The multi-signature invariant \rho(T, x) for
x\in L_{0}(Z_{2}) is given by

(1) \rho(T, x)=Sign(T,\overline{W})=2I(W)-I(\overline{W}) .

It follows that

(2) \rho (T. -) : L_{0}(\overline{Z_{2}})-8Z

is an isomorphism, and Ker \rho=L_{0}(1) which is isomorphic to \{(m, 2m)\}_{m\in Z}\subset

L_{0}(Z_{2}) . For the Atiyah-Singer invariants \sigma(T, \partial_{\pm}\overline{W}) of \partial_{\pm}\overline{W}, we have

(3) \rho(T, x)=\sigma(T, \partial_{-}\overline{W})-\sigma(T, \partial_{+}\overline{W}) .
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by taking \xi=g^{*}\nu_{M} , where \nu_{M} is the normal bundle of M and g is an
e-homotopy inverse of f. Take x\in L_{2n}^{\epsilon}(\pi) . By the realization theorem of
Wall [9], there is a triad (W, \partial_{+}W, \partial_{-}W) and a map F of this to the triad
(X\cross I, X\cross 0, X\cross 1) satisfying that

(1) There is a bundle map B covering F of the normal bundle of W
which extends the bundle map b.

(2) (\partial_{-}W, F|\partial_{-}W)=(M,f)

(3) F|\partial_{+}W is an \epsilon -homotopy equivalence.
(4) \theta(F, W)=x\in L_{2n}^{\epsilon}(\pi) .
Let \pi_{1} be a subgroup of \pi and let \tilde{X} be the universal cover of X. Put

X_{1}=\tilde{X}/\pi_{1} . For the projection p:X_{1}arrow X, we consider the following pull-back
diagram

F_{1}

W_{1}-X_{1}\cross I

WX\cross I\downarrow p\downarrow\underline{F}p

The pair (F_{1}, W_{1}) has the same properties corresponding with (1), (2) and
(3). We set

\tau(x)=\theta(F_{1})\in L_{2n}^{\epsilon}(\pi_{1}) .
It is easy to see that the definition of \tau is independent of choices of the
cobordisms which represent x. In particular, we may start from (X, id)\in
.\mathscr{S}_{H}^{\epsilon}(X) in place of (M,f) .

Lemma 1. 1. \tau:L_{2n}^{\epsilon}(\pi)arrow L_{2n}^{\epsilon}(\pi_{1}) is a well-defined homomorphism.
PROOF. We can show that \tau is a homomorphism similarly as the proof

of the theorem [7, p. 50]. Let x, y\in L_{2n}^{\epsilon}(\pi) , and let F_{x} : W_{x}arrow X\cross I be
the cobordism between id:Xarrow X and f_{x} : M_{x}arrow X such that \theta(F_{x})=x . We
represent y by the cobordism F_{y} : W_{y}arrow X\cross I similarly. We consider cobor-
disms

(i) F_{-x} : W_{-x}arrow X\cross I between f_{x} and id such that \theta(F_{-x})=-x .
(ii) F_{yx} : W_{yx}arrow M_{y}\cross I between id:M_{y}arrow M_{y} and f_{yx} : M_{yx}arrow M_{y} such

that \theta(F_{yx})=x .
Combining these with id:W_{y}arrow W_{y} , we have a map

H’ : W_{-x}\cup W_{y}\cup W_{yx^{-}}W_{y}

It follows that \theta(H’)=\theta(F_{-x})+\theta(id)+\theta(F_{yx})=0 . We have an \epsilon -homotopy
equivalence H:W_{y}’arrow W_{y} . We take F_{x}\cup F_{y}H:W_{x}\cup W_{y}’arrow X\cross I as the nor-
mal map F_{x+y} : W_{x+y}arrow X\cross I corresponding to x+y. Since
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By [8], there exists a homotopy equivalence f_{i} of a homotopy complex
projective 3-space HCP^{3} into the complex projective 3-space CP^{3} which is
transverse regular to CP^{2} and such that the restricted normal map

\overline{f}_{i} : N^{4}=f_{i}^{-1}(CP^{2})-CP^{2} satisfies

(4) \theta(\overline{f}_{i})=8i for any i\in Z .

Consider the S^{1}-fibration p:L^{7}(2q)arrow CP^{3} , where L^{7}(2q) being the 7-
dimensional standard lens space. Pulling back this fibration by f_{i} , we have
a homotopy lens space L_{i}^{7} and an \epsilon homotopy equivalence

(5) g_{i} : L_{i}^{7}arrow L^{7}(2q) ;

which is transverse to L^{5}(2q) , L_{i}^{5}=g_{i}^{-1}(L^{5}(2q)) , and \overline{g}_{i}=g_{i}|L_{i}^{5} : L_{i}^{5}arrow L^{5}(2q)

is the restricted normal map. Since the surgery obstruction \theta(\overline{g}_{i})=0 in
L_{5}^{\epsilon}(Z_{2q}),\overline{g}_{i} is normally cobordant to an \epsilon homotopy equivalence g_{i}’ : L_{i}^{5\prime}arrow

L^{5}(2q) . By the normal cobordism extension property (See [7, p. 45]), we
may extend the normal cobordism between \overline{g}_{i} : L_{i}^{5}arrow L^{5}(2q) and g_{i}’ : L_{i}^{5\prime}arrow

L^{5}(2q) to a cobordism between g_{i} : L_{i}^{7}arrow L^{7}(2q) and h_{i} : L_{i}^{7\prime}arrow L^{7}(2q) such
that h_{i}^{-1}(L^{5}(2q))=L_{i}^{5\prime} , and h_{i}|L_{i}^{5\prime}=g_{i}’ . Let N(L^{5}(2q)) be a tubular neigh-
bourhood of L^{5}(2q) in L^{7}(2q) . Then the surgery obstruction of h_{i} , \theta(h_{i})

is equal to the surgery obstruction of the restriction map

h_{i} : L_{i}^{7\prime}- int N(L_{i}^{5\prime})-L^{7}(2q)- int N(L^{5}(2q))\cong D^{6}\cross S^{1}

which is a homotopy equivalence on the boundary, i . e. ,

\theta(h_{i})=\theta(h_{i}|L_{i}^{7\prime}- int N(L_{i}^{5\prime}))\in L_{7}(Z)\cong L_{6}(1)=Z_{2}

Here N(L_{i}^{5\prime}) is a tubular neighbourhood of L_{i}^{5\prime} in L_{i}^{7\prime} . Since \theta(h_{i})=\theta(g_{i})=0 ,

there exists a normal cobordism rel . boundary between h_{i}| ( L_{i}^{7\prime}- int N(L_{i}^{5\prime}) )
and a homotopy equivalence h_{i}’ : Earrow D^{6}\cross S^{1} . Put M_{i}^{7}=E\cup N(L_{i}^{5\prime}) . There
is an \epsilon homotopy equivalence

k : M_{i}^{7}-L^{7}(2q)

defined to be h_{i}’ on E and h_{i} on N(L_{i}^{5\prime}) . Combining these cobordisms,
there is a normal cobordism

F:V^{8}-L^{7}(2q)\cross I

between g_{i} : L_{i}^{7}arrow L^{7}(2q) and k:M_{i}^{7}arrow L^{7}(2q) . It follows that \theta(F, V)\in L_{8}^{\epsilon}(Z_{2q}) .
We have

(6) \tau\theta(F, V)=\theta(F_{1}, V_{1})\in L_{8}(z_{2}) ,
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where F_{1} : V_{1}arrow P^{7}\cross I is a normal map, and the universal cover \partial\tilde{V}_{1}=\overline{L}_{i}^{7}\cup\overline{M}_{i}^{7} .

Since L_{i}^{7}arrow HCP^{3} is the S^{1}-fibration, so \sigma(T.\tilde{L}_{i}^{7}) is the value \sigma(-1,\overline{HCP}^{3})

of the Atiyah-Singer invariant \sigma(t, HCP^{3}) , t\in S^{1} at t=-1 . Hence from (4)

we have

(7) \sigma(T,\tilde{L}_{i}^{7})=\sigma(-1,\overline{HCP}^{3})=8i .

On the other hand, the Atiyah-Singer invariant \sigma(T, Q^{4k-1}) is equal to the
Browder-Livesay invariant \sigma(Q^{4k-1}) for a homotopy projective (4k-1) space
Q^{4k-1} (See [9]). If we note that the Browder-Livesay invariant \sigma(Q^{4k-1})

is the desuspension invariant of Q^{4k-1} , we see that the q-fold covering mani-
fold \overline{M}_{i}^{7} is a homotopy projective space which desuspends (in fact, (T_{j}\overline{M}_{i}^{7})

is a double suspension). Hence we have

(8) \sigma(T,\overline{M}_{i}^{7})=0

By (3), (6), (7) and (8), it follows that

\tau(\theta(F, V))=8i

Therefore, by (2), \tau:L_{0}^{\epsilon}(Z_{2q})arrow L_{0}(Z_{2}) is onto modulo L_{0}(1) . This completes
the proof of the lemma.

2. Surgery exact sequence

Let \mathscr{S}_{H}^{\epsilon}(X) be the set of \epsilon -homotopy structures on X and let [X, G/H]
be the set of normal cobordisms classes of normal maps into X. We con-
sider the surgery exact sequences for X=P^{2n+1} and L^{2n\dagger 1}(2q) (See [9]).

The projection p:P^{2n\dagger 1}arrow L^{2n+1}(2q) induces a map

p ! : \mathscr{S}_{H}^{e}(L^{2n\dagger 1}(2q))-\mathscr{S}_{H}^{\epsilon}(P^{2n+1})

by taking q-fold covering. Similarly, p induces a map

p^{*}: [L^{2n\dagger 1}(2q), G/H]-[P^{2n+1}, G/H]

Then we have the following commutative diagram of exact sequences for
n\geqq 2 .

L_{2n+2}(Z_{2}).\mathscr{S}_{H}(P^{2n+1})\underline{\omega}\underline{\eta}[P^{2n+1}, G/H]L_{2n+1}\underline{\theta}(Z_{2})

(2. 1)
\uparrow\tau

\omega

\uparrow p ! \uparrow p*

\theta

L_{2n+2}^{\epsilon}(Z_{2q})arrow \mathscr{S}_{H}^{\epsilon}(L^{2n+1}(2q))arrow[L^{2n+1}(2q), G/H]\etaarrow L_{2n+1}^{\epsilon}(Z_{2q})



Extension of involutions on spheres 249

Lemma 2. 2. p^{*}: [L^{2n+1}(2q), G/H]arrow[P^{2n+1}, G/H] is onto for H=PL,
TOP.

PROOF. The projection p:L^{2n+1}(s)arrow CP^{n} induces a map p^{*}: [CP^{n}, G/H]

arrow[L^{2n+1}(s), G/H] for each integer s\in Z. The lemma follows from the fact
that p*is onto (See [9, Lemma 14 A. 2, p186]).

The natural projection d:Z_{2q}arrow Z_{2} induces the isomorphism

(2. 3) d:L_{3}^{\epsilon}(Z_{2q})\cong Z_{2^{-}}L_{3}(Z_{2})\cong Z_{2} .

We have the following lemma.
Lemma 2. 4. There is a following commutative diagram for H=O,

PL, or TOP and k\geqq 1 .

[P^{4k+3}, G/H]-L_{3}(Z_{2})\underline{\theta}

|p^{*} \uparrow d

[L^{4k+3}(2q), G/H]L_{3}^{\epsilon}(Z_{2q})\underline{\theta}

REMARKS. The lemma of PL case is seen in [9, THEOREM 14. 4] and
the smooth case is seen in [5, THEOREM 3. 7]. Throughout the cases H=
O, PL, or TOP, the proof of this lemma is to determine the nontrivial
obstruction for the fundamental group of a cyclic group of even order in
place of a cyclic group of odd order in [1, THEOREM 1’].

PROOF. Take a normal map f:L^{4k+3}arrow L^{4k+3}(2q) . As in the proof of
the lemma 1.4, there is a normal map g:L_{1}^{4k+3}arrow L^{4k+3}(2q) which is normally
cobordant to f such that g:g^{-1}(L^{4k+1}(2q))arrow L^{4k\dagger 1}(2q) is an \epsilon -homotopy eui-
valence. Let N(g^{-1}(L^{4k+1}(2q)) be a tubular neighbourhood of g^{-1}L^{4k+1}(2q) )
in L_{1}^{4k+3} . It follows that

\theta(f)=\theta(g|L_{1}^{4k+3}- int N(g^{-1}(L^{4k+1}(2q)))) .

where g:L_{1}^{4k+3}- int N(g^{-1}(L^{4k\dagger 1}(2q)))arrow D^{4k+2}\cross S^{1} is a normal map which is
a homotopy equivalence on the boundary. Make g transverse to D^{4k+2}\cross

t\subset D^{4k+2}\cross S^{1} such that g^{-1}(S^{4k\dagger 1}\cross t) is a homotopy sphere and g:g^{-1}(S^{4k+1}\cross

t)arrow S^{4k+1} is a homotopy equivalence. Let d’ : L_{3}^{\epsilon}(Z_{2q})arrow L_{2}(1) be the hom0-
morphism defined by the composition of L_{3}^{\epsilon}(Z_{2q})arrow L_{3}(Z) and L_{3}(Z)arrow L_{2}(1)\cong .
We have

d’\theta(f)=\theta(g|g^{-1}(D^{4k\dagger 2}\cross t))\in L_{2}(1)\equiv Z_{2} .

The q-fold covering map of f induces a normal map p^{*}(f):Qarrow P^{4k+3} . Here
Q is the q-fold cover of L^{4k+3} . Then it follows that the surgery obstruction
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\theta(p^{*}(f)) is equal to \theta(g|g^{-1}(D^{4k+2}\cross t)) , i . e. , d’\theta(p^{*}(f))=\theta(g|g^{-1}(D^{4k+2}\cross t)) ,
where d’ : L_{3}(Z_{2})arrow L_{2}(1) is the isomorphism. From the commutative diagram

L_{3}(Z_{2})L_{2}(1)\underline{d’}

L_{3}^{\epsilon}(Z_{2q})\uparrow d,d’\nearrow,
:

we have d\theta(f)=\theta(p*(f)) . This proves the lemma.

3. Proof of Theorem

First we prove the following.
PROPOSITION 3. 1. Let H=O, PL, or TOP and n\geqq 2 . Let T be a

free involution on a homotopy sphere \Sigma 2n+1 such that \eta(\Sigma 2n\dagger 1/T)\in Im[p^{*}:

[L^{2n+1}(2q), G/H]arrow[P^{2n+1}, G/H]] and (q, |\Theta_{2n+1}(\partial\pi)|)=1 , where \Theta_{2n+1}(\partial\pi) is
the group of homotopy (2n+1) -spheres which bound parallelizable manifolds,
and |\Theta_{2n+1}(\partial\pi)| is the order of \Theta_{2n+1}(\partial\pi) . Then, T extends to a free Z_{2q} -

action on \Sigma .

REMARK. For example, q=3 satisfies (q, |\Theta_{2n+1}(\partial\pi)|)=1 for any n\geqq 2 .
PROOF. Case 1. n\equiv 0(2) . Let T be a free involution on \Sigma 4k+1 such

that \eta(\Sigma 4k+1/T)\in{\rm Im} p* . Since \theta:[L^{4k+1}(2q), G/H]arrow L_{4k+1}^{\epsilon}(Z_{2q}) is zero, there
exists an element L_{1}^{4k+1}\in \mathscr{S}_{H}^{\epsilon}(L^{4k+1}(2q)) such that

\eta (p ! (L_{1}^{4k+1}))=\eta(\Sigma 4k\dagger 1/T) .

Since the action \omega of L_{2}(Z_{2})\cong L_{2}(1) is to add the Kervaire manifold, we have

\Sigma 4k+1/T\cong p ! (L_{1}^{4k+1})

or
\Sigma 4k+1/T\equiv p ! (L_{1}^{4k+1})\#\Sigma_{K}^{4k+1}

,\cdot

where \Sigma_{K}^{4k+1} is the Kervaire sphere.
If p ! (L_{1}^{4k+1})\#\Sigma_{K}^{4k+1}\cong\Sigma 4k+1/T, we take L_{2}^{4k+1}=L_{1}^{4k+1}\#\Sigma_{K}^{4k+1}\in-{?}_{H}^{\epsilon}(L^{4k+1}(2q)) . Since
(q, |\Theta_{4k+1}(\partial\pi)|)=1 and the order of \Theta_{4k+1}(\partial\pi) is at most 2, we have

p ! (L_{2}^{4k+1})\equiv p ! (L_{1}^{4k+1})\# q\Sigma_{K}^{4k+1}

\cong p ! (L_{1}^{4k+1})\#\Sigma_{K}^{4k+1}\cong\Sigma 4k+1/T

Hence T extends to a free Z_{2q} action
Case 2. n\equiv 1(2) . Let T be a free involution on \Sigma 4k+3 such that

\eta(\Sigma 4k+3/T)\in{\rm Im} p* . By Lemma 2. 4, there exists an element L_{1}^{4k+3}\in \mathscr{S}_{H}^{\epsilon}(L^{4k+3}
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(2q)) such that \eta(p ! (L_{1}^{4k+3}))=\eta(\Sigma 4k+3/T) . From (2. 1), we have \Sigma^{4k+3}/T=\omega

(x, p!(L_{1}^{4k+3})) for some x\in L_{0}(Z_{2}) . By Lemma 1. 4, there exists y\in L_{0}^{\epsilon}(Z_{2q})

such that x-\tau(y)=x_{0} for some x_{0}\in L_{0}(1)\subset L_{0}(Z_{2}) . Put L_{2}=\omega(y, L_{1}^{4k+3})\in \mathscr{S}_{H}^{\epsilon}

(L^{4k+3}(2q)) . We have from the commutativity of (2. 11 that

\Sigma^{4k+3}/T=\omega(x_{0}, p ! (L_{2}))

Since the action \omega of L_{0}(1) is to add the Milnor manifolds, it follows that

\Sigma 4k+3/T=p ! (L_{2})\# m\Sigma_{1}^{4k+3}

for some m\in Z, where \Sigma_{1}^{4k+3} is a generator of \Theta_{4k+3}(\partial\pi) . By the condition
(q, |\Theta_{4k+3}(\partial\pi)|)=1 , there is an integer n such that nq\equiv 1 mod|\Theta_{4k+3}(\partial\pi)|1

We take L_{3}=L_{2}\# nm\Sigma_{1}^{4k+3}\in \mathscr{S}_{H}^{e}(L^{4k+3}(2q)) . Then we have

p ! (L_{3})\cong p ! (L_{2})\# qnm\Sigma_{1}^{4k+3}

\cong p ! (L_{2})\# m\Sigma_{1}^{4k+3}\cong\Sigma 4k+3/T

Hence T extends to a free Z_{2q} action This proves the proposition.

PROOF OF THEOREM 1N INTRODUCTION.

By [6], any free involution on S^{3} is conjugate to the antipodal map.
Therefore, T extends to a free Z_{2q} action on S^{3} . Let T be a free involu-
tion on S^{2n+1} for n\geqq 2 . It follows from Lemma 2.2 that \eta(S^{2n+1}/T)\in{\rm Im} p* .

Similarly to Proposition 3. 1, S^{2n+1}/T\equiv\omega (x, p ! (M)) for some M\in \mathscr{S}_{1\tau^{\epsilon}}(L^{2n+1}

(2q)) and x\in L_{2n+2}(Z_{2}) . Since the action \omega of L_{2n+2}(1) on -\mathscr{S}_{H}(P^{2n+1}) is trivial
for H=PL, TOP, we have S^{2n\dagger 1}/T\cong p!(M_{1}) for some M_{1}\in \mathscr{S}_{H}^{\epsilon}(L^{2n+1}(2q)) .
Hence T extends to a free Z_{2q} action

COROLLARY. (See [4]) There exist non-triangulable {simple) homotopy

lens spaces \overline{L}^{2n+1}(2q) for n\geqq 2 and q\geqq 1 .
PROOF. From the computations of [P^{2m+1}, G/H] for H=PL, TOP,

there is an exact sequence

\mathscr{S}_{PL}(P^{2n+1})\mathscr{S}_{TOP}(P^{2n+1})Z_{2^{-}}0\underline{\Phi}\underline{\Psi} ,

where \Phi is the obvious map, and \Psi is the obstruction map (See [7]).
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