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On a transfer theorem for Schur multipliers
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1. Introduction.

In this paper we shall give an alternative proof of the following theorem
proved by D. F. Holt [3].

THEOREM* (Holt).

Let P be a Sylow p-subgroup of a finite group G, and suppose that
P has nilpotency class at most p/2 . Then the Sylow p-subgroups of the
Schur multipliers of G and N_{G}(P) are isomorphic.

We shall prove this theorem by using the method of cohomological G-
functors

Maps and functors will be written on the right in their arguments,
with the corresponding convention for writing composites.

Let G be a finite group and k a commutative ring with identity element.

DEFINITION 1.
A G-functor over k is defined to be a quadruple

A=(a, \tau, \rho, \sigma) ,

where a, \tau , \rho , \sigma are families of the following kind:
a=(a(H)) gives, for each subgroup H of G (notation H\leq G), a finitely

generated k-module a(H) .
\tau=(\tau_{H}^{K}) and \rho=(\rho_{H}^{K}) give, for each pair (H, K) of subgroups of G such

that H\leq K, the respective &-homomorphisms

\tau_{H}^{K} : a(H)arrow a(K) and \rho_{H}^{K} : a(K)arrow a(H) .

\sigma=(\sigma_{H}^{g}) gives, for each pair (H, g) where H is a subgroup of G and g
an element in G, the &-homomorphism

\sigma_{H}^{g} : a(H)arrow a(H^{g})

These families of k-modules and k-homomorphisms must satisfy the following
Axioms for G functors. (In these axioms, D, H, K, L are any sub-

group of G;g, g’ are any elements in G.)



On a transfer theorem for Schur multipliers 229

(a) \tau_{H}^{H}=1_{a(H)} , \tau_{H}^{K}\tau_{K}^{L}=\tau_{H}^{L} if H\leq K\leq L ;
(b) \rho_{H}^{H}=1_{a(H)} , \rho_{H}^{K}\rho_{D}^{H}=\rho_{D}^{K} if K\geq H\geq D ;
(c) \sigma_{H}^{h}=1_{a(H)} if h\in H, \sigma_{H}^{g}\sigma_{H^{\acute{g}}}^{g}=\sigma_{H}^{gg’} ;
(d) \tau_{H}^{K}\sigma_{K}^{g}=\sigma_{H}^{g}\tau_{H^{g^{K^{g}}}} , \rho_{H}^{K}\sigma_{H}^{g}=\sigma_{K}^{g}\rho_{H^{g};}^{K^{g}}

(e) {Mackey axiom If H\leq L, K\leq L and \Gamma is a transversal of the
(H, K) -double cosets in L, then

\tau_{H}^{L}\rho_{K}^{L}=\sum_{g\in\Gamma}\sigma_{H\rho H^{g}\cap K^{T}H^{g}\cap K^{K}}^{9H^{g}}

The images by the k-homomorphisms \tau_{H}^{K}, \rho_{H}^{K} and \sigma_{H}^{g} are simply written
as follows ;

\alpha\tau_{H}^{K}=\alpha^{K} for \alpha in a(H), \beta\rho_{H}^{K}=\beta_{H} for \beta in a(K) and \alpha\sigma_{H}^{g}=\alpha^{g} for \alpha in
a(H), respectively.

A G-functor A is naturally considered to be an H-functor for any sub-
group H of G. We denote such an H-functor by A_{1H} .

DEFINITION 2.
A G-functor A=(a, \tau, \rho, \sigma) is called cohomological if it satisfies the f01-

lowing axiom (C) :
(C) If H\leq K\leq G , then

\rho_{H^{T}H}^{KK}=|K:H|1_{a(K)}

For examples of G-functors, see [2] and [8].

DEFINITION 3.
Let A=(a, \tau, \rho, \sigma) be a cohomological G-functor and let S be a subgroup

of G, \alpha an element in a(S) , and X a subgroup of G. Then a triple
(S, \alpha, X) is called a singularity in G for A provided

(a) \alpha_{X}^{G}\neq 0 ,
(b) \alpha_{S\cap Y^{u}}=0 for every proper subgroup Y of X (notation Y<X ) and

every element u in G.
The subgroup S is called the singular subgroup of the singularity. If

the singular subgroup S is a proper subgroup of G, then the singularity is
called proper.

Now we can state a transfer theorem for cohomological G-functors on
which our proof of Theorem* depends.

THEOREM 1.
Let P be a Sylow p-subgroup of a finite group G and A=(a, \tau, \rho, \sigma)

a cohomological G functor over a commutative ring k. Assume that the
ring k is uniquely divisible by |G:P| and P has no proper singularity in



230 H. Sasaki

P for A_{|P} . Then
{\rm Im}\rho_{P}^{G}={\rm Im}\rho_{P}^{N} , where N=N_{G}(P)

And therefore
a(G)\sim-a(N) .

Let G be a finite group, M a right G-module, and let

X_{*}: \cdots-X_{-n}-\cdots-X_{-1}-X_{0}-X_{1}-\cdots-X_{n^{-}}\cdots

\nwarrow\swarrow Z

0\swarrow \nwarrow 0

be a complete resolution of G, where each G-free module X_{n} is a right
G-module. For each subgroup H of G, the right G module M and the
complete resolution X_{*} of G are also a right H-module and a complete
resolution of H, respectively.

Let (H, K) be a pair of subgroups of G such that H\leq K.
If \Delta is a transversal of the H-left cosets in K, then for each element

f in Hom_{H}(X_{n}, M) , we can define an element f^{K} in Hom_{K}(X_{n}, M) by

(x)f^{K}= \sum_{g\in\Delta}(xg)fg^{-1} for x in X_{n} .

The map farrow f^{K} is a cochain morphism Hom_{H}(X_{n}, M)arrow Hom_{K}(X_{n}, M) and
this morphism induces a homomorphism

cor_{H,K} : H^{n}(H, M)arrow H^{n}(K, M) .

This homomorphism is called the corestriction from H to K.
Every element f in Hom_{K}(X_{n}, M) is also an element in Hom_{H}(X_{n}, M) .

If an element f in Hom_{K}(X_{n}, M) is viewed as an element in Hom_{H}(X_{n}, M) ,

we write this element f_{H}. The map farrow f_{H} is a cochain morphism
Hom_{K}(X_{n}, M)arrow Hom_{H}(X_{n}, M) and this morphism induces a homomorphism

res_{K,H} : H^{n}(K, M)arrow H^{n}(H, M)

This homomorphism is called the restriction from K to H.
For each pair (H, g) of a subgroup H of G and an element g in G

and for each element f in Hom_{H}(X_{n}, M) , we can define an element f^{g} in
Hom_{H}(X_{n}, M) by

(x) f^{g}=(xg^{-1})fg for x in X_{n}

The map farrow f^{g} is a cochain morhism Hom_{H}(X_{n}, M)arrow Hom_{H^{g}}(X_{n}, M)

and this morphism induces a homomorphism
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con_{H}^{g} : H^{n}(H, M)arrow H^{n}(H^{g}, M) .
This homomorphism is called the conjugation by g.

These three homomorphisms of cohomology groups have the following
properties. (In what follows D, H, K, L are any subgroups of G and g, g’
are any elements in G.)

(a) cor_{H,H}=1_{H^{n_{(H,M)}}} , cor_{H,K}cor_{K,L}=cor_{H,L} if H\leq K\leq L ;
(b) res_{H,H}=1_{H^{n_{(H,M)}}} , res_{K,Hres}_{H,D}=res_{K,D} if K\geq H\geq D ;
(c) con_{H}^{h}=1_{H^{n_{(H,M)}}} if h\in H, con_{H}^{g} con_{H^{Q}}^{g’}=con_{H}^{gg’} ;
(d) cor_{H},{}_{K}Con_{K}^{g}=con_{H}^{g} cor_{H^{g},K^{g}} , res_{K,Hcon}_{H}^{g}=con_{If}^{g}res_{K^{g},H^{g}} ;
(e) If H\leq L , K\leq L and \Gamma is a transversal of the (H, K)-double cosets

in L, then

cor_{H,Lres}_{L,K}=\sum_{g\in\Gamma}con_{H}^{g}res_{H^{g},H^{g}\cap K}cor_{H^{g}\cap K,K} ;

(f) If H\leq K, then

res_{K,Hcor}_{H,K}=|K : H|1_{H^{n_{(K,M)}}}

Note that the axioms for the cohomological G-functors are abstracted
from these properties.

Let M(G) denote the Schur multiplier H^{2}(G, C^{*}) of a finite group G.
For each subgroup H of G, put a(H)=\Omega_{1}(M(H)_{p}) , where M(H)_{p} is the
Sylow p-subgroup of M(H) and \Omega_{1}(M(H)_{p}) is the subgroup of M(H)_{p} ge-
nerated by the elements of order p. Then a(H) is a finite dimensional
F_{p}-module. For each pair (H, K) of subgroups of G such that H\leq K, let
\tau_{H}^{K} and \rho_{H}^{K} be cor_{H,Kla(H)} and res_{K,H1a(K)} , respectively. For each pair (H, g)
of a subgroup H of G and an element g in G, we define \sigma_{H}^{g}=con_{H)a(H)}^{g} .
Then A=(a, \tau, \rho, \sigma) is a cohomological G-functor over F_{p} . We call this
functor the multiplier functor (with respect to a prime p).

If a Sylow p subgroup P of G has no proper singularity in P for the
multiplier functor, then by Theorem 1 we have

\Omega_{1}(M(G)_{p})-\sim\Omega_{1}(M(N_{G}(P))_{p})

Hence by Tate’s theorem it follows that

M(G)_{p}\simeq M(N_{G}(P))_{p}

We shall establish Theorem* (Holt) by proving the following Theorem 2.

THEOREM 2.
Let P be a p group of nilpotency class at most p/2 . Then P has no
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proper singularity in P for the multiplier functor.
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2. A transfer theorem for cohomological G-functors.

In this section we shall prove Theorem 1.
Let G be a finite group and let A=(a, \tau, \rho, \sigma) be a cohomological G-

functor over a commutative ring k.

Lemma 1.
Let H be a subgroup of G such that the ring k is uniquely divisible

by |G:H| . Then the k-homomorphism \rho_{H}^{G} : a(G)arrow a(H) is a monomorph-
ism and the k -homomorphism \tau_{H}^{G} : a(H)arrow a(G) is an epimorphism.

Moreover
a(H)={\rm Im}\rho_{H}^{G}\oplus Ker\tau_{H}^{G}

PROOF. The composition homomorphism \rho_{H}^{G}\tau_{H}^{G} : a(G)arrow a(G) is equal
to |G : H|1_{a(G)} and this is an automorphism of a(G) since the ring k is
uniquely divisible by |G:H| . The lemma easily follows from this fact.

Lemma 2.
Let (S, \alpha, X) be a singularity in G for A. Then the following hold.
(1) For every elements g, h in G, a triple (S^{g}, \alpha^{g}, X^{h}) is also a singularity

in G for A.
(2) There exists an element g in G such that X^{g}\leq S.
(3) If the ring k is uniquely divisible by |S:H| for a subgroup H

of S, then (H, \alpha_{H}, X) is also a singularity in G for A.
(4) If a subgroup R of G contains S, then (R, \alpha^{R}, X) is also a singularity

in G for A.
(5) If a subgroup L of G contains S, then there exists an element g

in G such that (S, \alpha, X^{g}) is a singularity in L for A|_{L} .
(6) If a subgroup L of G contains X, then (S^{g}\cap L, \alpha_{S^{g}\cap L}^{g}, X) is a sin-

gularity in L for A|_{L} for some element g in G. If moreover G=LS, then
(S\cap L, \alpha_{S\cap L}, X) is a singularity in L for A_{1L} .

PROOF. (1). This follows immediately from Definition 3.
(2). Let \Gamma be a transversal of the (S, X) -double cosets in G, then by Mackey
axiom
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\alpha_{X}^{G}=\sum_{g\in\Gamma}(\alpha_{S^{g}\cap X}^{g})^{X}

Thus there exists an element g in G such that \alpha_{S\cap X^{g}}\neq 0 since \alpha_{X}^{G}\neq 0 . If
S\cap X^{g}<X^{g} , then by Definition 3 we have \alpha_{S\cap X^{g}}=0 , a contradiction. So
X^{g}\leq S.
(3). Since A is a cohomological G-functor, we have

(\alpha_{H}^{G})_{X}=(\alpha_{H}^{S})_{X}^{G}

=|S:H|\alpha_{X}^{G}

\neq 0

For every proper subgroup Y of X and every element u in G, we have
(\alpha_{H})_{H\cap Y^{u}}=(\alpha_{S\cap Y^{u)_{H\cap Y^{u}}}}

=0

Thus (H, \alpha_{H}, X) is a singularity in G for A.
(4). It is clear that (\alpha^{R})_{X}^{G}\neq 0 .
Let Y be a proper subgroup of X and u an element in G. If \Gamma is a trans-
versal of the (S, R\cap Y^{u}) -double cosets in R, then by Mackey axiom

\alpha_{R\cap Y^{u=\sum_{g\in\Gamma}(\alpha_{S^{g}\cap R\cap Y^{u)^{R\cap Y^{u}}}}^{g}}}^{R}

= \sum_{gC-\Gamma}((\alpha_{S\cap R^{g}\cap Y^{xg)^{g)^{R\cap Y^{u}}}}}-1,-1

=0 .

Thus (R, \alpha^{R}, X) is a singularity in G for A.
(5). Since (\alpha^{L})_{X}^{G}=\alpha_{X}^{G}\neq 0 , there exists an element g in G such that \alpha_{L\cap X^{g}}^{L}\neq 0

by Mackey axiom. Then again by Mackey axiom there exists an element
s in S such that \alpha_{S\cap L^{S}\cap X^{gs\neq 0}} . Thus by Definition 3 we have X^{g}\leq L and
hence \alpha_{X^{g}}^{L}\neq 0 . It is clear that \alpha_{snz^{u=}}0 for every proper subgroup Z of
X^{g} and every element u in L. Thus (S, \alpha, X^{g}) is a singularity in L for A|_{L} .
(6). Since (\alpha_{L}^{G})_{X}=\alpha_{X}^{G}\neq 0 , there exists an element g in G such that (\alpha_{S^{g}\cap L}^{g})_{X}^{L}

\neq 0 by Mackey axiom. For every proper subgroup Y of X and every element
u in L, we have

(\alpha_{S^{g}\cap L}^{g})_{S^{g}\cap L\cap Y^{u=\alpha_{S^{g}\cap L\cap Y^{u}}^{g}}}

=(\alpha_{S\cap(L\cap Y^{u_{)}g-1}})^{g}

=0

Thus (S^{g}\cap L, \alpha_{S^{g}\cap L}^{g}, X) is a singularity in L for A_{1L} . When G=LS, we can
take g=1 so that (S\cap L, \alpha_{S\cap L}, X) is a singularity in L for A_{IL} . The lemma
is proved.



234 H. Sasaki

The following lemma gives us a technique for proving Theorem 1.

LEMMA 3.
Let H be a subgroup of G such that the ring k is uniquely divisible

by |G:H| , R a subgroup of H, and let B be a k -submodule of a(R) . As-
sume that

Im \rho_{R}^{G}<B\leq{\rm Im}\rho_{R}^{H}

Then the following hold.
(1) There exists an element \alpha in a(H) such that \alpha\neq 0 , \alpha^{G}=0 , and

0\neq\alpha_{R}\in B .
(2) Let X be a subgroup of R such that \alpha_{X}\neq 0 and \alpha_{H\cap Y^{u}}=0 for every

proper subgroup Y of X and every element u in G. Then there exists an
element g in G-H such that

(a) (H\cap H^{g}\wedge\alpha_{H\cap H^{g}}^{g}-\alpha_{H\cap H^{g}}, X) is a singularity in H for A_{1H} ; and
(b) (R\cap H^{g}, \alpha_{R\cap H^{g}}^{g}-\alpha_{R\cap H^{g}}, X) is a singularity in R for A_{1R} .

PROOF. (1). By Lemma 1 it follows that

a(H)={\rm Im}\rho_{H}^{G}\oplus Ker\tau_{H}^{G}

Thus we have

Im \rho_{R}^{H}={\rm Im}\rho_{R}^{G}\oplus(Ker\tau_{H}^{G})\rho_{R}^{H}
‘

Hence by our assumption on B it follows that

B\cap(Ker\tau_{H}^{G})\rho_{R}^{H}\neq 0 .

Namely there exists an element \alpha in a(H) such that \alpha\neq 0 , \alpha^{G}=0 , and
0\neq\alpha_{R}\in B as required.
(-). Let \Gamma be a transversal of the (H, H) -double cosets in G. Then

\sum_{g\in\Gamma}(\alpha_{H\cap H^{g}}^{g}-\alpha_{H\cap H^{g)_{X}^{H}}}

=( \sum_{g\in\Gamma}\alpha_{H\cap H^{g^{H}}}^{g})_{X}-(\sum_{\epsilon g\Gamma}\alpha_{H\cap H^{g^{H}}})_{X}

=\alpha_{X}^{G}-|G:H|\alpha_{X}

\neq 0 .

Thus there exists an element g in G-H such that

(\alpha_{H\cap H^{g}}^{g}-\alpha_{H\cap H^{g}})_{X}^{H}\neq 0 .

By our assumption on the subgroup X we have

(\alpha_{H\cap H^{g}}^{g}-\alpha_{H\cap H^{g}})_{H\cap H^{9}\cap Y^{u}}=0
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for every proper subgroup Y of X and every element u in H. Thus
(H\cap H^{g}. \alpha_{H\cap H^{g}}^{g}-\alpha_{H\cap H^{g}}, X) is a singularity in H for A_{IH}.
By Lemma 2 (6) there exists an element h in H such that
(R\cap(H\cap H^{g})^{h}, (\alpha_{H\cap H^{g}}^{g}-\alpha_{H\cap H^{g}})_{R\cap(H\cap H^{g})^{h}}^{h} ,X) is a singularity in R for A_{1R} .
Since R\cap(H\cap H^{g})^{h}=R\cap H^{gh} and (\alpha_{H\cap H}^{g}0-\alpha_{H\cap H^{g}})_{R\cap(H\cap H^{g})^{h=\alpha_{R\cap H^{gh-\alpha_{R\cap H^{gh}}}}^{gh}}}^{h} ,
we have that (R\cap H^{g}, \alpha_{R\cap H^{g}}^{g}-\alpha_{R\cap H^{g}}, X) is a singularity in R for A_{1R} by
replacing g with g^{-1}h if necessary. The lemma is proved.

REMARK. Let G, H, R, and \alpha be as in Lemma 3. Assume that for
every subgroup Q of R and every element g in G, there exist a subgroup
T of R and an element h in H such that H\cap Q^{g}\leq T^{h} . Then a subgroup
X of minimal order of R such that \alpha_{X}\neq 0 satisfies the assumption of Lemma
3 (2). Because for a proper subgroup Y of X and an element g in G, there
exist a subgroup T of R and an element h in H such that H\cap Y^{g}\leq T^{h} .
Hence H\cap Y^{gh^{-1}}\leq T\leq R . Since h\in H and \alpha\in a(H) , we have \alpha_{H\cap Y^{g}}=\alpha_{H\cap Y^{gh^{-1}}} .
Thus by the minimality of the order of X it follows that \alpha_{H\cap Y^{g}}=0 .

THEOREM 1.
Let P be a Sylow p-subgroup of a finite group G and A=(a, \tau, \rho, \sigma)

a cohomological G functor over a commutative ring k. Assume that the
ring k is uniquely divisible by |G:P| and P has no proper singularity in
P for A_{IP} . Then

Im \rho_{P}^{G}={\rm Im}\rho_{P}^{N} , where N=N_{G}(P)

And theref\‘ore

a(G)–a(N)

PROOF. Suppose that Im \rho_{P}^{G}<{\rm Im}\rho_{P}^{N} . Then by Lemma 3 there exists
an element \alpha in a(N) such that \alpha\neq 0 , \alpha^{G}=0 , and \alpha_{P}\neq 0 . Take a subgroup
X of minimal order of P such that \alpha_{X}\neq 0 . Then again by Lemma 3 there
exists an element g in G-N such that (P\cap N^{g}, \alpha_{P\cap N^{g}}^{g}-\alpha_{P\cap N^{g}}, X) is a sin-
gularity in P for A_{IP} . Then we have P\cap N^{g}=P by our assumption on P.
Hence it must hold that P=P^{g} , a contradiction. Thus we have

Im \rho_{P}^{G}={\rm Im}\rho_{P}^{N}t

The homomorphism \rho_{N}^{G} gives an isomorphism of a(G) to a(N) since \rho_{N}^{G}

and \rho_{P}^{N} are monomorphisms and \rho_{P}^{G}=\rho_{N}^{G}\rho_{P}^{N} . Theorem 1 is proved.
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3. The proof of Theorem 2.

In this section we shall prove Theorem 2 and Theorem*.

THEOREM 2.
Let P be a p-group of nilpotency class at most p/2. Then P has no

proper singularity in P for the multiplier functor.
PROOF. Suppose P has a proper singulaity (S, \alpha, X) in P for the multi-

plier functior. By Lemma 2 we may assume that the singular subgroup S
is a maximal subgroup of P and X is contained in S.

Let 1arrow Rarrow Farrow Parrow 1

be a free presentation of P and let F_{S} be the complete inverse image of S
in F. The commutator subgroup [F_{S}, R] of F_{S} and R is normal in F since
S is normal in P. Thus we have two extensions

1arrow\overline{R}arrow\overline{F}arrow Parrow 1 and 1arrow\overline{R}
– \overline{F}_{S}arrow Sarrow 1 ,

where bars denote images modulo [F_{S}, R] . The latter extension is a central
extension of S of free type. It is well known that \overline{D}=\overline{R}\cap\overline{F}_{S}’ is the torsion
subgroup of \overline{R} and \overline{D}_{-}^{-}M(S) . There exists a subgroup \overline{J} of \overline{R} such
that \overline{R}=\overline{J}\cross\overline{D} as \overline{R} is finitely generated. Thus we have a central extension
of S

1arrow Zarrow Karrow Sarrow 1 ,

where Z=\overline{R}/\overline{J}_{-}^{-}\overline{D} and K=\overline{F}_{S}/\overline{J}. In the Hochschild - Serre exact sequence

1arrow Hom (S, C^{*})arrow Hom (K, C^{*})arrow Hom (Z, C^{*})arrow M(S)

associated to this central extension of S, the transgression map

t : Hom (Z, C^{*})arrow M(S)

is an isomorphism. For the proof of this fact, see [7] \S 1, \S 3 or [4] Kap.
V \S 23 or [5] Ch. 2 \S 7, \S 9. Hence there exists a unique element \phi in
\Omega_{1} (Hom (Z, C^{*})) such that

\alpha=(\phi)t

The factor group P/S acts on Z and therefore on Hom (Z, C^{*}) . On
the other hand P/S acts on M(S) . These operations by P/S are commuta-
tive with the transgression t. Let u be an element in P–S. Then by
Mackey axiom

\alpha_{X}^{P}=\sum_{i=0}^{p-1}\alpha_{X}^{u^{i}} .
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Therefore

( \sum_{i=0}^{p-1}\phi^{u^{i}})t=\sum_{i=0}^{p-1}\alpha^{u^{i}}\neq 0 .

Let \psi=\sum_{i=0}^{p-1}\phi^{u^{i}} , then the order of \psi is p. Let I be the kernel of \phi , then

it follows that p1\overline{\cap}I^{u^{i}}\leq Ker\psi . On the other hand we have [Z, u]\leq Ker\psi .
i=1

Suppose I=I_{:}^{u} then I=Ker\psi so that [Z, u]\leq I. Thus \phi=\phi^{u} and hence

\psi=p\phi=0 , a contradiction. Therefore I\neq I^{u} . Hence if we put L=\overline{\bigcap_{i=0}}I^{u^{i}}p1\wedge

,

then the factor group Z/L is an elementary abelian p-group of order p^{p} that
has a basis on which u acts regularly. Let T be the semidirect product of
Z by P. Since L is normalized by P, the semidirect product T involves
the wreath product Z_{p} wr Z_{p} so that the nilpotency class of T is at least p.

On the other hand as in [3] Lemma 7 it follows that the nilpotency
class of T is less than p by using the assumption that P has nilpotency
class at most p/2 . Thus we have a contradiction. Theorem 2 is proved.

PROOF of Theorem* (Holt). Theorem 1 and Theorem 2 imply that if
a Sylow p-subgroup P of G is of nilpotency class at most p/2 , then

(\Omega_{1}(M(G)_{p}))res_{G,P}=(\Omega_{1}(M(N)_{p}))res_{N,P} , where N=N_{G}(P) .

Since M(P)={\rm Im} res_{G,P}\oplus Ker cor_{P,G}, we have

(M(N)_{p})res_{N,P}=(M(G)_{p})res_{G,P}\oplus((M(N)_{p})res_{N,P}\cap Kercor_{P,G})

Hence by the first equation it follows that

(M(N)_{p})res_{N,P}\cap Kercor_{P,G}=0

so that

(M(G)_{p})res_{G,P}=(M(N)_{p})res_{N,P}t

As in the proof of Theorem 1 res_{G,NIM(G)p} gives an isomorphism of M(G)_{p}

to M(N)_{p} .

REMARK. As we have seen in the proof of Theorem 2, if a p group
P has a proper singularity in P for the multiplier functor, then P has a
maximal subgroup S whose Schur multiplier M(S) has a factor group is0-
morphic to an elementary abelian p-group of order p^{p} . Therefore a p group
which has no such maximal subgroup has no proper singularity. For exam-
ple a 2-group of miximal class has no proper singularity. However it is
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still open to determine a necessary and sufficient condition for a p-group
to have no proper singularity for the multiplier functor.
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