On a transfer theorem for Schur multipliers

By Hiroki SASAKI

(Received October 17, 1978)

1. Introduction.

In this paper we shall give an alternative proof of the following theorem proved by D. F. Holt [3].

THEOREM* (Holt).

Let P be a Sylow p-subgroup of a finite group G, and suppose that P has nilpotency class at most p/2. Then the Sylow p-subgroups of the Schur multipliers of G and $N_G(P)$ are isomorphic.

We shall prove this theorem by using the method of cohomological G-functors.

Maps and functors will be written on the right in their arguments, with the corresponding convention for writing composites.

Let G be a finite group and k a commutative ring with identity element.

DEFINITION 1.

A G-functor over k is defined to be a quadruple

$$A = (a, \tau, \rho, \sigma)$$
,

where a, τ, ρ, σ are families of the following kind :

a=(a(H)) gives, for each subgroup H of G (notation $H \leq G$), a finitely generated k-module a(H).

 $\tau = (\tau_H^K)$ and $\rho = (\rho^{\kappa}_H)$ give, for each pair (H, K) of subgroups of G such that $H \leq K$, the respective k-homomorphisms

$$\tau_{H}^{K}: a(H) \rightarrow a(K) \text{ and } \rho^{K}_{H}: a(K) \rightarrow a(H).$$

 $\sigma = (\sigma_H^g)$ gives, for each pair (H, g) where H is a subgroup of G and g an element in G, the k-homomorphism

$$\sigma_{H}^{g}: a(H) \rightarrow a(H^{g}).$$

These families of k-modules and k-homomorphisms must satisfy the following

Axioms for G-functors. (In these axioms, D, H, K, L are any subgroups of G; g, g' are any elements in G.) On a transfer theorem for Schur multipliers

- (a) $\tau_H^H = \mathbf{1}_{a(H)}, \ \tau_H^K \tau_K^L = \tau_H^L \text{ if } H \leq K \leq L;$
- (b) $\rho^{H}_{H} = 1_{a(H)}, \ \rho^{K}_{H} \rho^{H}_{D} = \rho^{K}_{D} \text{ if } K \ge H \ge D;$
- (c) $\sigma_{\!\scriptscriptstyle H}^{h} = 1_{a(H)}$ if $h \in H$, $\sigma_{\!\scriptscriptstyle H}^{g} \sigma_{\!\scriptscriptstyle H}^{g'g} = \sigma_{\!\scriptscriptstyle H}^{gg'}$;
- (d) $\tau_H^K \sigma_K^g = \sigma_H^g \tau_{H^g}{}^{K^g}, \ \rho^K_H \sigma_H^g = \sigma_K^g \rho^{K^g}_{H^g};$
- (e) (Mackey axiom) If $H \le L$, $K \le L$ and Γ is a transversal of the (H, K)-double cosets in L, then

$$au_{H}{}^{L}
ho^{L}{}_{K} = \sum\limits_{g\in arGamma} \sigma_{H}^{g}
ho^{H}{}^{g}{}_{H^{g}\cap K} au_{H^{g}\cap K}{}^{K}$$
 .

The images by the k-homomorphisms $\tau_H{}^K$, $\rho^K{}_H$ and σ^g_H are simply written as follows;

 $\alpha \tau_{H}{}^{K} = \alpha^{K}$ for α in a(H), $\beta \rho^{K}{}_{H} = \beta_{H}$ for β in a(K) and $\alpha \sigma_{H}{}^{g} = \alpha^{g}$ for α in a(H), respectively.

A G-functor A is naturally considered to be an H-functor for any subgroup H of G. We denote such an H-functor by A_{1H} .

Definition 2.

A G-functor $A = (a, \tau, \rho, \sigma)$ is called *cohomological* if it satisfies the following axiom (C):

(C) If $H \leq K \leq G$, then

$$\rho^{K}_{H}\tau_{H}^{K} = |K:H| \mathbf{1}_{a(K)}.$$

For examples of G-functors, see [2] and [8].

Definition 3.

Let $A = (a, \tau, \rho, \sigma)$ be a cohomological G-functor and let S be a subgroup of G, α an element in a(S), and X a subgroup of G. Then a triple (S, α, X) is called a *singularity* in G for A provided

- (a) $\alpha^{G}_{X} \neq 0$,
- (b) $\alpha_{S \cap Y^u} = 0$ for every proper subgroup Y of X (notation Y < X) and every element u in G.

The subgroup S is called the *singular subgroup* of the singularity. If the singular subgroup S is a proper subgroup of G, then the singularity is called *proper*.

Now we can state a transfer theorem for cohomological G-functors on which our proof of Theorem* depends.

Theorem 1.

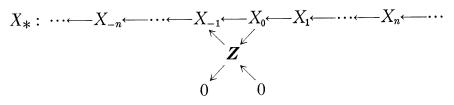
Let P be a Sylow p-subgroup of a finite group G and $A=(a, \tau, \rho, \sigma)$ a cohomological G-functor over a commutative ring k. Assume that the ring k is uniquely divisible by |G:P| and P has no proper singularity in P for $A_{|P}$. Then

 $\operatorname{Im} \rho^{G}{}_{P} = \operatorname{Im} \rho^{N}{}_{P}, \quad \text{where} \quad N = N_{G}(P) \,.$

And therefore

$$a(G) \simeq a(N) \, .$$

Let G be a finite group, M a right G-module, and let



be a complete resolution of G, where each G-free module X_n is a right G-module. For each subgroup H of G, the right G-module M and the complete resolution X_* of G are also a right H-module and a complete resolution of H, respectively.

Let (H, K) be a pair of subgroups of G such that $H \leq K$.

If Δ is a transversal of the *H*-left cosets in *K*, then for each element f in Hom_{*H*}(X_n , M), we can define an element f^{κ} in Hom_{*K*}(X_n , M) by

$$(x)f^{\kappa} = \sum_{g \in \mathcal{A}} (xg)fg^{-1}$$
 for x in X_n .

The map $f \rightarrow f^{\kappa}$ is a cochain morphism $\operatorname{Hom}_{H}(X_{n}, M) \rightarrow \operatorname{Hom}_{\kappa}(X_{n}, M)$ and this morphism induces a homomorphism

$$\operatorname{cor}_{H,K}: H^n(H, M) \longrightarrow H^n(K, M)$$
.

This homomorphism is called the *corestriction* from H to K.

Every element f in $\operatorname{Hom}_{K}(X_{n}, M)$ is also an element in $\operatorname{Hom}_{H}(X_{n}, M)$. If an element f in $\operatorname{Hom}_{K}(X_{n}, M)$ is viewed as an element in $\operatorname{Hom}_{H}(X_{n}, M)$, we write this element f_{H} . The map $f \rightarrow f_{H}$ is a cochain morphism $\operatorname{Hom}_{K}(X_{n}, M) \longrightarrow \operatorname{Hom}_{H}(X_{n}, M)$ and this morphism induces a homomorphism

$$\operatorname{res}_{K,H}: H^n(K, M) \longrightarrow H^n(H, M).$$

This homomorphism is called the *restriction* from K to H.

For each pair (H, g) of a subgroup H of G and an element g in G and for each element f in $\text{Hom}_{H}(X_{n}, M)$, we can define an element f^{g} in $\text{Hom}_{H}(X_{n}, M)$ by

$$(x)f^g = (xg^{-1})fg$$
 for x in X_n .

The map $f \rightarrow f^{g}$ is a cochain morbism $\operatorname{Hom}_{H}(X_{n}, M) \longrightarrow \operatorname{Hom}_{H^{g}}(X_{n}, M)$ and this morphism induces a homomorphism

230

$$\operatorname{con}_{H}^{g} \colon H^{n}(H, M) \longrightarrow H^{n}(H^{g}, M).$$

This homomorphism is called the *conjugation* by g.

These three homomorphisms of cohomology groups have the following properties. (In what follows D, H, K, L are any subgroups of G and g, g' are any elements in G.)

- (a) $\operatorname{cor}_{H,H} = 1_{H^{n}(H,M)}, \operatorname{cor}_{H,K} \operatorname{cor}_{K,L} = \operatorname{cor}_{H,L} \text{ if } H \leq K \leq L;$
- (b) $\operatorname{res}_{H,H} = 1_{H^{n}(H,M)}, \operatorname{res}_{K,H} \operatorname{res}_{H,D} = \operatorname{res}_{K,D} \text{ if } K \ge H \ge D;$
- (c) $\operatorname{con}_{H}^{h} = 1_{H^{n}(H,M)}$ if $h \in H$, $\operatorname{con}_{H}^{g} \operatorname{con}_{H^{g}}^{g'} = \operatorname{con}_{H}^{gg'}$;
- (d) $\operatorname{cor}_{H,K} \operatorname{con}_{K}^{g} = \operatorname{con}_{H}^{g} \operatorname{cor}_{H^{g},K^{g}}, \operatorname{res}_{K,H} \operatorname{con}_{H}^{g} = \operatorname{con}_{K}^{g} \operatorname{res}_{K^{g},H^{g}};$
- (e) If $H \le L$, $K \le L$ and Γ is a transversal of the (H, K)-double cosets in L, then

$$\operatorname{cor}_{H,L}\operatorname{res}_{L,K} = \sum_{g \in \Gamma} \operatorname{con}_{H}^{g} \operatorname{res}_{H^{g},H^{g} \cap K} \operatorname{cor}_{H^{g} \cap K,K};$$

(f) If $H \leq K$, then

$$\operatorname{res}_{K,H}\operatorname{cor}_{H,K} = |K:H| 1_{H^n(K,M)}$$

Note that the axioms for the cohomological G-functors are abstracted from these properties.

Let M(G) denote the Schur multiplier $H^2(G, \mathbb{C}^*)$ of a finite group G. For each subgroup H of G, put $a(H) = \Omega_1(M(H)_p)$, where $M(H)_p$ is the Sylow *p*-subgroup of M(H) and $\Omega_1(M(H)_p)$ is the subgroup of $M(H)_p$ generated by the elements of order p. Then a(H) is a finite dimensional \mathbf{F}_p -module. For each pair (H, K) of subgroups of G such that $H \leq K$, let τ_{H^K} and ρ^{κ}_{H} be $\operatorname{cor}_{H,\kappa|a(H)}$ and $\operatorname{res}_{\kappa,H|a(K)}$, respectively. For each pair (H, g)of a subgroup H of G and an element g in G, we define $\sigma^g_H = \operatorname{con}^g_{H|a(H)}$. Then $A = (a, \tau, \rho, \sigma)$ is a cohomological G-functor over \mathbf{F}_p . We call this functor the multiplier functor (with respect to a prime p).

If a Sylow p-subgroup P of G has no proper singularity in P for the multiplier functor, then by Theorem 1 we have

$$\Omega_1(M(G)_p) \simeq \Omega_1(M(N_G(P))_p).$$

Hence by Tate's theorem it follows that

$$M(G)_p \simeq M(N_G(P))_p$$
.

We shall establish Theorem* (Holt) by proving the following Theorem 2. THEOREM 2.

Let P be a p-group of nilpotency class at most p/2. Then P has no

H. Sasaki

proper singularity in P for the multiplier functor.

Acknowledgment

The author thanks to Dr. Yoshida for this theme and for his helpful advices.

2. A transfer theorem for cohomological G-functors.

In this section we shall prove Theorem 1.

Let G be a finite group and let $A = (a, \tau, \rho, \sigma)$ be a cohomological G-functor over a commutative ring k.

Lemma 1.

Let H be a subgroup of G such that the ring k is uniquely divisible by |G:H|. Then the k-homomorphism $\rho^{G}_{H}: a(G) \rightarrow a(H)$ is a monomorphism and the k-homomorphism $\tau_{H}^{G}: a(H) \rightarrow a(G)$ is an epimorphism.

Moreover

$$a(H) = \operatorname{Im} \rho^{G}_{H} \oplus \operatorname{Ker} \tau_{H}^{G}$$
.

PROOF. The composition homomorphism $\rho^{G}_{H}\tau_{H}^{G}: a(G) \rightarrow a(G)$ is equal to $|G:H|_{1_{a(G)}}$ and this is an automorphism of a(G) since the ring k is uniquely divisible by |G:H|. The lemma easily follows from this fact.

Lemma 2.

Let (S, α, X) be a singularity in G for A. Then the following hold. (1) For every elements g, h in G, a triple (S^g, α^g, X^h) is also a singularity in G for A.

(2) There exists an element g in G such that $X^{g} \leq S$.

(3) If the ring k is uniquely divisible by |S:H| for a subgroup H of S, then (H, α_H, X) is also a singularity in G for A.

(4) If a subgroup R of G contains S, then (R, α^R, X) is also a singularity in G for A.

(5) If a subgroup L of G contains S, then there exists an element g in G such that (S, α, X^{g}) is a singularity in L for $A|_{L}$.

(6) If a subgroup L of G contains X, then $(S^{g} \cap L, \alpha^{g}_{S^{g} \cap L}, X)$ is a singularity in L for $A|_{L}$ for some element g in G. If moreover G = LS, then $(S \cap L, \alpha_{S \cap L}, X)$ is a singularity in L for A_{1L} .

PROOF. (1). This follows immediately from Definition 3.

(2). Let Γ be a transversal of the (S, X)-double cosets in G, then by Mackey axiom

$$\alpha^{G}_{X} = \sum_{g \in \Gamma} (\alpha^{g}_{S^{g} \cap X})^{X}$$

Thus there exists an element g in G such that $\alpha_{S \cap X^g} \neq 0$ since $\alpha^{g}_{X} \neq 0$. If $S \cap X^g < X^g$, then by Definition 3 we have $\alpha_{S \cap X^g} = 0$, a contradiction. So $X^g \leq S$.

(3). Since A is a cohomological G-functor, we have

$$egin{aligned} &\langle lpha_H{}^G
angle_X = \langle lpha_H{}^S
angle^G{}_X \ &= |S:H| lpha^G{}_X \ &\neq 0 \;. \end{aligned}$$

For every proper subgroup Y of X and every element u in G, we have

$$(\alpha_H)_{H\cap Y^u} = (\alpha_{S\cap Y^u})_{H\cap Y^u}$$
$$= 0.$$

Thus (H, α_H, X) is a singularity in G for A.

(4). It is clear that $(\alpha^R)^G_X \neq 0$.

Let Y be a proper subgroup of X and u an element in G. If Γ is a transversal of the $(S, R \cap Y^u)$ -double cosets in R, then by Mackey axiom

$$\begin{aligned} \alpha^{R}{}_{R\cap Y^{u}} &= \sum_{g\in \Gamma} (\alpha^{g}{}_{S^{g}\cap R\cap Y^{u}})^{R\cap Y^{u}} \\ &= \sum_{g\in \Gamma} \left((\alpha_{S\cap R^{g^{-1}}\cap Y^{ug^{-1}}})^{g} \right)^{R\cap Y^{u}} \\ &= 0 . \end{aligned}$$

Thus (R, α^R, X) is a singularity in G for A.

(5). Since $(\alpha^L)^{G_X} = \alpha^{G_X} \neq 0$, there exists an element g in G such that $\alpha^L_{L \cap X^g} \neq 0$ by Mackey axiom. Then again by Mackey axiom there exists an element s in S such that $\alpha_{S \cap L^S \cap X^{gS}} \neq 0$. Thus by Definition 3 we have $X^g \leq L$ and hence $\alpha^L_{X^g} \neq 0$. It is clear that $\alpha_{S \cap Z^u} = 0$ for every proper subgroup Z of X^g and every element u in L. Thus (S, α, X^g) is a singularity in L for $A|_L$. (6). Since $(\alpha^G_L)_X = \alpha^G_X \neq 0$, there exists an element g in G such that $(\alpha^{g_{S^g}} \cap L)^L_X \neq 0$ by Mackey axiom. For every proper subgroup Y of X and every element u in L, we have

$$(\alpha^{g}{}_{S^{g}\cap L})_{S^{g}\cap L\cap Y}^{u} = \alpha^{g}{}_{S^{g}\cap L\cap Y}^{u}$$
$$= (\alpha_{S\cap (L\cap Y^{u})^{g-1}})^{g}$$
$$= 0.$$

Thus $(S^{g} \cap L, \alpha^{g}S^{g} \cap L, X)$ is a singularity in L for $A_{|L}$. When G = LS, we can take g=1 so that $(S \cap L, \alpha_{S \cap L}, X)$ is a singularity in L for $A_{|L}$. The lemma is proved.

The following lemma gives us a technique for proving Theorem 1.

Lemma 3.

Let H be a subgroup of G such that the ring k is uniquely divisible by |G:H|, R a subgroup of H, and let B be a k-submodule of a(R). Assume that

$$\operatorname{Im} \rho^{G}_{R} < B \leq \operatorname{Im} \rho^{H}_{R}.$$

Then the following hold.

(1) There exists an element α in a(H) such that $\alpha \neq 0$, $\alpha^{G}=0$, and $0\neq \alpha_{R}\in B$.

(2) Let X be a subgroup of R such that $\alpha_x \neq 0$ and $\alpha_{H \cap Y^u} = 0$ for every proper subgroup Y of X and every element u in G. Then there exists an element g in G-H such that

- (a) $(H \cap H^g, \alpha^g_{H \cap H^g} \alpha_{H \cap H^g}, X)$ is a singularity in H for $A_{|H}$; and
- (b) $(R \cap H^g, \alpha^g_{R \cap H^g} \alpha_{R \cap H^g}, X)$ is a singularity in R for A_{1R} .

PROOF. (1). By Lemma 1 it follows that

$$a(H) = \operatorname{Im} \rho^{G}_{H} \oplus \operatorname{Ker} \tau_{H}^{G}.$$

Thus we have

$$\operatorname{Im} \rho^{H_{R}} = \operatorname{Im} \rho^{G_{R}} \bigoplus (\operatorname{Ker} \tau_{H}^{G}) \rho^{H_{R}}.$$

Hence by our assumption on B it follows that

$$B \cap (\operatorname{Ker} \tau_H^G) \rho^H{}_R \neq 0$$
.

Namely there exists an element α in a(H) such that $\alpha \neq 0$, $\alpha^{G}=0$, and $0\neq \alpha_{R}\in B$ as required.

(2). Let Γ be a transversal of the (H, H)-double cosets in G. Then

$$\sum_{g \in \Gamma} (\alpha^{g}_{H \cap H^{g}} - \alpha_{H \cap H^{g}})^{H}_{X}$$

$$= (\sum_{g \in \Gamma} \alpha^{g}_{H \cap H^{g}})_{X} - (\sum_{g \in \Gamma} \alpha_{H \cap H^{g}})_{X}$$

$$= \alpha^{G}_{X} - |G: H| \alpha_{X}$$

$$\neq 0.$$

Thus there exists an element g in G-H such that

$$(\alpha^{g}_{H\cap H^{g}} - \alpha_{H\cap H^{g}})^{H}_{X} \neq 0$$
.

By our assumption on the subgroup X we have

$$(\alpha^{g}_{H\cap H^{g}} - \alpha_{H\cap H^{g}})_{H\cap H^{g}\cap Y} = 0$$

for every proper subgroup Y of X and every element u in H. Thus $(H \cap H^g, \alpha^{g}_{H \cap H^g} - \alpha_{H \cap H^g}, X)$ is a singularity in H for A_{1H} . By Lemma 2 (6) there exists an element h in H such that $(R \cap (H \cap H^g)^h, (\alpha^{g}_{H \cap H^g} - \alpha_{H \cap H^g})^h_{R \cap (H \cap H^g)^h}, X)$ is a singularity in R for A_{1R} . Since $R \cap (H \cap H^g)^h = R \cap H^{gh}$ and $(\alpha^{g}_{H \cap H^g} - \alpha_{H \cap H^g})^h_{R \cap (H \cap H^g)^h} = \alpha^{gh}_{R \cap H^{gh}} - \alpha_{R \cap H^{gh}},$ we have that $(R \cap H^g, \alpha^{g}_{R \cap H^g} - \alpha_{R \cap H^g}, X)$ is a singularity in R for A_{1R} by replacing g with $g^{-1}h$ if necessary. The lemma is proved.

REMARK. Let G, H, R, and α be as in Lemma 3. Assume that for every subgroup Q of R and every element g in G, there exist a subgroup T of R and an element h in H such that $H \cap Q^g \leq T^h$. Then a subgroup X of minimal order of R such that $\alpha_X \neq 0$ satisfies the assumption of Lemma 3 (2). Because for a proper subgroup Y of X and an element g in G, there exist a subgroup T of R and an element h in H such that $H \cap Y^g \leq T^h$. Hence $H \cap Y^{gh^{-1}} \leq T \leq R$. Since $h \in H$ and $\alpha \in a(H)$, we have $\alpha_{H \cap Y^g} = \alpha_{H \cap Y^{gh^{-1}}}$. Thus by the minimality of the order of X it follows that $\alpha_{H \cap Y^g} = 0$.

THEOREM 1.

Let P be a Sylow p-subgroup of a finite group G and $A=(a, \tau, \rho, \sigma)$ a cohomological G-functor over a commutative ring k. Assume that the ring k is uniquely divisible by |G:P| and P has no proper singularity in P for A_{1P} . Then

Im
$$\rho^{G}_{P} = \text{Im } \rho^{N}_{P}$$
, where $N = N_{G}(P)$.

And therefore

 $a(G) \simeq a(N) \, .$

PROOF. Suppose that $\operatorname{Im} \rho^{g}{}_{P} < \operatorname{Im} \rho^{N}{}_{P}$. Then by Lemma 3 there exists an element α in a(N) such that $\alpha \neq 0$, $\alpha^{g}=0$, and $\alpha_{P}\neq 0$. Take a subgroup X of minimal order of P such that $\alpha_{X}\neq 0$. Then again by Lemma 3 there exists an element g in G-N such that $(P \cap N^{g}, \alpha^{g}{}_{P \cap N^{g}} - \alpha_{P \cap N^{g}}, X)$ is a singularity in P for $A_{|P}$. Then we have $P \cap N^{g} = P$ by our assumption on P. Hence it must hold that $P = P^{g}$, a contradiction. Thus we have

$$\operatorname{Im} \rho^{G}_{P} = \operatorname{Im} \rho^{N}_{P}.$$

The homomorphism $\rho^{G}{}_{N}$ gives an isomorphism of a(G) to a(N) since $\rho^{G}{}_{N}$ and $\rho^{N}{}_{P}$ are monomorphisms and $\rho^{G}{}_{P} = \rho^{G}{}_{N}\rho^{N}{}_{P}$. Theorem 1 is proved.

3. The proof of Theorem 2.

In this section we shall prove Theorem 2 and Theorem*.

THEOREM 2.

Let P be a p-group of nilpotency class at most p/2. Then P has no proper singularity in P for the multiplier functor.

PROOF. Suppose P has a proper singulaity (S, α, X) in P for the multiplier functior. By Lemma 2 we may assume that the singular subgroup S is a maximal subgroup of P and X is contained in S.

Let $1 \longrightarrow R \longrightarrow F \longrightarrow P \longrightarrow 1$

be a free presentation of P and let F_s be the complete inverse image of S in F. The commutator subgroup $[F_s, R]$ of F_s and R is normal in F since S is normal in P. Thus we have two extensions

$$1 \longrightarrow \overline{R} \longrightarrow \overline{F} \longrightarrow P \longrightarrow 1$$
 and $1 \longrightarrow \overline{R} \longrightarrow \overline{F}_{S} \longrightarrow S \longrightarrow 1$,

where bars denote images modulo $[F_s, R]$. The latter extension is a central extension of S of free type. It is well known that $\overline{D} = \overline{R} \cap \overline{F}'_s$ is the torsion subgroup of \overline{R} and $\overline{D} \simeq M(S)$. There exists a subgroup \overline{J} of \overline{R} such that $\overline{R} = \overline{J} \times \overline{D}$ as \overline{R} is finitely generated. Thus we have a central extension of S

$$1 \longrightarrow Z \longrightarrow K \longrightarrow S \longrightarrow 1$$
,

where $Z = \overline{R}/\overline{J} \simeq \overline{D}$ and $K = \overline{F}_S/\overline{J}$. In the Hochschild – Serre exact sequence $1 \longrightarrow \operatorname{Hom}(S, \mathbb{C}^*) \longrightarrow \operatorname{Hom}(K, \mathbb{C}^*) \longrightarrow \operatorname{Hom}(Z, \mathbb{C}^*) \longrightarrow M(S)$

associated to this central extension of S, the transgression map

 $t : \text{Hom}(Z, C^*) \longrightarrow M(S)$

is an isomorphism. For the proof of this fact, see [7] § 1, § 3 or [4] Kap. V § 23 or [5] Ch. 2 § 7, § 9. Hence there exists a unique element ϕ in $\Omega_1(\text{Hom}(Z, C^*))$ such that

 $\alpha = (\phi) t$.

The factor group P/S acts on Z and therefore on Hom (Z, C^*) . On the other hand P/S acts on M(S). These operations by P/S are commutative with the transgression t. Let u be an element in P-S. Then by Mackey axiom

$$\alpha^P_X = \sum_{i=0}^{p-1} \alpha^{u^i}_X.$$

236

Therefore

$$\left(\sum_{i=0}^{p-1}\phi^{u^i}\right)t=\sum_{i=0}^{p-1}\alpha^{u^i}\neq 0$$

Let $\psi = \sum_{i=0}^{p-1} \phi^{u^i}$, then the order of ψ is p. Let I be the kernel of ϕ , then it follows that $\bigcap_{i=1}^{p-1} I^{u^i} \leq \operatorname{Ker} \phi$. On the other hand we have $[Z, u] \leq \operatorname{Ker} \phi$. Suppose $I = I^u$, then $I = \operatorname{Ker} \phi$ so that $[Z, u] \leq I$. Thus $\phi = \phi^u$ and hence $\psi = p\phi = 0$, a contradiction. Therefore $I \neq I^u$. Hence if we put $L = \bigcap_{i=0}^{p-1} I^{u^i}$, then the factor group Z/L is an elementary abelian p-group of order p^p that has a basis on which u acts regularly. Let T be the semidirect product of Z by P. Since L is normalized by P, the semidirect product T involves the wreath product Z_p wr Z_p so that the nilpotency class of T is at least p.

On the other hand as in [3] Lemma 7 it follows that the nilpotency class of T is less than p by using the assumption that P has nilpotency class at most p/2. Thus we have a contradiction. Theorem 2 is proved.

PROOF of Theorem* (Holt). Theorem 1 and Theorem 2 imply that if a Sylow *p*-subgroup *P* of *G* is of nilpotency class at most p/2, then

$$\left(\mathcal{Q}_1\left(M(G)_p\right)\right)\operatorname{res}_{G,P} = \left(\mathcal{Q}_1\left(M(N)_p\right)\right)\operatorname{res}_{N,P}, \quad \text{where} \quad N = N_G(P)$$

Since $M(P) = \operatorname{Im} \operatorname{res}_{G,P} \bigoplus \operatorname{Ker} \operatorname{cor}_{P,G}$, we have

$$(M(N)_p) \operatorname{res}_{N,P} = (M(G)_p) \operatorname{res}_{G,P} \bigoplus ((M(N)_p) \operatorname{res}_{N,P} \cap \operatorname{Ker} \operatorname{cor}_{P,G})$$

Hence by the first equation it follows that

$$\left(M(N)_p\right)\operatorname{res}_{N,P}\cap\operatorname{Ker}\operatorname{cor}_{P,G}=0$$

so that

$$(M(G)_p) \operatorname{res}_{G,P} = (M(N)_p) \operatorname{res}_{N,P}.$$

As in the proof of Theorem 1 $\operatorname{res}_{G,N|\mathcal{M}(G)_p}$ gives an isomorphism of $\mathcal{M}(G)_p$ to $\mathcal{M}(N)_p$.

REMARK. As we have seen in the proof of Theorem 2, if a *p*-group P has a proper singularity in P for the multiplier functor, then P has a maximal subgroup S whose Schur multiplier M(S) has a factor group isomorphic to an elementary abelian *p*-group of order p^p . Therefore a *p*-group which has no such maximal subgroup has no proper singularity. For example a 2-group of miximal class has no proper singularity. However it is

H. Sasaki

still open to determine a necessary and sufficient condition for a p-group to have no proper singularity for the multiplier functor.

References

- A. BABAKHANIAN: Cohomological Methods in Group Theory, Marcel Dekker, Inc., New York, 1972.
- [2] J. A. GREEN: Axiomatic representation theory for finite groups, J. Pure Appl. Algebra, 1 (1971), 41-77.
- [3] D. F. HOLT: On the local control of Schur multipliers, Quart. J. Math. Oxford (2), 28 (1977), 495-508.
- [4] B. HUPPERT: Endliche Gruppen I, Springer-Verlag, Berlin/Hidelberg/New York, 1967.
- [5] M. SUZUKI: Group Theory, Iwanami, Tokyo, 1977 (Japanese).
- [6] E. WEISS: Cohomology of Groups, Academic Press, New York and London, 1969.
- [7] K. YAMAZAKI: Projective representations and ring extensions, J. Fac. Sci. Univ. Tokyo. Sect. 1 vol. 10 (1964), 147–195.
- [8] T. YOSHIDA: On G-functors (I): Transfer theorems for cohomological G-functors, Hokkaido Math. J., to appear.
- [9] T. YOSHIDA: Transfer theorems in cohomology theory of finite groups, Japanese 23-th Symposium on Algebra, 1977.
- [10] T. YOSHIDA: Character-theoretic transfer, J. Algebra, 52 (1978), 1-38.

Hiroki SASAKI Department of Mathematics Faculty of Science Hokkaido University Sapporo, 060 Japan