Notes on eigenvalues of Laplacian acting on p-forms

By Satoshi Asada

(Received December 5, 1978)

1. Introduction.

By generalizing the method of Payne-Pólya-Weinberger ([4]), for a compact domain on a minimal hypersurface in the Euclidean space, S. Y. Cheng ([2]) proved an inequality between successive eigenvalues of the Laplacian acting on C^{∞} -functions on this domain. On the other hand, M. Maeda ([3]) has got a similar result for a compact minimal submanifold with or without boundary in the unit sphere. The purpose of the present note is to present a similar inequality between successive eigenvalues of the Laplacian acting on p-forms (resp. 1-forms) on a compact and oriented minimal hypersurface (resp. minimal submanifold of any codimension) without boundary in the unit sphere.

Let M be an $m(\geqslant 2)$ -dimensional compact and oriented Riemannian manifold without boundary with the Riemannian metric g. For each p=0, $1, \dots, m$, $A^p(M)$ denotes the space of all differential p-forms on M. For ω , $\eta \in A^p(M)$, we can define a C^{∞} -function $(\omega|\eta)$ on M as follows: $(\omega|\eta)$ is locally given by

$$(\omega|\eta) = \sum_{\substack{j_1\cdots j_p \ k_1\cdots k_p = 1}}^m \omega_{j_1\cdots j_p} \eta_{k_1\cdots k_p} g^{j_1k_1}\cdots g^{j_pk_p}$$

$$0 = \lambda_0^p \leqslant \lambda_1^p \leqslant \cdots \leqslant \lambda_n^p \leqslant \cdots; \ \lambda_n^p \longrightarrow \infty$$

where each λ_n^p is repeated as many time as its multiplicity. Let $\{\varphi_r; r=$

 $1, 2, \cdots$ } be a complete orthonormal base in $A^p(M)$ consisting of eigenforms of the Laplacian. Then we have the so-called minimum principle.

Minimum principle.

$$\lambda_{n+1}^p = \inf \left\{ \langle \Delta \omega, \omega \rangle / ||\omega||^2 \, ; \, \omega \in A^p(M), \, \omega \neq 0, \, \langle \omega, \varphi_r \rangle = 0 \right.$$
 for all $r = 1, \dots, n$.

In Section 2, we shall prove the following theorem.

Theorem 1. Let M be an $m(\geqslant 2)$ -dimensional compact and oriented Riemannian manifold without boundary minimally immersed in the unit (m+1)-sphere. Then for each numbers $n\geqslant 1$ and $1\leqslant p\leqslant m$, we have the inequality:

$$(1) \hspace{1cm} \lambda_{n+1}^{p} < \lambda_{n}^{p} + \frac{2(\Omega+1)}{nm} \left\{ \sum_{r=1}^{n} \lambda_{r}^{p} + pn \left(p - m + S(M)^{2} \right) \right\} + \left(\frac{1}{\Omega} + 1 \right) m \; .$$

Here S(M) denotes the maximum of the length of the second fundamental form of the immersion and Ω is a free parameter such that $\Omega \geqslant 1$.

In Section 3, we shall prove the following theorem.

Theorem 2. Let M be an $m(\geqslant 2)$ -dimensional compact and oriented Riemannian manifold without boundary minimally immersed in the unit sphere (of any codimension). Then for each number $n\geqslant 1$, we have the inequality:

$$(2) \hspace{1cm} \lambda_{n+1}^{1} < \lambda_{n}^{1} + \frac{2(\Omega+1)}{nm} \left\{ \sum_{t=1}^{n} \lambda_{t}^{1} - nr(M) \right\} + \left(\frac{1}{\Omega} + 1 \right) m \; .$$

Here r(M) denotes the minimum of the Ricci curvature of M and Ω is a free parameter such that $\Omega \geqslant 1$.

2. Estimate of λ_{n+1}^p .

Let M be an $m(\geqslant 2)$ -dimensional compact and oriented Riemannian manifold without boundary minimally immersed in the unit (m+1)-sphere $S^{m+1} \subset E^{m+2}$. Let $\{x^{\alpha}; \alpha=1, \cdots, m+2\}$ denote an orthonormal coordinate system in E^{m+2} . We also denote by x^{α} the restriction of x^{α} to M. The next is well known (cf. T. Takahashi [6]).

Lemma 2.1. $\Delta x^{\alpha} = mx^{\alpha} \ (1 \leq \alpha \leq m+2)$.

Fix arbitrary numbers $1 \le p \le m$ and $n \ge 1$. We use the following convention on the range of indices unless otherwise stated: $i, j, k, l, j_1, \dots, j_p=1, \dots, m$; $\mu, \nu=1, \dots, p$; $r, t=1, \dots, n$ and $\alpha=1, \dots, m+2$.

Lemma 2.2. For any $\omega \in A^p(M)$, we have the inequality

222 S. Asada

$$\langle \nabla \omega, \nabla \omega \rangle \leqslant \langle \Delta \omega, \omega \rangle + p \left(p - m + S(M)^2 \right) \cdot ||\omega||^2.$$

Here ∇ denotes the Levi-Civita connection defined by the Riemannian metric g of M.

PROOF. It is known that $\Delta \omega$ is locally expressed in terms of V, the Riemannian curvature tensor R of M and the Ricci tensor ρ of M (cf. G. de Rham [5], p. 131). That is, if $\rho \geqslant 2$, then we have

$$\begin{aligned} (4) \qquad & (\varDelta \omega)_{j_1 \dots j_p} = -\sum_{i} \nabla^{i} \nabla_{i} \omega_{j_1 \dots j_p} - \sum_{k, \nu} (-1)^{\nu} \rho_{j_{\nu}}^{\phantom{j_{\nu}} k} \cdot \omega_{k j_1 \dots j_{\nu} \dots j_p} \\ & + 2 \sum_{i, k} \sum_{\mu < \nu} (-1)^{\mu + \nu} R_{j_{\nu}}^{k}{}_{j_{\mu}}^{\phantom{j_{\nu}} i} \cdot \omega_{i k j_1 \dots j_{\mu} \dots j_p} \end{aligned}$$

and if p=1, then we have

$$(5) (\Delta\omega)_j = -\sum_i \nabla^i \nabla_i \omega_j + \sum_k \rho_j{}^k \cdot \omega_k .$$

Here \wedge over j_{ν} indicates that it is omitted. Fix an arbitrary point $z_0 \in M$. Since the codimension of M in S^{m+1} is equal to one, we can choose a normal coordinate system $\{z^j\}$ of M about z_0 such that the second fundamental form (S_{jk}) at z_0 is given by a diagonal matrix, i. e., $S_{jk} = \delta_{jk} \xi_k$. Here ξ_k denote the principal curvatures at z_0 . Then, at z_0 , the equation of Gauss implies

(6)
$$R_{j\cdot l}^{ki} = \delta_{jl} \cdot \delta_{ik} - \delta_{kl} \cdot \delta_{ij} + \delta_{jl} \cdot \delta_{ik} \cdot \xi_{l} \cdot \xi_{k} - \delta_{kl} \cdot \delta_{ij} \cdot \xi_{l} \cdot \xi_{j}.$$

By means of $\sum_{i} \xi_{i} = 0$, we have, at z_{0} ,

(7)
$$\rho_{j,k}^{k} = -\sum_{i} R_{i\cdot j}^{ki} = (m-1-\xi_{j} \cdot \xi_{k}) \cdot \delta_{jk}.$$

First we assume that $p \ge 2$. From (4), (6) and (7), we have

$$-\textstyle\sum_{i} \nabla^{i} \nabla_{i} \omega_{j_{1}\cdots j_{p}} = (\varDelta \omega)_{j_{1}\cdots j_{p}} + p(p-m) \cdot \omega_{j_{1}\cdots j_{p}} + (\sum_{\mathbf{p}} \xi_{j_{\mathbf{p}}})^{2} \cdot \omega_{j_{1}\cdots j_{p}} \; .$$

Since $\omega^{j_1\cdots j_p} = \omega_{j_1\cdots j_p}$ at z_0 , we get

$$(-\textstyle\sum_{i} \nabla^{i} \nabla_{i} \omega | \omega) = (\varDelta \omega | \omega) + p(p-m) \cdot (\omega | \omega) + \textstyle\sum_{j_{1} \cdots j_{n}} (\sum_{\nu} \xi_{j_{\nu}})^{2} \cdot (\omega_{j_{1} \cdots j_{p}})^{2} \ .$$

On the other hand, by Schwartz inequality, we have

$$\begin{split} &\sum_{j_1\cdots j_p}(\sum_{\mathbf{p}}\xi_{j_{\mathbf{p}}})^2\bullet(\omega_{j_1\cdots j_p})^2 = p \; ! \sum_{j_1<\dots< j_p}(\sum_{\mathbf{p}}\xi_{j_{\mathbf{p}}})^2\bullet(\omega_{j_1\cdots j_p})^2 \\ \leqslant &p \; ! \sum_{j_1<\dots< j_p}p(\sum_{\mathbf{p}}\xi_{j_{\mathbf{p}}}^2)\bullet(\omega_{j_1\cdots j_p})^2 \leqslant p(\sum_{i}\xi_{i}^2)\bullet p \; ! \sum_{j_1<\dots< j_p}(\omega_{j_1\cdots j_p})^2 \\ \leqslant &p \bullet S(M)^2\bullet(\omega|\omega) \; , \end{split}$$

because $\sum\limits_{i}\xi_{i}^{2}$ is equal to the value of the square of the length of the

second fundamental form at z_0 . Hence we have

$$(-\textstyle\sum_{i} \nabla^{i} \nabla_{i} \omega |\omega) \!\leqslant\! (\varDelta \omega |\omega) \!+\! p \left(p-m+S(M)^{2}\right) (\omega |\omega) \;.$$

By integrating both sides of the above inequality, we get by Stokes formula

$$egin{aligned} raket{\mathcal{V}\omega,\mathcal{V}\omega} &= raket{-\sum_i \mathcal{V}^i \mathcal{V}_i \omega,\omega} \ &\leqslant raket{\Delta\omega,\omega} + p \Big(p - m + S(M)^2\Big) \cdot ||\omega||^2} . \end{aligned}$$

Next in the case p=1, by means of (5) and (7), we have a similar argument as above to obtain

$$\langle \mathcal{V}\omega, \mathcal{V}\omega \rangle \leqslant \langle \Delta\omega, \omega \rangle + (1 - m + S(M)^2) \cdot ||\omega||^2$$
. q. e. d.

Remark 2.1. The Riemannian curvature tensor R is defined by

$$R(X, Y)Z = [V_X, V_Y] Z - V_{[X,Y]} Z$$

and we put

$$R\left(rac{\partial}{\partial z^k},rac{\partial}{\partial z^l}
ight)rac{\partial}{\partial z^j}=\sum\limits_i R^i_{jkl}rac{\partial}{\partial z^i}$$
 .

The Ricci tensor ρ is defined by $\rho(Y, Z) = Trace(X \rightarrow R(X, Y) Z)$. Thus we have

$$ho_{jk} =
ho \Big(rac{\partial}{\partial z^j}, rac{\partial}{\partial z^k}\Big) = \sum\limits_i R^i_{j\,i\,k} \ .$$

Remark 2.2. If M is not totally geodesic, then by means of the inequality of J. Simons we have $S(M)^2 \geqslant m$ (cf. B. Y. Chen [1], p. 94).

Let $\{\varphi_h; h=1, 2, \cdots\}$ be a complete orthonormal base in $A^p(M)$ consisting of eigenforms of the Laplacian. Put $a^{\alpha}_{rt} := \langle x^{\alpha}\varphi_r, \varphi_t \rangle$ $(=a^{\alpha}_{tr})$ and $U^{\alpha}_r := x^{\alpha}\varphi_r - \sum_t a^{\alpha}_{rt}\varphi_t$.

LEMMA 2.3.
$$\sum_{\alpha,r} \langle V_{grad(x^{\alpha})} \varphi_r, U_r^{\alpha} \rangle = -(m/2) \sum_{\alpha,r,t} (a_{rt}^{\alpha})^2$$
.

PROOF. By means of $\sum_{\alpha} (x^{\alpha})^2 = 1$, we have

(i)
$$\sum_{\alpha} \langle V_{grad(x^{\alpha})} \varphi_r, x^{\alpha} \varphi_r \rangle = \langle V_{\sum_{\alpha} x^{\alpha} \cdot grad(x^{\alpha})} \varphi_r, \varphi_r \rangle = 0.$$

On the other hand, we have

$$\begin{split} &\sum_{r} \left\langle \mathcal{V}_{grad(x^{\alpha})} \varphi_{r}, \sum_{t} a_{rt}^{\alpha} \varphi_{t} \right\rangle = \sum_{r,t} a_{rt}^{\alpha} \left\langle \mathcal{V}_{grad(x^{\alpha})} \varphi_{r}, \varphi_{t} \right\rangle \\ &= \sum_{r,t} a_{rt}^{\alpha} \int_{M} grad(x^{\alpha}) \cdot (\varphi_{r} | \varphi_{t}) \ dV_{M} - \sum_{r,t} a_{rt}^{\alpha} \left\langle \varphi_{r}, \mathcal{V}_{grad(x^{\alpha})} \varphi_{t} \right\rangle \\ &= \sum_{r,t} a_{rt}^{\alpha} \left\langle dx^{\alpha}, d(\varphi_{r} | \varphi_{t}) \right\rangle - \sum_{r,t} a_{rt}^{\alpha} \left\langle \mathcal{V}_{grad(x^{\alpha})} \varphi_{r}, \varphi_{t} \right\rangle \end{split}$$

224 S. Asada

because of $a_{rt}^{\alpha} = a_{rt}^{\alpha}$. Thus we have

(ii)
$$\sum_{r} \langle V_{grad(x^{\alpha})} \varphi_{r}, \sum_{t} a_{rt}^{\alpha} \varphi_{t} \rangle = (1/2) \sum_{r,t} a_{rt}^{\alpha} \langle \Delta x^{\alpha}, (\varphi_{r} | \varphi_{t}) \rangle$$
$$= (m/2) \sum_{r,t} a_{rt}^{\alpha} \langle x^{\alpha}, (\varphi_{r} | \varphi_{t}) \rangle = (m/2) \sum_{r,t} (a_{rt}^{\alpha})^{2}.$$

From (i) and (ii) we get the assertion of our lemma. q. e. d.

LEMMA 2.4. $\sum_{a,r} ||V_{grad(x^a)}\varphi_r||^2 \leqslant \sum_r \lambda_r^p + pn(p-m+S(M)^2)$.

PROOF. Fix an arbitrary point $z_0 \in M$. Let $\{z^j\}$ be a normal coordinate system of M about z_0 . Put $e_j = \frac{\partial}{\partial z^j}\Big|_{z_0}$, then we have, at z_0 ,

$$\begin{split} &\sum_{\alpha} \left(\overline{V}_{grad(x^{\alpha})} \varphi_r | \overline{V}_{grad(x^{\alpha})} \varphi_r \right) \\ &= \sum_{\alpha,j,k} g \left(grad(x^{\alpha}), e_j \right) \cdot g \left(grad(x^{\alpha}), e_k \right) \cdot \left(\overline{V}_j \varphi_r | \overline{V}_k \varphi_r \right) \\ &= \sum_{j,k} \sum_{\alpha} \left(e_j x^{\alpha} \right) \cdot \left(e_k x^{\alpha} \right) \cdot \left(\overline{V}_j \varphi_r | \overline{V}_k \varphi_r \right) = \sum_j \left(\overline{V}_j \varphi_r | \overline{V}_j \varphi_r \right) = \left(\overline{V} \varphi_r | \overline{V} \varphi_r \right) \end{split}$$

because of $\sum_{\alpha} (e_j x^{\alpha}) \cdot (e_k x^{\alpha}) = g_{jk}(z_0) = \delta_{jk}$. Thus, by lemma 2.2, we get

$$\begin{split} &\sum_{\alpha,r} || \overline{\mathcal{V}}_{grad(x^{\alpha})} \varphi_r ||^2 = \sum_r \langle \overline{\mathcal{V}} \varphi_r, \overline{\mathcal{V}} \varphi_r \rangle \\ &\leqslant \sum_r \left\{ \langle \varDelta \varphi_r, \varphi_r \rangle + p \Big(p - m + S(M)^2 \Big) \boldsymbol{\cdot} ||\varphi_r||^2 \right\} \\ &= \sum_r \lambda_r^p + p n \Big(p - m + S(M)^2 \Big) \,. \end{split} \qquad \text{q. e. d.}$$

We see easily that $\langle U_r^{\alpha}, \varphi_t \rangle = 0$ for any α , r, t. Thus by means of the minimum principle, we get

(8)
$$\lambda_{n+1}^p \sum_{\alpha,r} ||U_r^{\alpha}||^2 \leqslant \sum_{\alpha,r} \langle \Delta U_r^{\alpha}, U_r^{\alpha} \rangle.$$

If $U_r^{\alpha}=0$ for any α and r, then $x^{\alpha}\varphi_r=\sum_t a_{rt}^{\alpha}\varphi_t$. So $1=\sum_{\alpha}\langle x^{\alpha}\varphi_r, x^{\alpha}\varphi_r\rangle=\sum_{\alpha,t}(a_{rt}^{\alpha})^2$ for all r. Hence $n=\sum_{\alpha,r,t}(a_{rt}^{\alpha})^2$. This contradicts lemma 2.3. Therefore we have $\sum_{\alpha,r}||U_r^{\alpha}||^2>0$. On the other hand, we have $\sum_{\alpha,r}||U_r^{\alpha}||^2=n-\sum_{\alpha,r,t}(a_{rt}^{\alpha})^2$. Put $A:=\sum_{\alpha,r,t}(a_{rt}^{\alpha})^2$, then from (8) we get

(9)
$$\lambda_{n+1}^p \leqslant \left(\sum_{\sigma,r} \langle \varDelta U_r^{\alpha}, U_r^{\alpha} \rangle \right) / (n-A) .$$

It is known that for $f \in A^o(M)$ and $\omega \in A^p(M)$, we have $\Delta(f\omega) = (\Delta f) \omega + f \Delta \omega - 2V_{grad(f)} \omega$ (cf. G. de Rham [5], p. 129). Therefore we get

$$\begin{split} \varDelta U_r^{\alpha} &= (\varDelta x^{\alpha}) \; \varphi_r + x^{\alpha} \, \varDelta \varphi_r - 2 \overline{V}_{grad(x^{\alpha})} \, \varphi_r - \sum\limits_t \, a_{rt}^{\alpha} \, \varDelta \varphi_t \\ &= (m + \lambda_r^p) \; x^{\alpha} \, \varphi_r - 2 \overline{V}_{grad(x^{\alpha})} \, \varphi_r - \sum\limits_t \, a_{rt}^{\alpha} \, \lambda_t^p \, \varphi_t \end{split}$$

and

$$\langle \Delta U_r^{\alpha}, U_r^{\alpha} \rangle = (m + \lambda_r^p) \langle x^{\alpha} \varphi_r, U_r^{\alpha} \rangle - 2 \langle \mathcal{V}_{grad(x^{\alpha})} \varphi_r, U_r^{\alpha} \rangle$$

$$\leq (m + \lambda_n^p) \cdot ||U_r^{\alpha}||^2 - 2 \langle \mathcal{V}_{grad(x^{\alpha})} \varphi_r, U_r^{\alpha} \rangle .$$

Hence, by means of lemma 2.3, we have

$$\sum_{\alpha,r} \langle \Delta U_r^{\alpha}, U_r^{\alpha} \rangle \leqslant (m + \lambda_n^p) (n - A) + mA$$
.

From (9), we get

(10)
$$\lambda_{n+1}^p - \lambda_n^p - m \le mA/(n-A) = -m + nm/(n-A)$$
.

(11)
$$\lambda_{n+1}^p - \lambda_n^p \leqslant nm/(n-A).$$

By means of Schwartz inequality, lemma 2.3 and lemma 2.4, we have

$$(12) m^2 A^2/4 = \left(\sum_{\alpha,r} \langle V_{grad(x^{\alpha})} \varphi_r, U_r^{\alpha} \rangle \right)^2$$

$$\leq \left(\sum_{\alpha,r} ||V_{grad(x^{\alpha})} \varphi_r||^2 \right) \cdot \left(\sum_{\alpha,r} ||U_r^{\alpha}||^2 \right)$$

$$\leq \left\{\sum_r \lambda_r^p + pn \left(p - m + S(M)^2 \right) \right\} (n - A) .$$

If A=0, then by (10) we have $\lambda_{n+1}^p - \lambda_n^p - m \leq 0$.

This estimate is sharper than the case $A \neq 0$ because of $A \geqslant 0$. So hereafter we consider the case $A \neq 0$. Form (10) and (12), we get

(13)
$$\lambda_{n+1}^p - \lambda_n^p - m \leqslant 4 \left\{ \sum_r \lambda_r^p + pn \left(p - m + S(M)^2 \right) \right\} / mA .$$

Put $X:=\lambda_{n+1}^p-\lambda_n^p-m$ and $K:=\sum_r \lambda_r^p+pn(p-m+S(M)^2)$, then (11) and (13) mean

$$(11') X+m \leqslant nm/(n-A) .$$

$$(13') X \leqslant 4K/mA.$$

From (11') and (13'), we have

$$nmX^2 - 4KX - 4Km \leqslant 0.$$

Thus we get

$$X \leqslant 2(K + \sqrt{K^2 + Knm^2})/nm$$

 $< 2(K + \Omega K + nm^2/2\Omega)/nm$
 $= 2(\Omega + 1) K/nm + m/\Omega$.

Here Ω is a free parameter such that $\Omega \geqslant 1$. Therefore we obtain the assertion of our theorem 1.

226 S. Asada

3. Another estimate of λ_{n+1}^1

Let M be an $m(\geqslant 2)$ -dimensional compact and oriented Riemannian manifold without boundary minimally immersed in the unit sphere (of any codimension). By means of (5), we have

$$\langle \nabla \omega, \nabla \omega \rangle = \langle -\sum \nabla^i \nabla_i \omega, \omega \rangle \leqslant \langle \Delta \omega, \omega \rangle - \int_M \rho(\omega^\sharp, \omega^\sharp) \ dV_M$$

for $\omega \in A^1(M)$. Here ω^{\sharp} denotes the vector field on M such that $g(\omega^{\sharp}, X) = \omega(X)$ for any vector field X on M. Thus we get

(14)
$$\langle \nabla \omega, \nabla \omega \rangle \leqslant \langle \Delta \omega, \omega \rangle - r(M) \cdot ||\omega||^2$$
.

Using (14) instead of (3), we have a similar argument as Section 2 to obtain the assertion of our theorem 2.

REMARK 3.1. Let M be a Riemannian manifold as in theorem 1. Let $\{z^j\}$ be a normal coordinate system of M about a point $z_0 \in M$ as in proof of lemma 2.2. Then by means of (7), we have, at z_0 ,

$$ho(\omega^\sharp,\omega^\sharp) = \sum\limits_j (m\!-\!1\!-\!\xi_j^2)\!\cdot\!\omega_j^2 \qquad \left(\omega\!\in\!A^{\scriptscriptstyle 1}(M)
ight).$$

Hence for any $\omega \in A^1(M)$, we have

$$\left(m-1-S(M)^2\right) \boldsymbol{\cdot} (\boldsymbol{\omega}|\boldsymbol{\omega}) \leqslant \rho\left(\boldsymbol{\omega}^{\sharp},\, \boldsymbol{\omega}^{\sharp}\right) \leqslant (m-1) \boldsymbol{\cdot} (\boldsymbol{\omega}|\boldsymbol{\omega}) \;.$$

In particular, we get $m-1-S(M)^2 \le r(M)$. Thus for p=1, the inequality (1) follows from the inequality (2).

Acknowledgment

The author would like to express his sencere thanks to Professor H. Kitahara and Professor T. Sakai who kindly have read through the manuscript to give advices.

References

- [1] B. Y. CHEN: Geometry of Submanifolds; Pure and Applied Mathematics 22, Marcel Dekker, Inc. New York (1973).
- [2] S. Y. CHENG: Eigenfunctions and eigenvalues of laplacian; Proceedings of Symposia in Pure Mathematics, Vol. 27, 185-193 (1975).
- [3] M. MAEDA: On the Eigenvalues of Laplacian; Science Reports of the Yokohama National University, No. 24, 29-33 (1977).
- [4] L. E. PAYNE, G. PÓLYA and H. F. WEINBERGER: On the ratio of consecutive eigenvalues; J. Math. and Phys. 35, 289-298 (1956).

- [5] G. de RHAM: Variétés différentiable; Hermann Paris (1960).
- [6] T. TAKAHASHI: Minimal immersions of Riemannian manifolds; J. Math. Soc. Japan, 18, 380-385 (1966).

Department of Mathematics Faculty of Science Hokkaido University Sapporo, Japan.