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Notes on eigenvalues of Laplacian acting on p-forms

By Satoshi Asapa
(Received December 5, 1978)

1. Introduction.

By generalizing the method of Payne-Pélya-Weinberger ([4]), for a com-
pact domain on a minimal hypersurface in the Euclidean space, S. Y. Cheng
([2]) proved an inequality between successive eigenvalues of the Laplacian acting
on C*-functions on this domain. On the other hand, M. Maeda ([3]) has
got a similar result for a compact minimal submanifold with or without
boundary in the unit sphere. The purpose of the present note is to present
a similar inequality between successive eigenvalues of the Laplacian acting
on p-forms (resp. 1-forms) on a compact and oriented minimal hypersurface

(resp. minimal submanifold of any codimension) without boundary in the
unit sphere.

Let M be an m(>2)-dimensional compact and oriented Riemannian
manifold without boundary with the Riemannian metric g. For each p=0,
1,--, m, A?(M) denotes the space of all differential p-forms on M. For o,

nE€ A?(M), we can define a C*-function (o|y) on M as follows : (w|y) is locally
given by

m
((0[7]) = Z (t)jl...jpﬁkl...kpgj‘k"-°g'7pkp
.71"“71)
kykp=1

0 : o
where we put gjk:g<w, W> for a local coordinate system {27; j=1, -,

m} of M and (¢7) is the inverse matrix of (g9;). The inner product ¢ ,
on A?(M) is defined by <w,7): :SM(a)ln) dVy. Here dVy denotes the vol-

ume form of M. We put ||o|| : =v{w, w). Let d: A?(M)—A?*'(M) be the
operator of exterior differentiation and 6 : A?*1(M)—A?(M) be the adjoint
operator of d with respect to { , >. Then the Laplace-Beltrami operator
(Laplacian for short) 4 acting on p-forms is defined by 4: =dd+éd: A?(M)
—A?(M). The Laplacian is elliptic and a self-adjoint operator. Thus all
eigenvalues of the Laplacian form a discrete infinite sequence :

0=B<H<<BL 5 B—>00

where each 2 is repeated as many time as its multiplicity. Let {p,; r=



Notes on eigenvalues of Laplacian acting on p-forms 221

1,2,---} be a complete orthonormal base in A?(M) consisting of eigenforms
of the Laplacian. Then we have the so-called minimum principle.

Minimum principle.

2 =inf{{do, )/||o|F; o€ A?(M), 00, {0, ¢,> =0
for all =1, --, n} .

In Section 2, we shall prove the following theorem.

TueorREM 1. Let M be an m(>2)-dimensional compact and oriented
Riemannian manifold without boundary minimally immersed in the unit
(m~+1)-sphere. Then for each numbers n>1 and 1<p<m, we have the
inequality :

(1) Bo<ht

2(2+1) {i 22+pn<p—m+S(M)2>}+<% +1> m.

r=1
Here S(M) denotes the maximum of the length of the second fundamental

Jorm of the immersion and 2 is a free parameter such that Q>1.
In Section 3, we shall prove the following theorem.

THEOREM 2. Let M be an m(>2)-dimensional compact and oriented
Riemannian manifold without boundary minimally immersed in the unit
sphere (of any codimension). Then for each number n>1, we have the
inequality :

2(041) (& 1
(2)  Ra<ar 2 g ().
Here r(M) denotes the minimum of the Ricci curvature of M and 2 is a
Sfree parameter such that Q>1.

2. Estimate of 722,..

Let M be an m(>2)-dimensional compact and oriented Riemannian
manifold without boundary minimally immersed in the unit (m+1)-sphere
Smtitc Emt2 Let {x*; a=1, -, m+2} denote an orthonormal coordinate
system in E™*2. We also denote by x* the restriction of 2 to M. The
next is well known (cf. T. Takahashi [6]).

LeMma 2.1. dx*=mzx* (1<a< m+2).

Fix arbitrary numbers 1<p<m and n>1. We use the following con-
vention on the range of indices unless otherwise stated: 4,7,k 1,7, -
Jp=1, -, m; pu, v=1,--,p; r, t=1,---,n and a=1, ---, m+2.

LEMMA 2.2. For any o€ A?(M), we have the inequality

>
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(3) Fo, Py <{dw, 0y+p (p—m+S(MY)-|lo]*.

Here V' denotes the Levi-Civita connection defined by the Riemannian metric
g of M.
Proor. It is known that dw is locally expressed in terms of V, the

Riemannian curvature tensor R of M and the Ricci tensor p of M (cf. G.
de Rham [5], p. 131). That is, if p>2, then we have

( 4 ) (Aa))jl...jp = — Zl ViVi(l)jl...jp"— ; (— 1)” -"j,-k‘“’ki,-"ﬁu-"ip
+23 2(— 1)"+”lec~y.ijy COikjF iy
Tk p<v

and if p=1, then we have
(5) (Aw)j: —Zi:ViV,;(l)j‘l—Zk:pjk'a)k.

Here A over j, indicates that it is omitted. Fix an arbitrary point z,& M.
Since the codimension of M in S™'! is equal to one, we can choose a
normal coordinate system {27} of M about gz, such that the second funda-
mental form (Sj;) at 2, is given by a diagonal matrix, i.e., S;z=0;z6;. Here
£, denote the principal curvatures at 2,, Then, at 2, the equation of Gauss
implies

(6) R = 0005 —0x1 203+ 02 026126k — Oy 2 05525105 -

By means of Zi]&',;:O, we have, at z,,
(7) ot = —Zi:Rf?j:(m—l—fj'fk)'f?jw
First we assume that p>2. From (4), (6) and (7), we have
— ; Viviw;..;, = (dw);,.;, +P<P_‘m>'(l)jl...jp+(Zv:5jy)2'wj‘...jp .
Since 0" r=w;,.;, at z, we get

(= Z77i0lo) = (dolo)+p(p—m)-(@lo)+ T (D& (05,5,

]1'"‘727 v

On the other hand, by Schwartz inequality, we have

2 (L&) w5, ) =Pl 21 (X65)(w5,.4,)°

j:"'fp v ]1<"'<-7p N
<! 2 p(XE) 0. P<p(LE)p! 2 (0.4,
Jy<e<ip oy i Ji<<dp
<pS(M)+(o]o)

because 2 & is equal to the value of the square of the length of the
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second fundamental form at z,, Hence we have
(= 277 0l0) <(dolo) +p(p—m+SMP) (0la).
By integrating both sides of the above inequality, we get by Stokes formula
o, Twy ={~ 2710, 0>
< o, ) +p(p—m+S(MP)+ ||

Next in the case p=1, by means of (5) and (7), we have a similar argument
as above to obtain

T o, Voy<{dw, 0y +(1 —m+S(MP)+||o]?. q. e d.
ReMARK 2.1. The Riemannian curvature tensor R is defined by

R(X, Y)Z: [Vx, Vy] Z—V[ny]Z

and we put

AN .3
R(@z’“ azl> 027 :;Rma—z"’

The Ricci tensor p is defined by p(Y, Z)=Trace(X—R(X,Y)Z). Thus we

have

0 0 .
Pjr — p(@_’ %}7{) — ZZ: R.Liik .

REMARK 2.2. If M is not totally geodesic, then by means of the ine-
quality of J. Simons we have S(M72>m (cf. B. Y. Chen [1], p. 94).

Let {¢n; h=1,2,---} be a complete orthonormal base in A?(M) con-
sisting of eigenforms of the Laplacian. Put af,: ={x%,, ¢;» (=daf,) and
Uz: =x"¢p,— Z,: as, ¢;.

LEmMA 2. 3. g(ngma) @r, Usy= —(m/2)a;t(a‘:c)2.

Proor. By means of ) (x2%)%*=1, we have

< i > Z <ngd(xa) Prs xa907‘> - <‘7§x“-gmd(x") Prs 907'> =0.
On the other hand, we have -

Z <Vg1'ad(w“) Dry Zt: a‘;t§06> - Zi agt <Vgrad(.t“) Dry ¢t>
= 3t grad(z) (i) AVie— 3 a5 pns Poraaer 00>

= TZ; as, <dxa’ d(@r{ﬁot» - TZi as, <ngd'<x“) Drs ¢t>
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because of a%,=a%. Thus we have
(ii) ZT: I graae ©rs Zz: as iy = (1/2) TZ; as, <Axa: (¢7J§Dt)>
= (m/2) 5 a2 pilod) = (mf2) 3 (as)?.

Tyl
From (i) and we get the assertion of our lemma. q. e. d.
LemMa 2.4, 2| Pgraaes @< 20 B+ pn(p—m~+S(M)?).

Proor. Fix an arbitrary point g,& M. Let {2/} be a normal coordinate

, then we have, at z,,
ZU

0
system of M about 2, Put ;=57

. (ngdm“)@r’ Vgraaes 907)

= ), g(grad(x“), ej> -g(grad(x“), ek> Vj0rViey)

a,j,k

= 2 2le;x)e (ex )V 50,V pr) = ;(VJ'SDTIVJ'SW) = VeV o)

Jk «a

because of Z(ejx“)~(ekx"):gjk(zo)zéjk, Thus, by lemma 2.2, we get
ZHV sraaizsPrl|* = 2 Vo, Vpr)
< X {<ler oo +p(p—m+S(MP) -l
:ZT]prn(p—erS(M)Z). q e. d.
We see easily that <U% ¢,>=0 for any a, 7, . Thus by means of the

minimum principle, we get

(8) A LTS L AU U

If U;=0 for any « and r, then z*¢,= Z as, . S0 1= &0y, %0, > =, (a%,)?
a a,t

for all ». Hence n= ) (a%)%. This contradlcts lemma 2.3. Therefore we

rt
a,T,l

have >}||U%[2>0. On the other hand, we have }||U%|?=n— )] (a%)?. Put
a,r a,r a,r,t
A: =) (a%)? then from (8) we get

a,r,t

(9) B < (L <AUs UD) [(n—4).

It is known that for f& A°(M) and w& A?(M), we have 4(fw)=(4f) o+
Sdo—2F a0 (cf. G. de Rham [5], p. 129). Therefore we get

AU: = (Ax“) SDT‘*‘xa ASDT —2ngd(x“) ©Or— ; as, AQDL
= (m—|— l;f) o ©Or — ZVgrad(x“) Oy — ; a:t ]? @t
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and
AU, Uy = (m~+28)<x" @y Uz — 24 ragiam @r, US>
< (m+ )| Uz|12— 24V graacam Dry U‘:> .

Hence, by means of lemma 2.3, we have

AU Uy < (m+2) (n— A)+mA.

From (9), we get
(10) n——m<mAln—A)= —m+nm/(n—A).
(11) Ini— A <nmf(n—A) .

By means of Schwartz inequality, lemma 2.3 and lemma 2.4, we have
(12) 7 A4 = (5 P opaacarr o1, USD)

< (W oraacr ol 2) (ST

<{§ B4 pn(p—m+S(MP)} (n—

If A=0, then by we have 22,,— 22 —m<0.

This estimate is sharper than the case A0 because of A>0. So here-
after we consider the case Ax0. Form [10] and [12], we get

(13) B =28 —m<4{22”—|—pn<p m+S(M }/mA
Put X:=4,—8—m and K: =3 2+pn(p—m~+S(M)), then [11] and [I3)

mean
(11) X+m<nm/in—A).
(13" X<4K/mA.
From (11') and (13'), we have
nmX?—4KX—4Km<0.
Thus we get
X< 2(K+VK2+ Knm?)|nm
< 2(K+Q2K+nm?/2Q)/nm
=2(241) K/nm—+m/Q .

Here £ is a free parameter such that 2>1. Therefore we obtain the as-
sertion of our theorem 1.
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3. Another estimate of 1.,

Let M be an m(>2)-dimensional compact and oriented Riemannian
manifold without boundary minimally immersed in the unit sphere (of any
codimension). By means of (5), we have

T, Vo> =<—2VV;0,0) < {do, 0)— S oo, o) dVy

for o= A(M). Here o' denotes the vector field on M such that g(e, X)=
o(X) for any vector field X on M. Thus we get

(14) Fo,Vwy < {do, 0y —r(M)-||o|*.

Using instead of (3), we have a similar argument as Section 2 to obtain
the assertion of our theorem 2.

ReEMARK 3.1. Let M be a Riemannian manifold as in theorem 1. Let
{2} be a normal coordinate system of M about a point 2o&M as in proof
of lemma 2.2. Then by means of (7), we have, at 2,

plof, o) = Z(m—1-§)-0f (0 AYM)) .
Hence for any o€ A(M), we have
(m—1=S(M})+(0]o) < ple, o) < (m—1)+(@la)

In particular, we get m—1—S(M?<r(M). Thus for p=1, the inequality
(1) follows from the inequality (2).
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