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1. Introduction

Most of the studies of geodesies or harmonic mappings are concerned
with the numbers of them. In contrast, we study in this paper a local
variation of harmonic mapping caused by a deformation of riemannian metric.

Let (M, g) be a compact n-dimensional riemannian manifold and \overline{M}

another compact manifold. Let \overline{g}_{0} be a riemannian metric on \overline{M} and let
\psi_{0} : Marrow\overline{M} be a harmonic imbedding. We prove the following results :
If there is essentially no non-zero Jacobi fifield, then a deformation of \overline{g}_{0}

causes a simple variation of \psi_{0} . (Corollary 4. 3). But, if there exist essentially
non-zero Jacobi fifields, then for some deformation of \overline{g}_{0}, harmonic mapping
vanishes or branches off (Theorem 4. 7).

This paper is organized as follows: after preliminaries in 2, we show
in 3 that the space \mathscr{A}^{r,s} of harmonic imbeddings becomes a Hilbert mani-
fold (Theorem 3. 4). Though the isometry group I of (M, g) (n\neq 2) acts
on \mathscr{A}^{\prime r,s} , we construct another manifold 4\nearrow \mathcal{T},S instead of \mathscr{F}^{r,s}/I (Proposition
3. 10) and explain their relations between {?}^{r,s}/I and \phi’-r,s (Lemma 3. 14,
Lemma 3. 16). Combining these informations we get the main results in 4
stated above.

2. Preliminaries

In this section, we give notations, fundamental definitions and funda-
mental lemmas. Let (M, g) be a compact n-dimensional C^{\infty} riemannian mani-
fold and \overline{M} a compact \overline{n} -dimensional C^{\infty} manifold, where \overline{n}\geqq n . We denote
by H^{s}(F) the set of all H^{s}-cross sections of a fiber bundle F over a compact
C^{\infty} manifold, where H^{s} means an object which has derivatives defined almost
everywhere up to oder s and such that each partial derivative is square
integrable. H^{s}(F) becomes a Hilbert manifold, in particular, a Hilbert space
if F is a vector bundle. (See Palais [6, \S 4, \S 9, \S 10, \S 11].)

We denote by S^{2}\overline{M} the vector bundle of symmetric bilinear forms on
\overline{M}. Then, if r>\overline{n}/2 , the set .\mathscr{M}^{r} of all H^{r} metric on \overline{M} is an open set of
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H^{r}(S^{2}\overline{M}) , and so becomes a Hilbert manifold. Similarly, we see that the
set \mathscr{P}^{s} of H^{s} -imbedding of M into \overline{M} becomes an open manifold of H^{s}(\overline{M}\cross

M) if s>n/2+1 , where \overline{M}\cross M is a trivial fiber bundle over M.
Now, we fix \overline{g}\in \mathscr{M}^{r} and \psi\in \mathscr{P}^{s} . We denote by T_{\psi}\overline{M} the vector bundle

over M induced by \psi . That is, the fibre of T_{\psi}\overline{M} at x\in M is the tangent
space T_{\psi^{(x)}}\overline{M} of \overline{M} at \psi(x) . Then, there is a cannonical inner product
\langle \rangle on H^{s}(T_{\psi}\overline{M}) ;

(2. 1) \langle : \rangle = \int_{M}\overline{g}(,\cdot ) v_{g} ,

where v_{g} is the volume element of (M, g) . Moreover, there is the covariant
derivative \overline{\nabla} along \psi on the vector bundle T_{\psi}\overline{M}. Let \{x^{i}\} , \{y^{i}\} , and \overline{\Gamma}_{jk}^{i} be
a local coordinate of M, a local coordinate of \overline{M} and the Cristoffel’s symbol
of \overline{g} , respectively. If a vector field \xi along \psi and a vector field X on M
are given by

\xi(x)=\xi^{i}(x)\cdot\frac{\partial}{\partial y^{i}}|_{\psi^{(x)}}

and

X(x)=X^{a}(x) \cdot\frac{\partial}{\partial x^{a}}|_{x}’.

respectively then we define the covariant derivative \overline{\nabla}_{f}\xi along \psi as

(2. 2) ( \overline{\nabla}_{X}\xi)(x)=(X^{a}\cdot\frac{\partial\xi^{i}}{\partial x^{a}})(x)\cdot\frac{\partial}{\partial y^{i}}|_{\psi^{(x)}}

+ \overline{\Gamma}_{jk}^{i}(\psi(x))\cdot\xi^{j}(x)\cdot(X^{a}\cdot\frac{\partial\psi^{k}}{\partial x^{a}})(x)\cdot\frac{\partial}{\partial y^{i}}|_{\psi^{(x)}}

DEFINITION 2. 1. The fundamental from \alpha of \psi with respect to \overline{g} is
a cross section of the tensor bundle T_{\psi}\overline{M}\otimes S^{2}M over M which is given by
the following equation. Let X and Y be tangent vectors of M at x, and
denote a local extension of Y by the same latter Y. Then,

(2. 3) \alpha(X, Y)=\overline{\nabla}_{X}(\psi^{*}Y)-\psi^{*}(\nabla_{X}Y) ,

where \nabla is the riemannian connection of (M, g) . We see easily that \alpha(X, Y)

does not depend on extensions of the vector Y and that \alpha(Y, X)=\alpha(X, Y) .
DEFINITION 2. 2. The tension fifield \tau of \psi with respect to \overline{g} is the

trace of the fundamental form \alpha with respect to g. That is,

\tau^{i}(x)=g^{ab}(x)\cdot\frac{\partial^{2}\psi^{i}}{\partial x^{a}\partial x^{b}}(x)-g^{ab}(x)\cdot\Gamma_{ab}^{c}(x)\cdot\frac{\partial\psi^{i}}{\partial x^{c}}(x)

+g^{ab}(x) \cdot\overline{\Gamma}_{jk}^{i}(\psi(x))\cdot\frac{\partial\psi^{j}}{\partial x^{a}}(x)\cdot\frac{\partial\psi^{k}}{\partial x^{b}}(x)’.
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where \Gamma_{ab}^{c} is the Cristoffel’s symbol of g. (See Eells and Sampson [3, p.
116 (5)] .)

DEFINITION 2. 3. If the tension field \tau of \psi with respect to \overline{g} vanishes,
then \psi is said to be harmonic with respect to \overline{g} .

We denote by \overline{\mathscr{A}}^{r,s} the subset of \frac{-}{}\mathscr{M}^{r}X\mathscr{P}^{s} of all pairs (\overline{g}, \psi) such that
\psi is harmonic with respect to \overline{g} . We denote by \mathscr{M} , \mathscr{P} and \mathscr{A}^{c\prime}’ the subset
of ,\mathscr{M}\mathcal{L}^{r} , \mathscr{P}^{s} and e\overline{\mathscr{K}}^{r,s} of all C^{\infty}-0bjects, respectively.

Finally, we show some fundamental propositions concerning the differen-
tiability of the composition of H^{s}-mappings. Owing to Palais [6, \S 4], H^{s}(F)

has a system of coordinate neighbourhoods such that each neighbourhood
is diffeomorphic to an open set of a closed subspace of \Sigma H^{s}(D^{p}, R) , where
p is the dimension of the base manifold of F and H^{s}(D^{p}, R) is the vector
space of all R-valued H^{s} -functions on a closed p-dimensional disc D^{p} . There-
fore the differentiability is reduced to that following lemmas.

Lemma 2. 4 (Palais [6, 11.3 Theorem]). Assume that s>q/2+1 . If
\xi\in C^{\infty}(D^{p}, R) , \eta\in H^{s}(D^{q}, D^{p}) and \eta(D^{q})\subset int(D^{p}) then \xi\circ\eta\in H^{s}(D^{q}, R) . More-
over, there is a neighbourhood W of \eta in H^{s}(D^{q}, D^{p}) such that the com-
position : Warrow H^{s}(D^{q}, R) is C^{\infty} .

Lemma 2. 5. Assume that s>q/2+1 and r>s+p/2 . If \xi\in H^{r}(D^{p}, R) ,
\eta\in H^{s}(D^{q}, D^{p}) and \eta(D^{q})\subset int(D^{p}) then \xi\circ\eta\in H^{s}(D^{q}, R) . Moreover there is
a neighbourhood W of (\xi, \eta) in H^{r}(D^{p}, R)\cross H^{s}(D^{q}, D^{p}) such that the composi-
tion: Warrow H^{s}(D^{q}, R) is C^{r-s-[p/2]-1} .

PROOF. Immediate from Omori [5, 1. 4 Corollary] and Sobolev’s lemma.
Q. E. D.

3. A Manifold structure of the set \mathscr{H}^{r,s}

First we give some propositions to see that there is an open subset of
\backslash \wedge{?}^{-}\nearrow r,s which becomes a Hilbert manifold. We fix an element (\overline{g}_{0}, \psi_{0}) of \mathscr{A}^{\nearrow}

and a sufficiently small neighbourhood in ,\hat{\mathscr{F}}^{r,s} . Assume that s>n/2+3
and r>s+\overline{n}/2-1 . Note that the Cristoffel’s symbol \overline{\Gamma}_{jk}^{i} of \overline{g} is represented
as a rational function of \overline{g}_{ij} and \partial\overline{g}_{ij}/\partial y^{k} . Therefore, by the formula (2. 4),
\tau^{i} is represented as a rational function of \overline{g}_{ij} , \partial\overline{g}_{ij}/\partial y^{k} , \psi^{i} , \partial\psi^{i}/\partial x^{a}, \partial^{2}\psi^{i}/\partial x^{a}\partial x^{b}

and their compositions. Hence Lemma 2. 4 and Lemma 2. 5 imply that
the map: (\overline{g}, \psi)- \tau is C^{r-s-[\overline{n}/2]} (in the sense of local expression) as a map
from H^{r} metric and H^{s}-imbedding to H^{s-2} -vector field.

Let x be a point in M and let z be a point in \overline{M} which is sufficiently
near to \psi_{0}(x) . For a vector \xi\in T_{z}\overline{M}, we obtain a vector at \psi_{0}(x) by the
parallel transport along the minimal geodesic connecting z and \psi_{0}(x) with
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respect to \overline{g}_{0} . We denote this vector at \psi_{0}(x) by p(x, \xi) or simply p\xi . Note
that the map : (x, \xi)- p(x, \xi) is C^{\infty} . Thus Lemma 2. 4 implies

Lemma 3. 1. Assume that s>n/2+3 and r>s+\overline{n}/2-1 . Then there is
a neighbourhood W of (\overline{g}_{0}, \psi_{0}) in -4\angle^{r}.\cross \mathscr{P}^{s} such that the map : (\overline{g}, \psi) - p\tau

is C^{r-s-[\overline{n}/2]} as a map: Warrow H^{s-2}(T_{\psi_{0}}\overline{M}) .
We shall give the derivation of this map. Let \overline{g}(t) be a deformation

of \overline{g}_{0} , i . e. , a 1-parameter family of riemannian metrics on \overline{M} such that
\overline{g}(0)=\overline{g}_{0} . Set \overline{g}

’ (0)=h. Then by Lichnerowicz [4, (17. 2)], we see

(3. 1) \overline{g}_{0}([\alpha(X, Y)]’, \xi)=\overline{g}_{0}(\overline{\nabla}_{x’}(\psi_{0*}Y) , \xi)

= \frac{1}{2}\{(\overline{\nabla}_{\psi_{0^{*}}X}h)(\psi_{0*_{\backslash }}Y, \xi)+(\overline{\nabla}_{\psi_{0^{*}}Y}h)(\psi_{0*}X, \xi)-(\overline{\nabla}_{\xi}h)(\psi_{0*}X, \psi_{0*}Y)\}

Let \{X_{a}\} be a local orthonormal basis of (M, g) . Then

(3. 2) \overline{g}_{0}([p_{T}]’, \xi)=\overline{g}_{0}(\tau’, \xi)

= \sum_{a}\{(\overline{\nabla}_{\psi_{0^{*}}x_{a}}h)(\psi_{0*}X_{a}, \xi)-\frac{1}{2}(\overline{\nabla}_{\xi}h)(\psi_{0*}X_{a}, \psi_{0*}X_{a})\} .

We denote by \gamma(h) the right hand side of this equation. Next, we consider
a variation of \psi_{0} , i . e. , a 1-parameter family \psi(t) of imbeddings such that
\psi(0)=\psi_{0} . Set \psi’(O)=V. In the following equation, \overline{\nabla} means the covariant
derivative along \Phi : M\cross Rarrow\overline{M}, where \Phi is defined by \Phi(x, t)=\psi(t)(x) . We
omit \psi_{*} and \Phi_{*} and set \Phi_{*}(d/dt)=V. Let X be a vector field on M, then

(3. 3) \overline{\nabla}_{V}\lambda-\overline{\nabla}_{X}V=[V, X]=0

Denote by \overline{R}_{0} the curvature tensor of the metric \overline{g}_{0} . Now, we compute
V[p_{T}] .

V[p_{T}]=\overline{\nabla}_{V}\tau=tr(\overline{\nabla}_{V}\alpha) ,

\overline{\nabla}_{V}(\alpha(X, Y))=\overline{\nabla}_{V}(\overline{\nabla}_{X}Y-\nabla_{X}Y)

=\overline{R}(V, X)Y+\overline{\nabla}_{X}\overline{\nabla}_{V}Y-\overline{\nabla}_{V}\nabla_{X}X

=\overline{R}(V, X)Y+\overline{\nabla}_{X}\overline{\nabla}_{Y}V-\overline{\nabla}_{r_{X^{Y}}}V

=\overline{R}(V, X)Y+(\overline{\nabla}\overline{\nabla}V)(X, Y)+\overline{\nabla}_{a(X,Y)}V

Thus we have, at t=0,

(3. 4) V[p \tau]=\sum_{a}\overline{R}_{0}(V, X_{a})X_{a}+\sum_{a}(\overline{\nabla}\overline{\nabla}V)(X_{a}, X_{a})\zeta

We denote by \beta (V) the right side of this equation. Combining these formulae
we get
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Lemma 3. 2. The derivative of the map: (\overline{g}, \psi)- p\tau at (\overline{g}_{0}, \psi_{0}) is given by

(3. 5) (h, V)arrow\gamma(h)+\beta(V) ,

where \gamma is the fifirst order differential operator defifined by (3. 2) and \beta the
elliptic, self adjoint second order differential operator defifined by (3. 4).

PROOF. It is sufficient to prove that \beta is self adjoint.

\overline{g}_{0}(\overline{\nabla}_{X}\overline{\nabla}_{Y}V-\overline{\nabla}_{r_{X^{Y}}}V, W)

=X[\overline{g}_{0}(\overline{\nabla}_{Y}V, W)]-\overline{g}_{0}(\overline{\nabla}_{Y}V,\overline{\nabla}_{X}W)-(\nabla_{X}Y)[\overline{g}_{0}(V, W)]

+\overline{g}_{0}(V,\overline{\nabla}_{r_{X}Y}W)

=X[Y[\overline{g}_{0}(V, W)]]-X[\overline{g}_{0}(V,\overline{\nabla}_{Y}W)]-\overline{g}_{0}(\overline{\nabla}_{Y}V,\overline{\nabla}_{X}W)

-(\nabla_{X}Y)[\overline{g}_{0}(V, W)]+\overline{g}_{0}(V,\overline{\nabla}_{r_{X^{Y}}}W)

=\{\nabla\nabla(\overline{g}_{0}(V, W))\}(X, Y)-\{\nabla_{X}(\overline{g}_{0}(V,\overline{\nabla}W))\}(Y)-\overline{g}_{0}(\overline{\nabla}_{Y}, V,\overline{\nabla}_{X}W)

Set X=Y=X_{a} and take summation over a . Q. E. D.
Denote by K the vector space of all Killing vector fields on (M, g) if

n\neq 2 , or the vector space of all conformal vector fields if n=2. That is,
Z\in K if and only if

(3. 6) \nabla_{a}Z_{b}+\nabla_{b}Z_{a}-\nabla^{c}Z_{c}\cdot g_{ab}=0

Lemma 3. 3. Let \psi be an imbedding of M into \overline{M} and \tau the tension
fifield of \psi . Then,

(3. 7) \langle\tau, K\rangle=0

PROOF. Set \psi^{*}\overline{g}=\tilde{g} . For Z\in K we see

\overline{g} (\alpha(X, X) , Z)=\overline{g}(\overline{\nabla}_{X}X-\nabla_{X}X, Z)

=X[\overline{g}(X, Z)]-\overline{g}(X,\overline{\nabla}_{X}Z)-\overline{g}(\nabla_{X}X, Z)

=X[\tilde{g}(X, Z)]-\overline{g}(X,\overline{\nabla}_{Z}X)+\overline{g}(X, [Z, X])_{\}}-\tilde{g}(\nabla_{X}X, Z)

=( \nabla_{X}\tilde{g})(X, Z)+\tilde{g}(X, \nabla_{X}Z)-\frac{1}{2}Z[\overline{g}(X, X)]

+\tilde{g}(X, \nabla_{Z}X)-\tilde{g}(X, \nabla_{X}Z)

=( \nabla_{X}\tilde{g})(X, Z)+\tilde{g}(X, \nabla_{Z}Z)-\frac{1}{2}Z[\tilde{g}(X, X)]

=( \nabla_{X}\tilde{g})(X, Z)-\frac{1}{2}(\nabla_{Z}\tilde{g})(X, X)

Therefore,
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\langle\tau, Z\rangle=\int_{M}(\nabla_{a}\tilde{g}_{b}^{a}\cdot Z^{b}-\frac{1}{2}Z^{b}\nabla_{b}\tilde{g}_{a}^{a})v_{g}

=- \int_{M}(\nabla^{a}Z^{b}-\frac{1}{2}\nabla^{c}Z_{c}\cdot g^{ab})\tilde{g}_{ab}\cdot v_{g}

=0 . Q. E. D.

THEOREM 3. 4. Assume that s>n/2+3 and r>s+\overline{n}/2-1 . Then, e\overline{\mathscr{K}}^{r,s}

is closed in -{?}^{r}.\cross_{C\mathscr{P}^{s} and there is a C^{r-s-[\overline{n}/2]}- Hilbert submanifold of
J_{\wedge}t^{r}\cross \mathscr{P}^{s} which is open in , \overline{\mathscr{A}}^{r,s} and contains the set \mathscr{B}’ . We denote the
manifold by \mathscr{A}^{r,s} . Then the tangent space of \mathscr{A}^{r,s} at (\overline{g}_{0}, \psi_{0})\in \mathscr{F} is a
subspace of H^{r}(S^{2}\overline{M})\cross H^{s}(T_{\psi_{0}}\overline{M}) of all pairs (h, V) such that \gamma(h)+\beta(V)=0 .

REMARK 3. 5. This theorem shows that c\mathscr{F} becomes an ILH-submani-
fold of \vee^{\prime \mathscr{M}}\cross \mathscr{P} . (For the term “ILH”, see Omori [5, pp. 168-169].)

PROOF. Since the map: (\overline{g}, \psi) -arrow\tau is continuous, {?}^{-_{r,s} is closed. Let
(\overline{g}_{0}, \psi_{0})\in \mathscr{A} and take W given in Lemma 3. 1. Denote by (p\tau)^{NK} the orth0-
gonal part of p\tau to K. We shall apply the implicit function theorem to
the map: (\overline{g}, \psi)arrow(p\tau)^{NK} defined on W. Owing to Lemma 3. 1, this map is
C^{r-s-[\overline{n}/2]} as a map : Warrow[H^{s-2}(T_{\psi_{0}}\overline{M})]^{NK} .

First, we show that if (\overline{g}, \psi)\in W is sufficiently near to (\overline{g}_{0}, \psi_{0}) and (p\tau)^{NK}

=0 then \tau=0 . We define a symmetric 2-form on M depending on (\overline{g}, \psi) by

(3. 8) 2S(X, Y)=\overline{g}(p^{-1}\psi_{0*}X, \psi_{*}Y)+\overline{g}(p^{-1}\psi_{0*}Y, \psi_{*}X)

Since S is positive definite for \psi=\psi_{0} , S is positive definite if \psi is sufficiently
near to \psi_{0} with respect to C^{1}-topology which is weaker than H^{n/2+3} -topology.
Assume that (p\tau)^{NK}=0 . Then, if we set p\tau=X, X\in K and

S(X, X)=\overline{g}(p^{-1}\psi_{0*}X, \psi_{*}X)=\overline{g}(\tau, \psi_{*}X)

Therefore, by Lemma 3. 3, we see

\int_{M}S(X, X)v_{g}=\langle\tau, X\rangle=0,\cdot

which implies that X=0 and so \tau=0 .
Next, we show that the derivative of the map: (\overline{g}, \psi)arrow(p\tau)^{NK} at (\overline{g}_{0}, \psi_{0})

is surjective, which completes the proof. By Lemma 3. 2, we see that Im \beta

is closed and has finite codimension. Therefore it is sufficient to prove
that the orthogonal complement of Im \gamma coinsides with K. In fact, then,
the image is closed and dense owing to Palais [7, Chapter VII Theorem 7].
Let \eta by any H^{r-1}- 1 -form along \psi_{0} which is orthogonal to M at each point
of M. Since \psi_{0} is an imbedding, there is an H^{r} function f on \overline{M} such
that -1/2 \cdot tr(\psi_{0*}\overline{g}_{0})\cdot df=\eta . If we note that f is constant on \psi_{0}M, then we see
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\overline{g}_{0}(\gamma(f\cdot\overline{g}_{0})\cdot\xi)=\sum_{a}\{(X_{a}f)\cdot\overline{g}_{0}(X_{a}, \xi)-\frac{1}{2}\overline{g}_{0}(X_{a}, X_{a})\xi f\}

=\overline{g}_{0}(\eta, \xi)’.

where \{X_{a}\} is an orthonormal basis of (M, g) . Therefore Im \gamma contains
such \eta . Hence, if Z is orthogonal to Im \gamma then Z is tangent to M at each
point of M. Let h be a symmetric bilinear form on \overline{M} and set \psi_{0}*h=\tilde{h} .
Then

( \overline{\nabla}_{X}h)(X, Z)-\frac{1}{2}(\overline{\nabla}_{Z}h)(X, X)

=X[\tilde{h}(X, Z)]-h(\overline{\nabla}_{X}X, Z)-h(X,\overline{\nabla}_{X}Z)

- \frac{1}{2}Z[\tilde{h}(X, X)]+h(\overline{\nabla}_{Z}X, X)

=(\overline{\nabla}_{X}\tilde{h})(X, Z)+\tilde{h}(\nabla_{X}X, Z)+\tilde{h}(X, \nabla_{X}Z)-h(\overline{\nabla}_{X}X, Z)

+h ( [Z, X] , X)- \frac{1}{2}(\nabla_{Z}\tilde{h})(X, X)-\tilde{h}(\nabla_{Z}X, X)

=( \nabla_{X}\tilde{h})(X, Z)-\frac{1}{2}(\nabla_{Z}\tilde{h})(X, X)-h(\alpha(X, X), Z)

And

0=\langle\gamma(h) , Z \rangle=\int_{M}(\nabla^{a}\tilde{h}_{ab}\cdot Z^{b}-\frac{1}{2}Z^{b}\nabla_{b}\tilde{h}_{a}^{a})v_{g}

=- \int_{M}\tilde{h}^{ab}(\nabla_{a}Z_{b}-\frac{1}{2}\nabla^{c}Z_{c}\cdot g_{ab})v_{g} .

Since this equation holds for all \tilde{h} , the 2-tensor \nabla_{a}Z_{b}-\frac{1}{2}\nabla^{c}Z_{c}\cdot g_{ab} is show
symmetric i.e.,

(\nabla_{a}Z_{b}+\nabla_{b}Z_{a})-\nabla^{c}Z_{c}\cdot g_{ab}=0 Q. E. D.

Set ker \beta=J. The above proof implies
COROLLARY 3. 6.

(3. 9) Im \beta=[H^{s-2}(T_{\psi_{0}}\overline{M})]^{NJ} ,

(3. 10) Im \gamma=[H^{r-1}(T_{\psi_{0}}\overline{M})]^{NK}

where [ ]^{NJ} and [ ]^{NK} mean the orthgonal compliments of J and K,
respectively.

PROOF. To show the formula (3. 10), it is sufficient that the vector
space of all elements of Im \gamma which is tangent to M contains a closed and
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finite codimensional subspace of H^{r-1}(T_{\psi_{0}}\overline{M}) . (See the proof of Theorem
3. 4) Let \xi be an H^{r+1} -vector field on M and denote by the same letter
\xi an extension of \psi_{0*}\xi to M. Set h_{ij}=\overline{\nabla}_{i}\xi_{j}+\overline{\nabla}_{j}\xi_{i} . For a vector field Y on
M, we have

\overline{g}_{0} (\gamma(h) , Y)= \sum_{a}(\overline{\nabla}_{x_{a}}h)(X_{a}, Y)-\frac{1}{2}\sum_{a}(\overline{\nabla}_{Y}h)(X_{a}, X_{a})

= \sum_{a}\{X_{a}[h(X_{a}, Y)]-h(\overline{\nabla}_{x_{a}}X_{a}, Y)-h(X_{a},\overline{\nabla}_{x_{a}}Y\}

- \frac{1}{2}\sum_{a}\{Y[h(X_{a}, X_{a})]-2h(\overline{\nabla}_{Y}X_{a}, X_{a})\}

= \sum_{a}\{X_{a}[\overline{g}_{0}(\overline{\nabla}_{x_{a}}\xi, Y)+\overline{g}_{0}(X_{a},\overline{\nabla}_{Y}\xi)]-[\overline{g}_{0}(\overline{\nabla}_{\overline{V}}\xi, Y)x_{a}^{x_{a}}

+\overline{g}_{0}(\overline{\nabla}_{x_{a}}X_{a},\overline{\nabla}_{Y}\xi)]-[\overline{g}_{0}(\overline{\nabla}_{x_{a}}\xi,\overline{\nabla}_{x_{a}}Y)+\overline{g}_{0}(X_{a},\overline{\nabla}_{\overline{r}_{X_{a^{Y}}}}\xi)]

-Y[\overline{g}_{0}(\overline{\nabla}_{x_{a}}\xi, X_{a})]+[\overline{g}_{0}(\overline{\nabla}_{\overline{\nabla}_{Y^{X}a}}\xi, X_{a})+\overline{g}_{0}(\overline{\nabla}_{Y}X_{a},\overline{\nabla}_{x_{a}}\xi)]\}

=\overline{g}_{0} ( \sum_{a}(\overline{\nabla}\overline{\nabla}\xi)(X_{a}, X_{a}) , Y)+ \sum_{a}\overline{g}_{0}(X_{a},\overline{R}_{0}(X_{a}, Y)\xi)

This equation shows that the differential operator : \xiarrow\gamma(h) is elliptic. Par-
ticularly, the image of this map is closed and has finite codimension in
H^{r-1}(T_{\psi_{0}}\overline{M}) . Q. E. D.

Lemma 3. 7. The image of the projection : T_{(\overline{g}_{0},\psi_{0})^{-}}\mathscr{A}^{r,s}arrow T_{\overline{g}_{0}}\mathscr{M}^{r} coin-
sides wtih \gamma^{-1}[^{r-1}(T_{\psi_{0}}\overline{M})]^{NJ} . The image of the projection : T_{(\overline{g}_{0},\psi_{0})^{\sim}}\mathscr{F}^{r,s}arrow

T_{\psi_{0}}\mathscr{P}^{s} coinsides with H^{r+1}(T_{\psi_{0}}\overline{M}) .
PROOF. The first half is reduced to Corollary 3. 6. It is trivial that

if \gamma(h)+\beta(V)=0 and h\in H^{r}(S^{2}\overline{M}) then V\in H^{r+1}(T_{\psi_{0}}\overline{M}) . Conversely, if
V\in H^{r\dagger 1}(T_{\psi_{0}}\overline{M}) then \beta(V)\in[H^{r-1}(T_{\psi_{0}}\overline{M})]^{NJ} owing to the formula (3. 9). On
the other hand, K is contained in J by the following Corollary 3. 9. There-
fore the formula (3. 10) implies that there is h\in H^{r}(S^{2}\overline{M}) such that \gamma(h)+

\beta(V)=0 . Q. E. D.
To state Corollary 3. 9, we show
Lemma 3. 8. Let I denote the isometry group of (M, g) if n\neq 2 , or

the conformal transformation group if n=2 . Then I preserves \sim\overline{\mathscr{A}}^{r,s}, i . e. ,

if (\overline{g}, \psi)\in_{L}\overline{\mathscr{K}}^{r,s} and \gamma\in I then (\overline{g}, \psi\circ\gamma)\in\overline{\mathscr{F}}^{r,s} .
PROOF. Denote by \alpha and \tau_{\psi} the fundamental from and tension field

of \psi with respect to \overline{g} , respectively. Then
\alpha_{\psi 0\gamma}(X, Y)=\overline{\nabla}_{X}(\psi_{*}\gamma_{*}Y)-\psi_{*}\gamma_{*}\nabla_{X}Y

=\{\overline{\nabla}_{X}(\psi_{*}(\gamma_{*}Y))-\psi_{*}\nabla_{X}(\gamma_{*}Y)\}+\{\psi_{*}\nabla_{X}(\gamma_{*}Y)-\psi_{*}\gamma_{*}\nabla_{X}Y\}

=\alpha_{\psi}(\gamma_{*}X, \gamma_{*}Y)+\psi_{*}\alpha_{\gamma}(X, Y) .
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If \gamma^{*}g=\exp f\cdot g , then
\tau_{\psi\circ\gamma}=\exp f\cdot\tau_{\psi}\circ\gamma+\psi_{*}\tau_{\gamma} .

Assume that \tau_{\psi}=0 . By easy computation we see

g( \tau_{\gamma}, X)=\frac{1}{2}(2-n)Xf

Therefore, if n=2 or f is constant then \tau_{\psi\circ\gamma}=0 . Q. E. D.
c_{oROLLARY}3.9 . \beta(K)=0 .
PROOF. If X\in K then exp tX\in I. Therefore, if we define a variation

\psi(t) of \psi_{0} by \psi(t)=\psi_{0}\circ\exp tX, then \tau_{\psi^{(t)}}=0 , and so \tau’=0 . Q. E. D.
Lemma 3. 8 shows that we have to consider the coset space \mathscr{A}^{r,s}/I.

But the action of I on {?}^{r,s} is not differentiate, hence \mathscr{A}_{-}^{r,s}/I does not
become a Hilbert manifold. Here, we consider a submanifold of \mathscr{A}^{r,s} instead
of {?}^{r,s}/I. Let (\overline{g}_{0}, \psi_{0})\in.{?}^{c and W be a sufficiently small neighbourhood of
(\overline{g}_{0}, \psi_{0}) in \mathscr{F}^{r,s} . The set \sqrt\nearrow r,s is defined by

(3. 11) r\nearrow=\sim_{r,s}\{(\overline{g}, \psi)\in \mathscr{A}^{r,s}"\cap W;\psi=\exp_{\overline{g}_{0}}\xi\circ\psi_{0} , \xi\in H^{s}(T_{\psi_{0}}\overline{M}) , \langle\xi, K\rangle=0\}

PROPOSITION 3. 10. Assume that s>n/2+3 and r>s+\overline{n}/2-1 . If W

\mathscr{A}^{r,s}is,suf.fi

ciently small then f\tilde{f}^{r,s} becomes a C^{r-s-[\overline{n}/2]} -Hilbert submanifold of
We denote this manifold by K^{r,s} .

PROOF. We define the map: (\overline{g}, \exp_{\overline{g}_{0}}\xi\circ\psi_{0})\in_{c}\mathscr{F}^{r,s}arrow\xi^{K}, where \xi^{K} is the
K-component of \xi . This map is C^{r-s-[\overline{n}/2]} and the derivative at (\overline{g}_{0}, \psi_{0}) is
surjective owing to Lemma 3. 7. Apply the implicit function theorem on
this map. Q. E. D.

We denote by \Lambda^{c,s} the H^{s}-diffeomorphism group of M and \tilde{\Lambda}^{r}. the C^{\infty} -

diffeomorphism group of M. (See Omori [5, 1. 8 Lemma].) Let \mathfrak{h} be a
finite dimensional Lie algebra of C^{\infty}-vector fields on M. Then, by Palais
[8, Chapter IV Theorem III], there is a Lie transformation group H whose
Lie algebra is \mathfrak{h} .

Lemma 3. 11. Assume s>n/2 . If \mathfrak{h} and H are as above then the
inclusion : Harrow.Z^{s}| is an imbedding.

PROOF. There is a neighbourhood W of if in H such that \exp^{-1}

|W:Warrow \mathfrak{h} is a diffeomorphism onto an open set of \mathfrak{h} . Owing to Omori
[5, 1. 15 Theorem], for each positive integer k there is a sufficiently large
integer t such that exp:H^{l}(TM)arrow.Z^{s} is C^{k} . Therefore the inclusion: Warrow

\mathscr{D} , which coinsides with \exp\circ(\exp^{-1}|W) , is C^{\infty} . We easily see that the
derivative of the inclusion at id\in H is injective. Since the right multiplica-
tion of \eta\in 6\overline{\Lambda} for .Z^{\downarrow s} is C^{\infty} (see Ebin [1, Proposition 3. 4; 2, 4. 18 Th\’eor\‘eme
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fondamental]), the above information implies that the inclusion : Harrow \mathscr{D}^{s} is
an immersion.

To show that the inclusion is a homeomorphism onto its image, we
use Palais [8, Chapter IV Theorem VI], that is the topology of H coinsides
with the compact-0pen topology. Since s>n/2 , the topology of .Z^{s} is stronger
er than the compact-0pen topology. Q. E. D.

REMARK 3. 12. For the case that H is the isometry group, see Ebin
[1, Corollary 5. 4; 2, 7. 6 Th\’eor\’eme].

COROLLARY 3. 13. Denote by I the isometry group of (M, g) if n\neq 2 ,
or conformal transformation group if n=2. Then I becomes a submanifold
of\propto\vee c\gamma s for all s>n/2 .

Now, we give two lemmas which make clear the meaning that we may
consider /r^{r,s} instead of \mathscr{L}^{\nearrow r,s}/I.

Lemma 3. 14. Assume that t>n/2+3 , s>t+n/2 and r>s+\overline{n}/2-1 .
Then the composition c:r^{r,s}.\cross’Iarrow \mathscr{A}^{r,t} is C^{s-t-[n/2]-1} .

PROOF. \nearrow\nearrow r,s, c\mathscr{K}^{r,t} and I are submanifolds of \vee^{\prime \mathscr{K}^{r}}\cross \mathscr{P}^{s} , \prime \mathscr{M}^{r}\cross \mathscr{P}^{t} and
Z^{t}\vee respectively. Therefore the proof reduces to the differentiability of the
composition: \mathscr{P}^{s}\cross\hat{U}\Lambda^{t}arrow \mathscr{P}^{t} . But it is easy to check owing to Lemma 2. 5.

Q. E. D.
REMARK 3. 15. The composition c:\rho\nearrow r,s\cross I-arrow \mathscr{F}^{r,s} is continuous owing

to Ebin [1, Lemma 3. 1; 2, 4. 3 Proposition].

Lemma 3. 16. Assume that t>n/2+3 , s>t+n/2 and r>s+\overline{n}/2-1 .
Then there is a local C^{s-t-[n/2]-1} map d:\mathscr{A}^{r,s}arrow\psi^{r,t}\cross I such that c\circ d is
the identity map.

PROOF. Let \{K_{p}\} be basis of K. Difine a function on ,\mathscr{P}^{s} by

G_{pq}( \psi)=\int_{M}\overline{g}_{0}(\psi_{*}K_{p}, \psi_{*}Kj)v_{g_{0}}

We see that G_{pq} are C^{\infty} owing to Lemma 2. 4. The map which corresponds
\gamma\in I and \xi\in H^{s}(T_{\psi_{0}\circ\gamma}\overline{M}) to \xi^{K}\in H^{s}(T_{\psi_{0}c\gamma}\overline{M}) is given by

\xi^{K}=\psi_{0*}\gamma_{*}\sum_{p,q}G^{pq}(\psi_{0}\circ\gamma)\cdot\langle\xi, \psi_{0*}\gamma_{*}K_{p}\rangle\cdot K_{q} ,

where (G_{pq}) is the inverse matrix of (G_{pq}) . Since G_{pq} are C^{\infty} owing to Lem-
ma 2. 4, this map is a C^{\infty}-submersion of the vector bundle T\mathscr{P}^{s}|_{\psi_{0}\circ I} over
\psi_{0}\circ I to the subbundle \bigcup_{\gamma\in I}\psi_{0*}\gamma_{*}K of the tangent vector bundle of \psi_{0}\circ I. Hence
the kernel bundle \nu is a C^{\infty} bundle over \psi_{0}\circ I. The fiber of \nu at \psi_{0} is
[H^{s}(T_{\psi_{0}}\overline{M})]^{NK} and the derivative of Exp_{\overline{g}_{0}}|\nu at \psi_{0} is the identity and surjective
onto T_{\psi_{0}}\mathscr{P}^{s} . Therefore Exp_{\overline{g}_{0}}|\nu is a local diffeomorphism.
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Define a map \pi:\mathscr{P}^{s}arrow I by

\psi=(Exp_{\overline{g}_{0}}\circ(Exp_{\overline{g}_{0}}|\nu)^{-1}(\psi))\circ\psi_{0}\circ\pi(\psi) .

Since the map : \gammaarrow\psi_{0}\circ\gamma is injective immersion, \pi is C^{\infty} . Then the decom-
position: \psiarrow(\psi\circ(\pi(\psi))^{-1}, \pi(\psi))\in \mathscr{P}^{t}\cross I is C^{s-t-[n/2]-1} near \psi_{0} , owing to Lemma
3. 14. We define the map d by

d(\overline{g}, \psi)=( ( \overline{g}, \psi\circ(\pi(\psi))^{-1}), \pi(\psi)) Q. E. D.

4. Variations of harmonic mappings caused by deformations of
riemannian metrics

In this section we assume that s>n/2+3 , r>s+\overline{n}/2-1 and so Theorem
3. 4 and Proposition 3. 10 hold. First we consider the case that (\overline{g}_{0}, \psi_{0})\in \mathscr{B}^{\nearrow}

has the property that J=K.
Lemma 4. 1. Assume that (\overline{g}_{0}, \psi_{0})\in \mathscr{N} has the property that J=K.

Then the differential of the projection \pi:\prime l^{\nearrow r,s}arrow- \mathscr{M}^{r} at (\overline{g}_{0}, \psi_{0}) is bijective.
PROOF. Owing to Lemma 3. 7 and the formula (3. 10), the projection :

T_{(\overline{g}_{0},\psi_{0})}\mathscr{B}^{\nearrow r,s}arrow T_{\overline{c}_{0}},\mathscr{M}^{r} is surjective. Therefore, for each h\in H^{r}(S^{2}\overline{M}) there
is V\in T_{\psi_{0}’}^{os} such that (h, V)\in T_{(\overline{g}_{0}.\psi_{0})}\mathscr{F}^{r,s} , and so (h, V^{NK})\in T_{(\overline{g}_{0},\psi_{0})}\parallel^{r,s}\lrcorner , where
V^{NK} means the [H^{s}(T_{\psi_{0}}\overline{M})]^{NK}-component of V. On the other hand, if (0, V)
\in T_{(\overline{g}_{0},\psi_{0})}r^{r,s} then V\in J . But here V is orthogonal to J, and so V=0 .

Q. E. D.
THEOREM 4. 2. Assume that s>n/2+3 and r>s+\overline{n}/2-1 . If (\overline{g}_{0}, \psi_{0})\in

\mathscr{A} satisfifies J=K, then the projection \pi : d^{\nearrow r,s}arrow_{-}- \mathscr{M}^{r} is a local C^{r-s-[n/2]_{-}}

diffeomorphism around (\overline{g}_{0}, \psi_{0}) .
PROOF. Apply the inverse function theorem to Lemma 4. 1.

Q. E. D.
COROLLARY 4. 3. Under the above assumption, let \overline{g}(t) be a deforma-

tion of \overline{\mathcal{G}}0’ i . e. , a C^{\infty}-curve in - C^{r} such that \overline{g}(0)=\overline{g}_{0} . Then for sufficiently
small t, there exists unique \psi(t)\in_{L}\varphi^{s} such that (\overline{g}(t), \psi(t))\in r^{r,s} . Moreover
\psi(t) is a C^{r-s-[\overline{n}/2]} -curve in \mathscr{P}^{s} , and if we set \overline{g}

’ (0)=h and \psi’(O)=V then

(4. 1) \gamma(h)+\beta(V)=0j V\in[H^{s}(T_{\psi_{0}}\overline{M})]^{NK}

holds.
Next we consider the case that (\overline{\mathcal{G}}0, \psi_{0})\in \mathscr{A} has the property that J\supseteqq

K. Let S be a finite dimensional C^{\infty}-submanifold of ,\mathscr{M}^{r} containing \overline{\mathcal{G}}0 .
Assume that j\circ\gamma|T_{\overline{g}_{0}}S:T_{\overline{g}_{0}}S- J^{NK} is an isomorphism, where j is the pr0-

jection map to the J-part.
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Lemma 4. 4. Let \pi be the projection : \psi^{=}r,sarrow_{-}.A^{r} . Then there is a
neighbourhood W of (\overline{g}_{0}, \psi_{0}) in \prime r^{r,s} such that \pi^{-1}(S)\cap W is a fifinite dimen-
sional C^{r-s-[\overline{n}/2]} submanifold of \mathscr{A}^{r,s} . The tangent space of \pi^{-1}(S)\cap W at
(\overline{g}_{0}, \psi_{0}) is (0, J^{NK}) .

PROOF. Set (T_{(\overline{g}_{0},\varphi_{0^{)}}},\pi)(T_{(\overline{g}_{0},\psi_{0})}r^{r,s})=E. Owing to Lemma 3. 7 and the
formula (3. 10), H^{r}(S^{2}\overline{M}) is the direct sum of E and T_{\overline{g}_{0}}S. Therefore there
is a local diffeomorphism \phi:\mathscr{M}^{r}arrow H^{r}(S^{2}\overline{M}) around \overline{\mathcal{G}}0 such that \phi(S) is
contained in T_{\overline{g}_{0}}S and T_{\overline{c}_{0}}\phi\sqrt is the identity. Then, if we denote by p :
H^{r}(S^{2}\overline{M})arrow E the projection with respect to the decomposition H^{r}(S^{2}\overline{M})=T_{\overline{g}_{0}}S

\oplus E, \pi^{-1}(S) coinsides with (p\circ\phi\circ\pi)^{-1}(0) . Since the differential of p\circ\phi\circ\pi at
(\overline{g}_{0}, \psi_{0}) is surjective, there is a neighbourhood W of (\overline{g}_{0}, \psi_{0}) such that \pi^{-1}(S)

\cap W is a submanifold of \mathscr{A}^{r,s} . Let (h, V)\in T_{(\overline{g}_{0},\psi_{0})}\parallel^{\supset_{T,s}} . If T_{(\overline{g}_{0},\psi_{0})}(p\circ\phi\circ\pi)

(h, V)=0, then h\in T_{\overline{g}_{0}}(S) . But here Theorem 3. 4 and the formula (3. 9)

implies that [\gamma(h)]^{J}=0 . Therefore h=0, which implies that the tangent
space of \pi^{-1}(S)\cap W is (0, J^{NK}) . Q. E. D.

Set \pi^{-1}(S)\cap W=S’ and (\pi|S’)-\overline{g}_{0}=\overline{\pi}.\overline{\pi}(\overline{g}_{0}, \psi_{0})=0 and T_{(\overline{g}_{0},\psi_{0})}\overline{\pi}=0 .
Lemma 4. 5. Let (\overline{g}(t), \psi(t)) be a curve in S’ such that (\overline{g}(0), \psi(0))=

(\overline{g}_{0}, \psi_{0}) . If we set \overline{g}

” (0)=h and \psi’(O)=V then

(4. 2) \sum_{a}\{4\overline{R}_{0}(V, X_{a})\overline{\nabla}_{x_{a}}V+(\overline{\nabla}_{x_{a}}\overline{R}_{0})(V, X_{a})V+(\overline{\nabla}_{V}\overline{R}_{0})(V, X_{a})X_{a}\}

+\gamma(h)=0 ,

there \overline{R}_{0} is the curvature tensor of \overline{g}_{0} and \{X_{a}\} is an orthonormal frame
of M.

PROOF. If we set \overline{g}

’ (t)=\overline{h}(t) and \psi’(t)=V(t) then, by Theorem 3. 4,
we have

\gamma_{(\overline{g}^{(}t),\psi^{(t))}}(\overline{\overline{h}}(t))+\beta_{(\overline{g}(t),\psi^{(t))}}(V(t))=0 .

We give the differential of this equation at (\overline{g}_{0}, \psi_{0}) . The differential for the
direction to ,\mathcal{A}^{r} is given by \gamma(\overline{h}

’ (0) ) and the differential for the direction
to \mathscr{P}^{s} is given as \overline{\nabla}_{V}[\beta_{(\overline{g}_{0},\psi^{(t))}}(V(t))] . We compute this form. Omit t in
the following computation. Recal the definition (3. 4).

(\overline{\nabla}\overline{\nabla}V)(X, X)=\overline{\nabla}_{X}\overline{\nabla}_{X}V-\overline{\nabla}_{\overline{r}_{X}x}V ,

and
\overline{\nabla}_{V}(\overline{\nabla}_{X}\overline{\nabla}_{X}V)=\overline{R}(V, X)\overline{\nabla}_{X}V+\overline{\nabla}_{X}\overline{\nabla}_{V}\overline{\nabla}_{X}V

=\overline{R}(V, X)\overline{\nabla}_{X}V+\overline{\nabla}_{X}(\overline{R}(V, X)V+\overline{\nabla}_{X}\overline{\nabla}_{V}V)

=\overline{R}(V, X)\overline{\nabla}_{X}V+(\overline{\nabla}_{X}\overline{R})(V, X)V+\overline{R}(\overline{\nabla}_{X}V, X)V+\overline{R}(V,\overline{\nabla}_{X}X)V

+\overline{R}(V, X)\overline{\nabla}_{X}V+\overline{\nabla}_{X}\overline{\nabla}_{X}\overline{\nabla}_{V}V
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And
\overline{\nabla}_{V}(\overline{\nabla}_{\overline{r}_{X^{X}}}V)=\overline{R}(V,\overline{\nabla}_{X}X)V+\overline{\nabla}_{\overline{\ell}_{X}X}\overline{\nabla}_{V}V ,

\overline{\nabla}_{V}(\overline{R}(V, X)X)=(\overline{\nabla}_{V}\overline{R})(V, X)X+\overline{R}(\overline{\nabla}_{V}V, X)X+\overline{R}(V,\overline{\nabla}_{V}X)X

+\overline{R}(V, X)\overline{\nabla}_{V}X

=(\overline{\nabla}_{V}\overline{R})(V, X)X+\overline{R}(V,\overline{\nabla}_{X}V)X+\overline{R}(V, X)\overline{\nabla}_{X}V+\overline{R}(\overline{\nabla}_{V}V, X)X .
Therefore

\overline{\nabla}_{V}[(\overline{\nabla}\overline{\nabla}V)(X, X)+\overline{R}(V, X)X]

=4\overline{R}(V, X)\overline{\nabla}_{X}V+(\overline{\nabla}_{X}\overline{R})(V, X)V+(\overline{\nabla}_{V}\overline{R})(V, X)X+\overline{\nabla}_{X}\overline{\nabla}_{X}(\overline{\nabla}_{V}V)

-\overline{\nabla}_{\overline{\nabla}_{X^{X}}}(\overline{\nabla}_{V}V)+\overline{R}(\overline{\nabla}_{V}V, X)X

=4\overline{R}(V, X)\overline{\nabla}_{X}V+(\overline{\nabla}_{X}\overline{R})(V, X)V+(\overline{\nabla}_{V}\overline{R})(V, X)X+\beta(\overline{\nabla}_{V}V) .

Set X=X_{a} and take summation over a. Q. E. D.
Lemma 4. 6. Let \phi:R^{p}arrow R^{p} be a C^{r} -map (r\geqq 2) such that \phi(0)=0

and d\phi(0)=0 . Set 2\tilde{\phi}(v)=(Hess\phi)(v, v) , where Hess \phi is the Hessian of \phi

at the origin, i. e. , (Hess \phi) (v, v’)=v[v’(\phi)] . Assume that Im \tilde{\phi} contains an
open set of R^{p} . Let w be an element of R^{p} such that \tilde{\phi}^{-1}(w)=\{\pm v_{a}\}_{1\leqq a\leqq q}

for some q and that the linear map : varrow(Hess\phi)(v_{a}, v) is non-degenerate
for each a. If w(t) is a C^{r} -curve in R^{p} such that w(0)=0 and w’(O)=w,
then there are a neighbouhood W of 0\in R^{p} and C^{r-1} curves v_{a}(t) in R^{p}

such that v_{a}(0)=0 , v_{a}’(0)=v_{a} and

(4. 3) \phi^{-1}(w(t^{2}))\cap W=\{v_{a}(\pm t)\}_{1\leqq a\leqq q}

holds for sufficiently small t>0 .
PROOF. We may assume that w(t^{2})=t^{2}w , by changing coordinate system

of R^{p} if necessary. Let \{x^{i}\} and \{y^{i}\} be the coordinates of the domain
and the image, respectively. By the consition of \phi we can assume that \phi

has the form as \phi^{k}(x)=\phi_{ij}^{k}x^{i}x^{j} , where \phi_{ij}^{k} are C^{r-2} -function. Moreover we
see easily that the equation \phi_{ij}^{k}(x)z^{i}z^{j}=w^{k} for (z^{i}) has 2p solutions depend-
ing C^{r-2} -ly on x, which coinsides with \{\pm v_{a}\} at x=0. Let \lambda_{a}(x) be a solu-
tion such that \lambda_{a}(0)=v_{a} . We may assume that \lambda_{a}^{i}(x)\neq 0 for all i if x is
sufficiently small. In fact this is satisfied by changing coordinate system of
\{y^{j}\} if necessary. Set t_{a}^{i}(x)=x^{i}/\lambda_{a}^{i}(x) . Then t_{a}^{i} are C^{r-2} -functions and the
transformation matrix (\partial t_{a}^{j}/\partial x^{i}) at 0 is non-degenerate. Therefore there are
curves \zeta_{a}(t) in R^{p} such that t_{a}^{i}(\zeta_{a}(t))=t . \zeta_{a}(t) satisfies

\zeta_{a}^{i}(t)=t\cdot\lambda_{a}^{i}(\zeta_{a}(t)) for any a
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and

\phi^{k}(\zeta_{a}(t))=\phi_{ij}^{k}(\zeta_{a}(t))\cdot\zeta_{a}^{i}(t)\cdot\zeta_{a}^{j}(t)

=\phi_{ij}^{k}(\zeta_{a}(t))\cdot t\cdot\lambda_{a}^{i}(\zeta_{a}(t))\cdot t\cdot\lambda_{a}^{j}(\zeta_{a}(t))

=t^{2}\cdot w^{k} Q. E. D.

THEOREM 4. 7. Assume that s>n/2+3 and r>s+\overline{n}/2+1 . Let (\overline{g}_{0}, \psi_{0})

be an element of \mathscr{A} such that J\supseteqq K . Denote by \Phi(V, W) a J^{NK}-valued
symmetric 2-form on J^{NK} associated with (4. 2), that is,

(4. 4) \Phi(V, W)=-\sum_{a}\{4\overline{R}_{0}(V, X_{a})\overline{\nabla}_{x_{a}}W+(\overline{\nabla}_{x_{a}}\overline{R}_{0})(V, X_{a})W

+(\overline{\nabla}_{V}\overline{R}_{0})(W, X_{a})X_{a}+4\overline{R}_{0}(W, X_{a})\overline{\nabla}_{x_{a}}V

+(\overline{\nabla}_{x_{a}}\overline{R}_{0})(W, X_{a})V+(\overline{\nabla}_{W}\overline{R}_{0})(V, X_{a})X_{a}\}^{J^{N1i^{\vee}}}

and set \tilde{\phi}(V)=(1/2)\Phi(V, V) . Let h\in C^{\infty}(S^{2}\overline{M}) . Assume that Im \tilde{\phi} contains
an open set of J. If \tilde{\phi}^{-1}([\gamma(h)]^{J})=\{\pm V_{a}\}_{1\leqq a\leqq q} has the property that the
linear map: Varrow\Phi(V, V_{a}) is non-degenerate for each a, then, for a C^{\infty}-curve
\overline{g}(t) in .\prime K^{r} such that \overline{g}(0)=\overline{g}_{0} and \overline{g}

’ (0)=h there are a neighbourhood
W of (\overline{g}_{0}, \psi_{0}) in r^{r,s} and C^{r-s-[\overline{n}/2]-1} -curves \psi_{a}(t) in W such that \psi_{a}(0)=\psi_{0},
\psi_{a}(0)=V_{a} and

(4. 5) \pi^{-1}(\overline{g}(t^{2}))\cap W=\{(\overline{g}(t^{2}), \psi_{a}(\underline{+}_{t}))\}_{1\leqq a\leqq q}

for sufficiently small t>0 , there \pi is the projection: r^{r,s}arrow \mathscr{M}^{r} .
PROOF. Since the condition implies that [\gamma(h)]^{J}\neq 0 , we can construct

the set S introduced above Lemma 4. 5, so as to include \{\overline{g}(t)\} . Then,
by Lemma 4. 4 and Lemma 4. 5, the proof reduces to Lemma 4. 6.

Q. E. D.
REMARK 4. 8. When the variational completeness is satisfied, this the0-

rem cannot be applied. In fact, Hess \pi vanishes in this case.
ADDED IN PROOF. After this paper was written, the auther received

a preprint of J. Eells and L. Lemaire: Deformations of metrics and associ-
ated harmonic maps (to appear in the Patodi memorial volume). Some of
the results have overlap with this paper.
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