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\S 1. Introduction

Quasi-invariant cylinder measures on real Banach spaces were studied
in [8] by W. Linde. On the other hand, partially admissible shifts of meas-
ures on real linear spaces were studied in [4] and [5] by R. M. Dudley,
and in case of Hilbert spaces more complete results were given in [16] by
A. V. Skorohod.

In this paper we introduce partially admissible shifts of cylinder measures
on real linear topological spaces. The definition generalizes the notion of
partially admissible shifts of measures. Section 3 contains some results on
partially admissible shifts of cylinder measures. The main result of this
section is the following theorem.

THEOREM. Let F\subset E be linear topological spaces, and \mu be a cylinder

measure on E. Suppose that the inclusion map Farrow E be continuous, and
1\leqq p<\infty . Also suppose that one of the following two conditions be satisfified:

(1) F\subset\overline{M}_{\mu} and the linear topological space F is barrelled,

(2) F\cap\overline{M}_{\mu} is second category in F,

where we denote by \overline{M}_{\mu} the set of partially admissible shifts of the cylinder

measure \mu . Then there exists a neighbourhood V of zero in F such that
the inequality

\sup_{x\in V}|\langle x^{*}, x\rangle|\leqq(\int_{E}|\langle x^{*}, x\rangle|^{p}d\mu(x))^{1/p} for all x^{*}\in E^{*}

holds.
This generalizes the results of W. Linde [8] and D. Xia [25]. Further-

more, using this theorem, it is shown that a Banach space E is isomorphic

to a Hilbert space iff it admits a cylinder measure \mu of type 2 such that
\overline{M}_{\mu} is second category in E. The remainder parts of this section generalize
the results of R. M. Dudley [4], [5] and W. Linde [8].

In Section 4 we study the partially admissible shifts of measures, and

then our results generalize the ones of A. V. Skorohod [16] and D. Xia [25].

Throughout the paper, we assume that linear spaces are with real coeffi-
cients.
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\S 2. Basic definitions and well known results

1\circ . p-absolutely summing operators and \mathscr{L}_{p} spaces
Let E and F be Banach spaces, and denote their dual spaces by E^{*}

and F^{*} , respectively. Let 1\leqq p<\infty .
A sequence \{x_{i}\} with values in E is called weakly p-summable if for

each x^{*}\in E^{*} , the sequence \{x^{*}(x_{i})\}\in l_{p} .
A sequence \{x_{i}\} with values in E is called absolutely p-summable if

the sequence \{||x_{i}||\}\in l_{p} .
DEFINITION 2. 1. 1. A linear operator T from E into F is called p-

absolutely summing if for each \{x_{i}\}\subset E which is weakly p-summable, \{T

(x_{i})\}\subset F is absolutely p-summable.
We shall say “absolutely summing” instead of “1-absolutely summing”
The following theorems are due to J. S. Cohen. For the definitions

of p* -strongly summing operators and \mathscr{L}_{p} spaces; see [2] and [9].

THEOREM 2. 1. 1. (c. f. [2])
Let 1/p+1/p^{*}=1 . A linear operator T from E into F is p* -strongly

summing iff the adjoint operator T^{*}from F^{*} into E^{*} is p absolutely sum-
mmg.

THEOREM 2. 1. 2. (c. f. [2])
Let E be a Banach space which is isomorphic to the dual of an

\mathscr{L}_{p} -space. For any Banach space F and an operator T from E into F,

if T is p -absolutely summing then the adjoint operator T^{*} from F^{*} into
E^{*} is p-absolutely summing.

REMARK 2. 1. 1. It is easily seen that if E is isomorphic to the quotient
space of the dual of an \mathscr{L}_{arrow p} -space then Theorem 2. 1. 2. is true. For the
related results ; see [20].

It is well known (c. f. [12]) that if an operator T from E into F is
p-absolutely summing then it is q-absolutely summing (for 1\leqq p\leqq q<\infty ).
Hence, if an operator T from E into F is p* -strongly summing then it is
q^{*} -strongly summing (for 1<q^{*}\leqq p*\leqq\infty ).

PROPOSITION 2. 1. 1. (c. f. [12])
Let H be a Hilbert space and E be a Banach space. For a linear

operator T from H into E the followings are equivalent.
(1) T is p-absolutely summing (for 1\leqq p\leqq 2).
(2) There exists a Hilbert space G such that

HGE\vec{U}\vec{V}
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T=V\circ U where the linear operators U is of Hilbert-Schmidt type and V

is continuous, respectively.
An operator T from E into F is said to be Hilbertian if there exist

a Hilbert space H and continuous linear operators A:Earrow H and B:Harrow F

such that T=B\circ A .
COROLLARY 2. 1. 1. If a linear operator T from E into F is p-absO-

lutely summing {for 1\leqq p\leqq 2), then it is Hilbertian.
PORPOSITION 2. 1. 2. (c. f. [3], [10])
Any continuous linear operator from \mathscr{L}_{\infty} space into \mathscr{L}_{1} space is 2-

absolutely summing. Hence, it is Hilbertian.
COROLLARY 2. 1. 2. Let E be a Banach space which is isomorphic to

a quotient space of \mathscr{L}_{\infty}-space. Then any continuous linear operator from
E into \mathscr{L}_{1} -space is Hilbertian.

Next, we shall give a necessary and sufficient condition such that a
Banach space E is isometric to a subspace of L_{p}(\mu) , for some measure \mu .
The key notion here is that of a negative definite function.

DEFINITION 2. 1. 2. A function f from a linear space X into the non-
negative reals is said to be negative definite if f(0)=0, f(x)=f(-x) for all
x\in X and

\sum_{i,j=1}^{n}f(x_{i}-x_{j})\alpha_{i}\alpha_{j}\leqq 0

for every choice of \{x_{i}\}_{i=1}^{n}\subset X, and every choice of scalars \{\alpha_{i}\}_{i=1}^{n} with

\sum_{i=1}^{n}\alpha_{i}=0t

THEOREM 2. 1. 3. (c. f. [1])
Let 1\leqq p\leqq 2 . A Banach space E is isometric to a subspace of L_{p}(\mu) ,

for some measure \mu , iff the map xarrow||x||^{p} is negative defifinite.
COROLLARY 2. 1. 3. Let 1\leqq p\leqq 2 . Let E be a linear space and ||\cdot||

be a seminorm on E. Denote the associated Banach space of the seminormed
space (E, ||\cdot||) by \^E. If the map xarrow||x||^{p} is negative defifinite, then \hat{E} is is0-
metric to a subspace of L_{p}(\mu) , for some measure \mu .

It is well known that if f is negative definite then f^{a} is also negative
definite for every 0<\alpha\leqq 1 . Thus we have

COROLLARY 2. 1. 4. Let 1\leqq q\leqq p\leqq 2 . Then L_{p}(\mu) is isometric to a

subspace of L_{q}(\nu) for some measure \nu .
REMARK 2. 1. 2. Since every \mathscr{L}_{p} space {for 1\leqq p<\infty ) is isomorphic

to a subspace of L_{p}(\mu) for some measure \mu(c. f. [10]) , hence by the above
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corollary, every \mathscr{L}_{p}-sapce (for 1\leqq p\leqq 2) is isomorphic to a subspace of L_{1}(\mu)

for some measure \mu .

2\circ . Partially admissible shifts of cylinder measures and measures
Let E be a real linear topological space, and denote the dual space of

E by E^{*} .
First, we introduce partially admissible shifts of cylinder measures. For

the definition of cylinder sets and cylinder measures, and the related results:
see [7], [11], [23] and [25].

If a cylinder measure \mu is given on E, then \mu_{x} (for x\in E) denotes the
cylinder measure on E defined by

\mu_{x}(Z)=\mu(Z-x) for any cylinder set Z of E1

DEFINITION 2. 2. 1. An element x\in E is called an admissible shift for
the cyh.nder measure \mu if for any \epsilon>0 there is a \delta>0 such that

\mu_{x}(Z)<\epsilon

for any cylinder set Z of E for which

\mu(Z)<\delta

The set of admissible shifts of the cylinder measure \mu will be denoted
by M_{\mu} .

DEFINITION 2. 2. 2. An element x\in E is called a partially admissible
shift for the cylinder measure \mu if there is an \epsilon>0 and \delta>0 such that

\mu_{x}(Z^{c})>\epsilon

for any cylinder set Z of E for which

\mu(Z)<\delta .

where Z^{c} denotes the complement of Z in E.
The set of partially admissible shifts of the cylinder measure \mu will be

denoted by \overline{M}_{\mu} .
It is easily seen that M_{\mu}\subset\overline{M}_{\mu} , but in general M_{\mu} does not coincide

with \overline{M}_{\mu} .
REMARK 2. 2. 1. In general, the cylinder measure \mu is not \sigma-additive.

But if it happens that \mu is \sigma-additive, then using well known technique, we
can extend \mu to a probability measure on the \sigma-algebra generated by cylinder
sets. Then, it is easily seen that an element x\in E is an admissible shift
for the measure \mu in a sense of Definition 2. 2. 1. iff \mu_{x} is absolutely con-
tinuous with respect to \mu , and also seen that an element x\in E is a partially
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admissible shift for the measure \mu in a sense of Definition 2. 2. 2. iff \mu_{x}

contains a component absolutely continuous with respect to \mu . Thus, in
case of measures Definition 2. 2. 1. and Definition 2. 2. 2. coincide with the
definitions of Skorohod, respectively (c. f. [16]) .

Next, we introduce the continuity of cylinder measures.
For a cyhnder measure \mu on E, the Fourier transform \hat{\mu} of \mu is defined

by

\hat{\mu}(x^{*})=J_{E}^{\rho}e^{i\langle x^{*},x}.\grave,d\mu(x) for x^{*}\in E^{*}

Let \tau be a linear topology on E^{*} , and denote a linear topological space
E^{*} equipped with the topology \tau by E_{\tau}^{*} .

DEFINITION 2. 2. 3. The cylinder measure \mu is said to be continuous
with respect to \tau if the function \hat{\mu}(x^{*}) is continuous on E_{\tau}^{*} .

PROPOSITION 2. 2. 1. (c. f. [25])
The cylinder measure \mu is continuous with respect to \tau iff for any

\epsilon>0 there exists a neighbourhood V of zero in E_{\tau}^{*} such that

\mu(\{x||\langle x^{*}, x\rangle|>1\})<\epsilon for all x^{*}\in V

Now, we shall show examples of a linear topology \tau such that the
cylinder measure \mu is continuous with respect to \tau .

On E^{*} , we let \tau_{\mu} be the topology of convergence in \mu-cylinder measure,
metrized by the semimetric

d(x^{*}, y^{*})= \int_{E}\frac{|\langle x^{*},x\rangle-\langle y^{*},x\rangle|}{1+|\langle x^{*},x\rangle-\langle y^{*},x\rangle|}d\mu(x) for x^{*} , y^{*}\in E^{*}

Then, it is easily seen that the cylinder measure \mu is continuous with
respect to \tau_{\mu} , namely \hat{\mu}(x^{*}) is a continuous function on E_{\tau_{\mu}}^{*} . In the ensuing
discussions, we denote the linear topological space E^{*} equipped with the
topology \tau_{\mu} by E_{\mu}^{*} instead of E_{\tau_{\mu}}^{*} .

Another example is the following.
Let 1\leqq p<\infty . Define

||x^{*}||_{p}=( \int_{E}|\langle x^{*}, x\rangle|^{p}d\mu(x))^{1/p} for x^{*}\in E^{*}t

Here, if ||x^{*}||_{p}<\infty for all x^{*}\in E^{*} then ||x^{*}||_{p} is a seminorm on E^{*} . Denote
the seminormed space E^{*} equipped with the seminorm ||\cdot||_{p} by E_{p}^{*} , and
denote the associated Banach space of the seminormed space E_{p}^{*} by \hat{E}_{p}^{*} .
Then, obviously the identity map E_{p}^{*}arrow E_{\mu}^{k} is continuous, so we have that \mu

is continuous with respect to the seminorm ||\cdot||_{p} .
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Now, let 1\leqq p\leqq 2 . Then, the above example gives that of a negative
definite function. Indeed, the map x^{*}- ||x^{*}||_{p}^{p} is negative definite. Thus,
by Corollary 2. 1. 3., we have that \hat{E}_{p}^{*} is isometric to a subspace of L_{p}(\nu)

for some measure \nu .
Finally, we introduce the cylinder measure of type p(1\leqq p<\infty) .
Let E be a real Banach space.

DEFINITION 2. 2. 4. A cylinder measure \mu on E is of type p if there
is a constant C such that

( \int_{E}|\langle x^{*}, x\rangle|^{p}d\mu(x))^{1/p}\leqq C||x^{*}|| for all x^{*}\in E^{*}

REMARK 2. 2. 2.
(1) Let 1\leqq q\leqq p<\infty . If \mu is type p then \mu is type q.
(2) Let 1\leqq p<\infty . If \mu is type p then, by the previous arguments,

\mu is continuous with respect to the seminorm ||\cdot||_{p} , and so it is continuous
with respect to the norm topology of E^{*} .

(3) Let 1\leqq p\leqq 2 . If \mu is type p then \hat{E}_{p}^{*} is isometric to a subspace
of L_{p}(\nu) for some measure \nu .

\S 3. The cylinder measure case

In this section we shall discuss the partially admissible shifts of cylinder
measures. Let E be a real linear topological space, and denote the dual
space of E by E^{*} . For an element x\in E, define

e_{x}(x^{*})=\langle x^{*}, x\rangle for x^{*}\in E^{*}

PROPOSITION 3. 1. Let \mu be a cylinder measure on E, and let \tau be
a linear topology on E^{*} such that \mu is continuous with respect to \tau . Then
for each x\in\overline{M}_{\mu} , e_{x} is a continuous linear functional on E_{\tau}^{*} .

PROOF. Let x\in\overline{M}_{\mu} . Then, from the definition of \overline{M}_{\mu} , there exists an
\epsilon>0 and \delta>0 such that \mu_{x}(Z^{c})>\epsilon for every cylinder set Z of E for which
\mu(Z)<\delta . Here, we may assume that 0<\delta<\epsilon<1 .

On the other hand, since the cylinder measure \mu is continuous with
respect to \tau , hence there exists a neighbourhood V of zero in E_{\tau}^{*} such that

\mu(\{y||\langle x^{*}, y\rangle|>1\})<\delta for all x^{*}\in V

For each x^{*}\in V, put

Z_{x^{*}}=\{y||\langle x^{*}, y\rangle|>1\}

Then, \mu(Z_{x^{*}})<\delta implies that \mu_{x}(Z_{x^{*}}^{c})>\epsilon . Since \mu(E)=1 , hence it is
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easily seen that there exists an element z\in E such that the inequalities

|\langle x^{*}, z\rangle|\leqq 1 and |\langle x^{*}, z+x\rangle|\leqq 1

holds.
From this it follows

|\langle x^{*}, x\rangle|\leqq 2 for all x^{*}\in V

This shows that e_{x} is continuous on E_{\tau;}^{*} and we complete the proof.
COROLLARY 3. 1. For each x\in\overline{M}_{\mu} , e_{x} is a continuous linear functional

on E_{\mu}^{*} .
By the same method as the proof of Proposition 3. 1., we have
PROPOSITION 3. 2. Let \mu be a cylinder measure on E. If a sequence

of cylinder sets Z_{n} of E satisfifies that

\lim_{narrow\infty}\mu(Z_{n})=1 .

then, the following inclusion

\overline{M}_{\mu}\subset\bigcup_{n=1}(Z_{n}-Z_{n})

holds.
Let H be a real Hilbert space, and let \mu_{H} be a canonical Gaussian

cylinder measure on H. Then, \mu_{H} is a quasi-invariant cylinder measure
c . f . [8] ) , and hence M_{\mu}=H, in particular, \overline{M}_{\mu}=H. Thus, we have

COROLLARY 3. 2. If a sequence of cylinder sets Z_{n} of H satisfifies that

\lim_{narrow\infty}\mu_{H}(Z_{H})=1-,

then the identity

H= \bigcup_{n=1}^{\infty}(Z_{n}-Z_{n})

holds.
Now, let \mu be a cylinder measure on E, and let 1\leqq p<\infty . Recall that

||x^{*}||_{p} (for x^{*}\in E^{*}) be defined by

||x^{*}||_{p}=( \int_{E}|\langle x^{*}, x\rangle|^{p}d\mu(x))^{1/p} for x^{*}\in E^{*}

Let U_{p} and U_{p}^{0} be defined by

U_{p}=\{x^{*}\in E^{*}|||x^{*}||_{p}\leqq 1\} and U_{p}^{0}=\{x\in E||\langle x^{*}, x\rangle|\leqq 1

for all x^{*}\in U_{p}\}
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Then, we have the following.

Lemma 3. 1. \overline{M}_{\mu}\subset\bigcup_{n=1}nU_{p}^{0} .

PROOF. Assume the contrary. Then, there exists an element x\in\overline{M}_{\mu}

and sequence x_{n}^{*}\in U_{p} such that the inequality

|\langle x_{n}^{*}, x\rangle|>n (n=1,2, \cdots)

holds.

Since \frac{1}{n}x_{n}^{*} tends to zero with respect to ||\cdot||_{p} , hence tends to zero in
\mu-cylinder measure. Thus, by Corollary 3. 1., we have

\lim_{narrow\infty}|\langle\frac{1}{n}x_{n}^{*}. , x\rangle|=0 .

That is a contradiction, and we complete the proof.
By this lemma, we obtain the following main theorem. That generalizes

a result of Linde [8]. We prove it for partially admissible shifts of cylinder
measures instead of admissible shifts of cylinder ones.

THEOREM 3. 1. Let F\subset E be linear topological spaces, and \mu be a
cylinder measure on E. Suppose that the inclusion map Farrow E be continuous,
and 1\leqq p<\infty . Then we have the followings.

(1) If F\subset\overline{M}_{\mu} and the linear topological space F is barrelled, then
there exists a neighbourhood V of zero in F such that the inequality

\sup_{x\in V}|\langle x^{*}, x\rangle|\leqq||x^{*}||_{p} for all x^{*}\in E^{*}

holds.
(2)If F\cap\overline{M}_{\mu} is second category in F, then there exists a negihbourhood

V of zero in F such that the inequality

\sup_{x\in V}|\langle x^{*}, x\rangle|\leqq||x^{*}||_{p} for all x^{*}\in E^{*}

holds.
PROOF. (1): It is easily seen that the set U_{p}^{0} is convex, balanced and

closed in E. Since the inclusion map Farrow E is continuous, hence by Lemma
3. 1., F\cap U_{p}^{0} is a barrel in F.

Thus, by the assumption of F, there exists a neighbourhood V of zero
in F such that V\subset U_{p}^{0} .

This shows that the inequality holds for V, and we complete the proof.
(2): The assertion can be proved in a similar way as in the proof of

(1), so we omit it.
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REMARK 3. 1. Let \mathfrak{F} be a \sigma-algebra of subsets of E which is invariant
under E (i . e . for any x\in E and any Z\in \mathfrak{F} , Z-x\in \mathfrak{F} holds), and contains
all cylinder sets in E, and let \mu be a non-trivial (i. e. \mu(E)>0) measure on
(E, \mathfrak{F}) . Then Theorem 3. 1. is also true.

Thus, our theorem generalizes a result of Xia [25], and then we proved
it for partially admissible shifts instead of admissible shifts.

PROPOSITION 3. 3. Let 1\leqq p\leqq 2 . Let F\subset E be Banach spaces, and let
the inclusion map T:Farrow E be continuous. If there exists a cylinder meas-
ure \mu of type p on E such that F\cap\overline{M}_{\mu} is second category in F, then the
adjoint map T^{*}: E^{*}arrow F^{*} can be decomposed as follows;

E^{*}GF^{*}\overline{J}\overline{K}

T^{*}=K\circ J where G is a Banach space which is isomorphic to a subspace

of L_{p}(\nu) for some measure \nu, and J and K are continuous linear maps,
respectively.

PROOF. Let \mu be a cylinder measure of type p on E such that F\cap\overline{M}_{\mu}

is second category in F. Then, by Theorem 3. 1., there exists positive con-
stants C_{1} and C_{2} such that the inequalities

||T^{*}x^{*}||_{F^{*}}\leqq C_{1}||x^{*}||_{p}\leqq C_{2}||x^{*}||_{E^{*}} for x^{*}\in E^{*}

holds.
Thus, it is easily seen that the adjoint map T^{*}: E^{*}arrow F^{*} can be de-

composed as follows ;

E^{*}\hat{E}_{p}^{*}F^{*}\overline{J}\overline{K}

T^{*}=K\circ J where the natural maps J and K are continuous.
Since a Banach space \hat{E}_{p}^{*} is isometric to a subspace of L_{p}(\nu) , for some

measure \nu (c . f . Remark 2. 2. 2.), hence we complete the proof.

REMARK 3. 2. In the above proposition, if 2<p<\infty , then \mu is of type
2. Hence the adjoint map T^{*}: E^{*}arrow F^{*} is Hilbertian.

COROLLARY 3. 3. Let E be a reflexive Banach space, and F be a closed
subspace of E. If there exists a cylinder measure \mu of type p(1\leqq p\leqq 2)

on E such that F\cap\overline{M}_{\mu} is second category in F, then F is isomorphic to
a quotient space of the dual of L_{p}(\nu) for some measure \nu .

COROLLARY 3. 4. Let E be a Banach space, and F be a closed subspace
of E. If there exists a cylinder measure \mu of type 2 on E such that F\cap\overline{M}_{\mu}

is second category in F, then F is isomorphic to a Hilbert space.
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EXAMPLE 3. 1. Let 1\leqq p<2 , or 2<p<\infty . Let F be an infinite dimen-
sional closed subspace of l_{p} , and let \mu be a cylinder measure of type 2 on
l_{p} . Then, F\cap\overline{M}_{\mu} is first category in F.

PROOF. Assume the contrary. Then by Corollary 3. 4., F is isomor-
phic to a Hilbert space. However, l_{p} does not contain any infinite dimen-
sional closed subspace which is isomorphic to a Hilbert space (c. f. [10]) .
That is a contradiction.

EXAMPLE 3. 2. Let 2<p\leqq\infty . Let \mu be a cylinder measure of type
2 on l_{\infty} . Then l_{p}\cap\overline{M}_{\mu} is first category in l_{p} .

PROOF. Assume the contrary. Then, by Renark 3. 2., the inclusion
map : l_{p}arrow l_{\infty} is Hilbertian, and so by the theorem of Pitt [14], it is com-
pact. That is a contradiction.

The following theorem is essentially the same as a result of Linde [8].

THEOREM 3. 2. A Banach space E is isomorphic to a Hilbert space
iff there exists a cylinder measure \mu of type 2 on E such that \overline{M}_{\mu} is second
category in E.

PROOF. By Corollary 3. 4. and the result of Linde [8], it is obvious.
PROPOSITION 3. 4. Let F\subset E be Banach spaces, and the inclusion map

from F into E be continuous. Suppose that E is isomorphic to a subspace
of \mathscr{L}_{1} -space. Also suppose that there exists a cylinder measure \mu of type
1 on E such F\subset\overline{M}_{\mu} is second category in F. Then, the inclusion map T :
Farrow E is Hilbertian.

PROOF. By Proposition 3. 3., the adjoint map T^{*}: E^{*}arrow F^{*} can be de-
composed as follows;

E^{*}GF^{*}\overline{J}\vec{K}

T^{*}=K\circ J where G is a Banach space which is isomorphic to a subspace
of L_{1}(\nu) for some measure \nu , and J and K are continuous linear maps,
respectively.

Since E^{*} is isomorphic to a quotient space of \mathscr{L}_{\infty}-space, hence by
Corollary 2. 1. 2., the map J is Hilbertian. Thus the map T:Farrow E is Hil-
bertian, and that completes the proof.

As an easy consequence of Proposition 3. 4., we have

COROLLARY 3. 5. Let E be a Banach space which is isomorphic to
a subspace of \mathscr{L}_{1} -space, and let F be a closed subspace of E. Suppose that
there exists a cylinder measure \mu of type 1 on E such that F\cap\overline{M}_{\mu} is second
category in F. Then F is isomorphic to a Hilbert space.
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EXAMPLE 3. 3. Let 1\leqq p<2 .
(1) Let \mu be a cylinder measure of type 1 on l_{p} . Then, l_{1}\cap\overline{M}_{\mu} is

first category in l_{1} .
(2) Let F be an infinite dimensional closed subspace of l_{p} , and let \mu be

a cylinder measure of type 1 on l_{p} . Then, F\cap\overline{M}_{\mu} is first category in F.
PROOF. (1) : Assume the contrary. Since l_{p} is isomorphic to a sub-

space of \mathscr{L}_{1} space (c. f. [10]) , hence it follows from Proposition 3. 4. that
the inclusion map: l_{1}- l_{p} is Hilbertian, and so it is compact (c. f. [14]) . That
is a contradiction.

(2) Assume the contrary. Then, it follows from Corollary 3. 5. that
F is isomorphic to a Hilbert space. However l_{p} does not contain any in
finitite dimensional closed subspace which is isomorphic to a Hilbert space
(c. f. [10]) . That is a contradiction.

\S 4. The measure case

In this section we shall discuss the partially admissible shifts of measures.
THEOREM 4. 1. Let F\subset E be linear topological spaces, and let the

inclusion map: Farrow E be continuous. Suppose that E is a separable linear
metric space. Also suppose that there exists a fifinite Borel measure \mu (non-
trivial) on E such that F\cap\overline{M}_{\mu} is second category in F. Then, there exists
a neighbourhood V of zero in F such that V is precompact in E.

PROOF. Since E is a separable linear metric space, hence it follows
(c. f. [25]) that there exists a sequence of precompact sets B_{n} in E such that

\lim_{narrow\infty}\mu(B_{n})=\mu(E) .

Hence, by Proposition 3. 2., we have

\overline{M}_{\mu}\subset\bigcup_{n=1}^{\infty}(B_{n}-B_{n})

Let K_{n} be a closure of the set (B_{n}-B_{n}) in E. Then, K_{n} is closed and
precompact in E.

Since the inclusion map : Farrow E is continuous, and F\cap\overline{M}_{\mu} is second
category in F, it follows that F\cap K_{n} is closed in F and the set S defined by

S= \bigcup_{n=1}(F\cap K_{n})

is second category in F.
From this it follows that there exists n such that F\cap K_{n} contains some

open set in F. Hence it follows that there exists a neighbourhood V of
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zero in F such that V is precompact in E. That completes the proof.
COROLLARY 4. 1. Let E be a separable linear metric space. If there

exists a fifinite Borel measure \mu (non-trivial) on E such that \overline{M}_{\mu} is second
category in E, then E is fifinite dimensional.

PROOF. Since locally precompact linear topological space is finite di-
mensional (c. f. [22]) , hence by Theorem 4. 1. we complete the proof.

REMARK 4. 1. Let E be a complete separable linear metric space, and
\mu be a finite Borel measure (non-trivial) on E. If E is infinite dimensional,
then by the above corollary \overline{M}_{\mu} can not coincide with E. Namely, there
exists an element x in E such that \mu and \mu_{x} are mutually singular.

From now on, we assume that a linear space E be infinite dimensional
and a Borel measure \mu on E be non-trivial.

REMARK 4. 2. If a Banach space E is separable, then it is obvious
that Theorem 4. 1. and Corollary 4. 1. are true. However, if E is not sepa-
rable, then in general Theorem 4. 1. is not true (for example E=l_{\infty}).

On the other hand, Skorohod [16] has shown that if E is a Hilbert
space, then Theorem 4. 1. and Corollary 4. 1. are true.

In the ensuing discussions, we shall show that for any reflexive Banach
space E Theorem 4. 1. is true, and for any Banach space E Corollary 4. 1.
is true.

THEOREM 4. 2. Let E be a Banach space, F be a barrelled space and T
be a continuous linear map from F into E. Let \mu be a fifinite Borel meas-
ure on E, and suppose that T(F)\subset\overline{M}_{\mu} . Then, the map T can be decomposed
as follows;

FGE\overline{J}\overline{K}

T=K\circ J where G is a Banach space, J is a continuous linear map and
K is a\infty -strongly summing map, respectively.

Moreover if a Banach space E is reflexive, then the map T is compact.
Before proving the above theorem, we give the following notation.
The normed space E_{B} : Let E be a locally convex Hausdorff space,

and B a bounded convex balanced subset of E. Let E_{B} be the vector sub-
space of E spanned by B ; note that B is absorbing subset of E_{B} . For
x\in E_{B} , define

||x||_{B}= \inf_{x\in\lambda B}|\lambda|

Then, ||x||_{B} is a norm on E_{B} , and we obtain a normed space E_{B} equipped
with the norm ||\cdot||_{B} .
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It is well known that the inclusion map: E_{B}arrow E is continuous, moreover,

if the set B is complete, then E_{B} is a Banach space (c. f. [22]) .
Now, we return to the proof of Theorem 4. 2..

PROOF. We may assume that \mu satisfies the condition

\int_{E}||x||d\mu(x)<\infty

for otherwise, we can replace \mu by the equivalent measure

\mu_{1}(A)=\int_{A}\exp(-||x||)d\mu(x) for Borel set A in E

which certainly satisfies this condition, and \overline{M}_{\mu}=\overline{M}_{\mu_{1}} .
Recall that the seminorm ||\cdot||_{1} on E^{*} be defined as follows;

||x^{*}||_{1}= \int_{E}|\langle x^{*}, x\rangle|d\mu(x) for x^{*}\in E^{*}

Let U_{1} and U_{1}^{0} be defined as before (c . f . \S 3. Lemma 3. 1.). Then,

it is easily seen that U_{1}^{0} is a bounded convex balanced complete subset of
E. Hence, E_{U_{1}^{0}} is a Banach space and the inclusion map: E_{U\S}arrow E is con-
tinuous.

It follows from Theorem 3. 1. that \overline{M}_{\mu}\subset E_{U_{1}^{0}} , and so by the assumption
we get T(F)\subset E_{U_{1}^{0}} .

Now we prove that the map J:Farrow E_{U_{1}^{0}} is continuous, where J is defined
by Jx=Tx for x\in F.

Denote the inclusion map: E_{U_{1}^{0}}arrow E by K. Then, T=K\circ J . Since the
maps T and K are continuous, and K is one-t0-0ne, hence it follows from
Proposition 17. 2. in [22] that the graph of J is closed in F\cross E_{U_{1}^{0}} . Thus,

by the closed graph theorem (c. f. [24]) , J is continuous from F into E_{U_{1}^{0}} .
Next, we prove that the map K:E_{U_{1}^{0}}arrow E is \infty -strongly summing.
In order to prove this, by Theorem 2. 1. 1., we may show that the

adjoint map K^{*}: E^{*}arrow(E_{U_{1}^{0}})^{*} is absolutely summing.
By the definition of U_{1}^{0} , for x^{*}\in E^{*} we have

||K^{*}x^{*}||_{(E_{U_{1}^{0)*}}}= \sup_{x\in\eta}|\langle K^{*}x^{*}, x\rangle|

= \sup_{x\in U_{1}^{Q}}|\langle x^{*}, x\rangle|\leqq||x^{*}||_{1\tau}

Let \{x_{n}^{*}\} be a weakly summable sequence in E^{*} , then it is easily seen
that there exists a positive constant C such that

\sum_{n=1}^{\infty}|\langle x_{n}^{*}, x\rangle|\leqq C||x|| for all x\in Et



Partially admissible shifts on linear topological spaces 163

Hence, we have

\sum_{n=1}^{\infty}||K^{*}x_{n}^{*}||_{(E_{U_{1}^{0)^{*\leqq\sum_{n=1}^{\infty}||x_{n}^{A_{1}}||_{1}}}}}

= \int\sum_{En=1}^{\infty}|\langle x_{n}^{*}, x\rangle|d\mu(x)

\leqq C\int_{E}||x||d\mu(x)<\infty

This shows that the map K^{*}: E^{*}arrow(E_{U_{1}^{0}})^{*} is absolutely summing. Thus
we have the first assertion.

Finally, we prove the second assertion. Suppose that a Banach space
E is reflexive. Then, by the first argument, we may show that the map
K:E_{U_{1}^{0}}arrow E is compact, and it is equivalent to that the adjoint map K^{*}:

E^{*}arrow(E_{U\S})^{*} is compact.
Let \{x_{n}^{*}\} be a bounded sequence in E^{*}.. Since E is reflexive, hence

by Eberlein’s theorem there exists a subsequence \{x_{n_{j}}^{*}\} of \{x_{n}^{*}\} and x^{*}\in E^{*}

such that w^{*}-h.mx_{n_{j}}jarrow\infty*.=x^{*} .
Thus, by the first argument and Lebesgue’s dominated convergence

theorem, we have

\varlimsup_{jarrow\infty}||K^{*}x_{n_{j}}^{*}-K^{*}x^{*}||_{(E_{U_{1}^{0)*}}}\leqq\varlimsup_{jarrow\infty}\int_{E}|\langle x_{n_{j}}^{*_{\backslash }}-x^{*}, x\rangle|d\mu(x)=0 .

This shows that the map K^{*}: E^{*}arrow(E_{U_{1}^{0}})^{*} is compact, and we complete
the proof.

REMARK 4. 3. In the above theorem, it is easily seen that we can
replace the condition “F is barrelled and T(F)\subset\overline{M}_{\mu}

” by the condition “ T^{-1}

(\overline{M}_{\mu}) is second category in F’ ’

Since a \infty -strongly summing operator from a Banach space into a
Hilbert space is decomposed through a Hilbert-Schmidt operator, we have
the following corollary. That generalizes the results of Xia [25] and the
author [19].

COROLLARY 4. 2. Let H be a Hilbert space, and \mu be a fifinite Borel
measure on H. Then the following (1) and (2) holds.

(1) There exists a Hilbert space G such that
\overline{M}_{\mu}\subset G\subset H

where the inclusion map: Garrow H is of Hilbert-Schmidt type.
(2) Let F be a linear subspace of H such that F\subset\overline{M}_{\mu} . Suppose that

F itself is barrelled, and the inclusion map T:Farrow H is continuous. Then,
there exists a Hilbert space G such that
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F\subset G\subset HJK

T=K\circ J where the inclusion maps J is continuous and K is of Hilbert-
Schmidt type, respectively.

COROLLARY 4. 3. Let E be a Banach space which is isomorphic to
a subspace of \mathscr{L}_{1} space. Let \Phi be a linear subspace of E, and suppose
that \Phi itself is a complete \sigma-Hilbert space with respect to the sequence of
inner products (x, y)_{n} , n=1,2, \cdots .

Also, suppose that the inclusion map T:\Phiarrow E is continuous. For
each n, let \Phi_{n} denote the completion of \Phi with respect to the inner product
(x, y)_{n} . Then the following implication (1)\Rightarrow(2) holds.

(1) There exists a fifinite Borel measure \mu on E such that \Phi\cap\overline{M}_{\mu} is
second category in \Phi .

(2) There exists n such that the inclusion map T:\Phiarrow E can be extended
to a Hilbert-Schmidt map from \Phi_{n} into E.

PROOF. Assume that condition (1). Then, by the remark of Theorem
4. 2., there exists n such that the map T can be extended to a \infty -strongly
summing map from \Phi_{n} into E. Since a Banach space E is isomorphic to
a subspace of \mathscr{L}_{1} -space, it follows from Theorem 2. 1. 1., Theorem 2. 1. 2.
and Proposition 2. 1. 1. that the map T:\Phi_{n}arrow E can be decomposed through
a Hilbert-Schmidt map. That completes the proof.

Finally, we obtain the following corollaries. These generalize the results
of Skorohod [16].

COROLLARY 4. 4. Let E be a Banach space, and let \mu be a fifinite Borel
measure on E. Then, the following (1) and (2) holds.

(1) \overline{M}_{\mu} is fifirst category in E.
(2) If the Banach space E is refi\dot{\epsilon} xive, then for any infifinite dimen-

sional closed subspace F of E, F\cap\overline{M}_{\mu} is fifirst category in F.
PROOF. (2): Assume the contrary. Then, by the remark of Theorem

4. 2., the inclusion map: Farrow E is compact. This shows that the Banach
space F is locally compact, and it follows that F is finite dimensional. That
is a contradiction.

(1) : Assume the contrary. Since we may assume that the measure
\mu is of type 2 (c . f . the proof of Theorem 4. 2.), it follows from Theorem
3. 2. that E is isomorphic to a Hilbert space. Hence, E is reflexive, and
so by (2) that is a contradiction.

COROLLARY 4. 5. Let E be a Fr\’echet space, and \mu be a fifinite Borel
measure on E. Then, there exists an element x in E such that \mu and \mu_{x}

are mutually singular.
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PROOF. Assume the contrary. Since by the theorem of Sato [15] the
measure \mu has a Banach support G, here the inclusion map: Garrow E is con-
tinuous, and it follows from Proposition 3. 2. and the closed graph theorem
(c. f. [24]) that E is isomorphic to a Banach space G. Thus, from Corollary
4. 4. that is a contradiction.
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