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On the Dirichlet problem for unbounded
boundary functions
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(Received April 26, 1979)

1. We study the boundary behavior of the Dirichlet solution for an
unbounded boundary function in this paper. We treat the Dirichlet problem
by the Perron-Wiener-Brelot method. Let G be a bounded open set in the
complex plane and let f(b) be an extended real-valued function defined on
its boundary \partial G . The upper class U_{f}^{G} for f is given by

U_{f}^{G}=\{s ; superharmonic, bounded below on G_{j}

\varliminf_{zarrow b}s(z)\geqq f(b) for all b\in\partial G\}

and set \overline{H}_{f}^{G}(z)=\inf\{s(z); s\in U_{f}^{G}\} and \underline{H}_{f}^{G}(z)=-\overline{H}_{-f}^{G}(z) for z\in G . If \overline{H}_{f}^{G}=

\underline{H}_{f}^{G} and both harmonic, then f is called to be resolutive and H_{f}^{G}=\overline{H}_{f}^{G}=

\underline{H}_{f}^{G} is called the Dirichlet solution for f. Any bounded continuous function
on \partial G is resolutive. A point b\in\partial G is called a regular boundary point if
(1)

\lim_{zarrow b}H_{g}^{G}(z)=g(b)

for every bounded continuous function g on \partial G . Otherwise b is an irregular
boundary point. The regularity is a local character, that is, if b is a regular
boundary point for G and G_{0} is an open subset of G for which b is also
a boundary point, then b is regular for G_{0} .

Let b\in\partial G be a regular boundary point. By M. Brelot’s example [1],
we know that (1) does not always hold for any unbounded function, even
if it is continuous and resolutive. In this paper, we give a sufficient con-
dition for (1) to hold. Our result is the following:

THEOREM. Let f be an extended real-valued continuous and resolutive
function on \partial G . Suppose b_{0}\in\partial G is a regular boundary point If there is
a disk B(b_{0}, r_{0})=\{z;|z-b_{0}|<r_{0}\} such that the Dirichlet integral D_{G\cap B(b_{0},r_{0})}

(H_{f}^{G}) of H_{f}^{G} on G\cap B(b_{0}, r_{0}) is finite, then lim H_{f}^{G}(z)=f(b_{0}) .
zarrow b_{0}

For another sufficient condition, we refer to W. Ogawa [3].
2. The proof of the theorem. We refer to the monograph of Con-

stantinescu-Cornea [2] for the definition and the properties of Dirichlet fun-
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ctions. We denote by E the set of all irregular boundary points of \partial G .
First assume that f\geqq 0 on \partial G . For every positive integer m, define

f_{m}(b)= \min(f(b), m) and H_{m}=H_{J_{m}}^{G} . Since f_{m} is bounded continuous on \partial G ,

(2) \lim_{zarrow b}H_{m}(z)=f_{m}(b) for every b\in\partial G-E .

Since f_{m}\uparrow f, H_{m}\uparrow H_{f}^{G} on G. Since \varliminf_{zarrow b_{0}}H_{f}^{G}(z)\geqq\lim_{zarrow b_{0}}H_{m}(z)=f_{m}(b_{0})
for every

m, we have

\varliminf_{zarrow b_{0}}H_{f}^{G}(z)\geqq f(b_{0})

From this it follows that if f(b_{0})=+\infty , lim H_{f}^{G}(z)=+\infty . Therefore we can
zarrow b_{0}

assume f(b_{0})<+\infty . Take an integer m_{0} such that f(b_{0})<m_{0} . Then there
is a disk B_{1}=B(b_{0}, r_{1}) such that 0<r_{1}<r_{0} and f(b)<m_{0} for every b\in\partial G\cap

B_{1} . For every n and m such that n>m\geqq m_{0} , define

S_{n,m}=H_{n}-H_{m} .

Since f_{n}(b)=f_{m}(b)=f(b) for every b\in\partial G\cap B_{1} , it follows from (2) that

(3) \lim_{zarrow b}S_{n,m}(z)=0 for every b\in(\partial G-E)\cap B_{1}

We denote by I the component of \partial G which contains b_{0} .
Case 1. The case where I is a single point b_{0} . In this case, there is

a Jordan region D\subset B_{1} such that b_{0}\in D and \partial D\subset G . Define a function f_{0}

on \partial(G\cap D) as follows :

f_{0}(b)=\{
H_{f}^{G}(b) if b\in\partial D_{j}

0 if b\in\partial G\cap D .

Then f_{0} is bounded continuous and so resolutive. Consider H_{f_{0}}^{G\cap D}-S_{n,m} ,
which is bounded harmonic on G\cap D . Since every point of \partial D is regular
for G\cap D,

\lim_{zarrow b}(H_{f_{0}}^{G\cap D}(z)-S_{n,m}(z))=H_{f}^{tf}(b)-(H_{n}(b)-H_{m}(b))\geqq 0

for every b\in\partial D, and by (3), lim (H_{f_{0}}^{G_{1}\gamma D}(z)-S_{n,m}(z))=0 for every b\in(\partial G-

zarrow b

E)\cap D . Since E is a polar set and \partial(G\cap D)-E=\partial D\cup((\partial G-E)\cap D) , this
shows that

S_{n,m}(z)\leqq H_{f_{0}}^{G\cap D}(z) on G\cap D .

Letting narrow\infty , we obtain H_{f_{0}}^{G\cap D}(z)\geqq H_{f}^{G}(z)-H_{m}(z)\geqq 0 on G\cap D . Since b_{0}

is regular for G\cap D and G, lim H_{f_{0}}^{G\cap D}(z)=0 and \lim_{zarrow b_{0}}H_{m}(z)=f_{m}(b_{0})=f(b_{0}) .

Thus we have\lim_{G\cap D\ni zarrow b_{0}}H_{f}^{G}(z)=\lim_{G\ni zarrow b_{0}}^{zarrow b_{0}}H_{f}^{G}(z)=f(b_{0}) .
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Case 2. The case where I is a continuum. Set \alpha=D_{G\cap B_{1}}(H_{f}^{G})<+\infty .
Let f’ be a boundary function on \partial(G\cap B_{1}) which is equal to H_{f}^{G} on \partial(G\cap B_{1})

\cap G and to f on \partial(G\cap B_{1})\cap\partial G.Thenf’ is resolutive and H_{J’}^{G_{1}\gamma B_{1}}=H_{f}^{G} on
G\cap B_{1} . Set H_{m}’=H_{\min(fm)}^{G\cap B_{1}}

” for every positive integer m. Then H_{m}’\uparrow H_{f}^{G}

on G\cap B_{1} as marrow\infty and

(4) \lim_{zarrow b}H_{m}’(z)=\min(f’(b), m)=f(b)

for every b\in(\partial G-E)\cap B_{1} and every m\geqq m_{0} . By the harmonic decomposition
of Royden (cf. e . g . Satz 7.6 in [2]) we see that

D_{G\cap B_{1}} (H_{m}’) \leqq D_{G\cap B_{1}}(\min(H_{f^{r}}^{G\cap B_{1}}, m))\leqq D_{G\cap B_{1}} (H_{f’}^{G\cap B_{1}})=\alpha r

For every n and m such that n>m\geqq m_{0} , define S_{n,m}’=H_{n}’-H_{m}’ . Then

(5) \lim_{zarrow b}S_{n,m}’(z)=0 for every b\in(\partial G-E)\cap B_{1}

by (4) and D_{G\cap B_{1}}(S_{n,m}’)\leqq 2D_{G\cap B_{1}}(H_{n}’)+2D_{G\cap B_{1}}(H_{m}’)\leqq 4\alpha .
Let G_{n,m}=\{z\in G\cap B_{1} ; S_{n,m}(z)>1\} . Then \partial G_{n,m}\cap B_{1}=(\partial G_{n,m}\cap B_{1}\cap G)\cup

(\partial G_{n,m}\cap B_{1}\cap\partial G) , where \partial G_{n,m}\cap B_{1}\cap G is analytic and E_{n,m}=\partial G_{n,m}\cap B_{1}\cap\partial G

is closed relative to B_{1} and has capacity zero by E_{n,m}\subset E . Define a function
T_{n,m} on B_{1} as follows:

T_{n,m}(z)=J^{S_{n,m}’(z)-1}|0
if z\in G_{n,m\prime}.
if z\in B_{1}-G_{n,m}r

Then we see that T_{n,m} is continuous on B_{1}-E_{n,m} , a Tonelli function on
B_{1} and

D_{B_{1}}(T_{n,m})\leqq D_{G\cap B_{1}}(S_{n,m}’)\leqq 4\alpha ,

that is ; T_{n,m} is a Dirichlet function on B_{1} . Take r_{2}, r_{3} and r_{4} such that
r_{1}>r_{2}>r_{3}>r_{4}>0 and set B_{i}=B(b_{0}, r_{i}) , i=2,3,4. Since E_{n,m} is a polar set,
we may take r_{2} such that \partial B_{2}\cap(\cup E_{n,m})=\phi . Let I_{0} be the component of

n,m
I\cap\overline{B}_{4} which contains b_{0} . Then I_{0} is also a continuum and T_{n,m}=0 on I_{0} .
Let w_{i}(z)(i=2,3) be the harmonic measure of \partial B_{i} with respect to B_{i}-I_{0} .
Then w_{i} can be continuously extend to \overline{B}_{i} such that

(6) w_{i}=0 on I_{0} and w_{i}=1 on \partial B_{i} .
In B_{2}-I_{0} , there is only one component J_{0} such that \partial J_{0}\supset\partial B_{2} and the other
components J_{i}(i\geqq 1) satisfy \partial J_{i}\subset I_{0} . Let g_{n,m} be the restriction of T_{n,m} to
\partial(B_{2}-I_{0})=\partial B_{2}\cup I_{0} . Then g_{n,m} is bounded continuous on \partial B_{2}\cup I_{0} . Let U_{n,m}

be the Dirichlet solution corresponding to B_{2}-I_{0} and the boundary function
g_{n,m} . Then we have
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(7) D_{B_{2}-I_{0}}(U_{n,m})\leqq D_{B_{2}}(T_{n,m})\leqq 4\alpha

by the Dirichlet principle (p. 155 in [2]). Let \beta_{n,m}=\min_{z\in\partial B_{3}}U_{n,m}(z)\geqq 0 . Then
D_{B_{3}-I_{0}}(U_{n,m})\geqq D_{B_{3}-I_{0}} (min ( U_{n,m} , \beta_{n,m})). Since min (U_{n,m}, \beta_{n,m})=\beta_{n,m}w_{3} on \partial B_{3}

\cup I_{0} , D_{B_{3}-I_{0}} (min ( U_{n,m} , \beta_{n,m}) ) \geqq\beta_{n,m}^{2}D_{B_{3}-I_{0}}(w_{3}) by the Dirichlet principle. Hence
we have

(8) D_{B_{3}-I_{0}}(U_{n,m})\geqq\beta_{n,m}^{2}D_{B_{3}-I_{0}}(w_{3})

Consider U_{n,m}+w_{2}-S_{n,m}’ on G\cap B_{2} . By

\lim_{zarrow b}(U_{n,m}(z)+w_{2}(z))=g_{n,m}(b)+1=S_{n,m}’(b) if b\in\partial B_{2}\cap G_{n,m} ,

\lim_{zarrow b}w_{2}(z)=1\geqq S_{n,m}’(b) if b\in\partial B_{2}\cap(G-G_{n,m})

and (5), we have \lim_{zarrow b}(U_{n,m}(z)+w_{2}(z)-S_{n,m}’(z))\geqq 0 for every b\in\partial(G\cap B_{2})-E.
This shows that

(9) S_{n,m}’(z)\leqq U_{n,m}(z)+w_{2}(z) on G\cap B_{2} .

Consider \{U_{n,m}\}_{n,m} on J_{0} (Note U_{n,m}=0 on J_{i}(i\geqq 1) ). Suppose sup U_{n,m}(z_{0})

n,m
=+\infty for some point z_{0}\in J_{0} . Then sup min U_{n,m}(z)=+\infty by Harnack
theorem. Since D_{J_{0}}(U_{n,m}) \geqq(\min U_{n,m}(z))^{2}D_{J_{0}\cap B_{3}}(w_{3})n,mz\in\partial B_{3} by (8) this implies sup

z\in\partial B_{s} n,m
D_{J_{0}} (U_{n,m})=+\infty . But this contradicts (7). Hence we have sup U_{n,m}(z_{0})<

n,m
+\infty . This shows that sup max U_{n,m}(z)=\gamma<+\infty by Harnack theorem.
Since \lim_{zarrow b}U_{n,m}(z)=0 for everyn,mz\in\partial B_{3}b\in I_{0} , we have

U_{n,m}(z)\leqq\gamma w_{3}(z) on B_{3}-I_{0}1

Hence 0\leqq S_{n,m}’(z)\leqq\gamma w_{3}(z)+w_{2}(z) on G\cap B_{3} by (9). Letting narrow\infty , 0\leqq

H_{f}^{G\cap B_{1}},(z)-H_{m}’(z)\leqq\gamma w_{3}(z)+w_{1}(z) . Consequently we conclude from (4) and (6)
\lim_{zarrow b_{0}}H_{f}^{G}(z)=\lim_{zarrow b_{0}}H_{f}^{G\cap B_{1}},(z)=f(b_{0}) .

Finally we remove the assumption that f\geqq 0 on \partial G . Since f’ is resolu-
tive, g(b)= \max(f’(b), 0) and h(b)= \max(-f’(b), 0) are resolutive and H_{f}^{G\cap B_{1}},

=H_{g}^{G\cap B_{1}}-H_{h}^{G_{1}^{\eta}B_{1}} . Since D_{G\cap B_{1}}(H_{f}^{G\cap B_{1}},)<+\infty , we see that D_{G\cap B_{1}}(H_{g}^{G\cap B_{1}})<+\infty

and D_{G\cap B_{1}}(H_{h}^{G\cap B_{1}})<+\infty . From the above reasoning it follows that lim H_{g}^{G\cap B_{1}}

(z)=g(b_{0}) and lim H_{h}^{G\bigcap_{1}B_{1}}(z)=h(b_{0}) . Hence we have \lim_{zarrow b_{0}}H_{f}^{G}(z)=h.mH_{f}^{G\cap B_{1}}zarrow b_{0}zarrow,b_{0}.(z)=

g(b_{0})-h(b_{0})=f(b_{0})zarrow b_{0}. This completes the proof.
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