Hokkaido Mathematical Journal Vol. 9 (1980) p. 258-267

On vanishing contact Bochner curvature tensor

By Masaru SEINO
(Received January 30, 1979)

Recently T. Kashiwada [2]® has given various necessary and sufficient
conditions in order that a Ki#hlerian space has vanishing Bochner curvature
tensor. In the present paper, we study some conditions in order that a
Sasakian space has vanishing contact Bochner curvature tensor and also
give some applications of our results.

In §1 state fundamental identities for the contact Bochner curvature
tensor in a Sasakian space.

§ 2 is devoted to the study of conditions in order that a Sasakian space
has vanishing contact Bochner curvature tensor and we give two theorems
which are analogous to the results due to T. Kashiwada [2].

T. Sakaguchi has introduced the concept of a complex semi-sym-
metric metric F-connection in a Kihlerian space and in terms of certain
properties of the connection he has given a sufficient condition in order
that a Kghlerian space has vanishing Bochner curvature tensor. On the
other hand, in a Sasakian space the concept of a contact conformal connec-
tion has been introduced by K. Yano [5]. Corresponding to the study of
T. Sakaguchi [4], in §3 we consider a Sasakian space admitting a contact
conformal connection. Then, as an application of our first theorem in § 2,
we get a sufficient condition in order that a Sasakian space with a contact
conformal connection has vanishing contact Bochner curvature tensor.

M. Matsumoto and G. Chuman have studied a compact Sasakian
space with vanishing contact Bochner curvature tensor and have given various
conditions for the second Betti number to be zero. In §4, making use of
our second theorem in §2, we show that the theorem of M. Matsumoto
and G. Chuman is valid even if one of the conditions in it is replaced by
a weaker one.

§ 1. Preliminaries.

Let M be a m-dimensional Riemannian space covered by a system of
coordinate neighborhoods {(U; ¥")}, where here and in the sequel, the indices

1) Numbers in brackets refer to references at the end of the paper.



On vanishing contact Bochner curvature tensor 259

h, i, j, k, -+~ run over the range {0,1, -, m—1}, and ¢;; a positive definite
Riemannian metric tensor of M. Moreover, let {jki}’ Vi, K", Kj and
K be the Christoffel symbols formed with ¢;, the operator of covariant
differentiation induced from {jhi}’ the curvature tensor with respect to F;,

the Ricci tensor and the scalar curvature, respectively.
M is called Sasakian if there exists a unit Killing vector field 7* such that

(1.1) ViV 3m: = 0596 —1: ;-

Throughout this paper we only consider a Sasakian space M(x", ¢;,).

If we put o*=V;7", (¢ 7 ¢s) give an almost contact metric structure
to M and hence M is orientable and m is odd: m=2n+1.

Applying the Ricci identity to »; we have

ViV imi—V iVins = — K nn »
from which it follows that
Kii n =169 5— 0 0, Kipn=(m—1)ps..
As (1.1) becomes
(1.2) Vied =00 —qun",
applying the Ricci identity to ¢* we have
ViV soif =V Vol = Kisl 0t — Kyt 91" 5
from which we can get the following formulas :
Kijinei + Kiju o' = 0udin— ¢ 5i Gin+ 9 in G »
% Kijin g™ = Kyiof +(m—2) gujy Kiipi® = — Kjpi® .

The contact Bochner curvature tensor By;" is defined by
By = K +(04"— 7q") Ljs—(0/—n;7") L+ L™ (9 5:—,m:)
- Ljh(gki /" 77~a> + f/th Mji - (,Djh Mki + Mkh ©Cji— MthDki
—2(My; 0"+ or; M)+ (o s — 0 o — 208508)

where
1
Lj=— m-+3 <Kji+(L+3) 95— (L—1) 77j7/i> J
M = — Ly

mi—?) <Kjk§0ik_(L+3> (/7]'@) ’
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and

The contact Bochner curvature tensor satisfies the following identities :
(1.3) Bgjin = Binkj = — Bjin = — Bigniy Brjin+ Bjan+ Bigjn =0

and

(1.4) = Bru*=0.

§ 2. Main theorems.

In the following, by the word ‘p-basis’ we mean an orthonormal basis
{e) such that e,=7, ex=ern=0pe; (A=1, -+, n). First of all, we state

LEMMA 2.1. In an m-dimensional Sasakian space M, the contact
Bochner curvature tensor vanishes if and only if Ble; ej, e;, €;)=0 for every
o-basis.

ProoF. Since the contact Bochner curvature tensor B satisfies the
relations (1. 3), we have the following equation (cf. Bishop and Goldberg [1]) :

B(X, Y, X, Y)= 3—12<3P(X+¢Y)+3P(X—90Y)

—P(X+Y)—P(X-Y)—4P(X)—4P(Y)),

for any vectors X and Y orthogonal to the vector 7 where P(X)=
B(X, X, X, 9X). Then, taking account of (1.4), we obtain the result of
Lemma 2. 1.

With respect to a ¢-basis {1, e, €}, Gji» ¢ji» Kisn and K have the
numerical values as follows :

95 =0ji>
o= —pm=1, 0 =0 (FF¥), pu=0,
K ja+ Kiejrey = 0220 50— Pieu 02— P 20kt 3 Otrs Kion = Kpgor =1,
Kpp =K,y Kip=—Kppy K=m—1, Kjy=K,y=0.
Putting

1
Bkjih = Kkjih+ o1 a9 Uka'n ’

m—+3
we have

1
Babba = Kappat+ m Uabba ’
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where

Uabba: _(Kaa+Kbb—k+4) ’
(2.1) (la|#1bl, |a| =2 for a=24 or 2*; a, b=1,2, ---, 2n)
UM*Z*X == ——8Ku+4k+3m——7 5

k being (K+m—1)/(m+1).
Then we get the following first main theorem which has analogy to the

theorem due to Kashiwada [2] :

THEOREM 2.2. In an m(=9)-dimensional Sasakian space, if
Kabcdzoy <la’a lbl, ‘C" ld‘¢>

holds for every ¢-basis, then the contact Bochner curvature tensor vanishes.
The converse is true. (By ‘|a|, |b], |c|, |d|#’ we mean that |a|, |b|, |c|,
|d| differ from one another.)

Proor. Let
(2.2) Kaea=0  (|al, |B], [c], |d| #)

for a ¢-basis {, e,, ve,}.
We take another ¢-basis

e, =te,+se,
(*) e, = —se;+te,
ee=¢s (lal#4 ) (& =e)

where ¢ and s are real numbers such that 24s*=1 and #s#0. As (2.2)
holds for this ¢-basis, we have

0= g(Kle}, ea) €}y ) = —5(Kiaio— Kiaya) »
i.e. Ka,Ub:Ka,u,ub ([al’ Ib"’z’ /'5:/:)
By replacing e, with es, we have

Ka/l*l*b = Ka/mb (la” ’bl’ Z’ /‘t_/—&) °

So we get

(2.3) Koy = Kopws (lal, [b], 2)

Since (2. 3) is true for every ¢-basis, for ¢-basis (*) we know
g(K(e er) emel) =g(Klehe)enel) (b pv)

which implies
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(2. 4) Klp*p*z— Kyv*u* Kl 7 /tvvp (2} ‘Ll, U#:) .
Replacing e, with e, and adding it to (2. 4), by virtue of (2.3) we have
(2.5) Kippi = K, (A#v).

Since (2.5) is true for every ¢-basis, computing (2.5) with respect to the
@-basis (*), we have

g(K(eﬁ, €hs) €, eﬁ) = g<K(e§, e) el e§> ,
and we obtain after all,

(2' 6) Ku*z*a"l'Kyp *ky — 8K1/1'u1_6 (liﬂ) .

Then we have

i (sz z‘l‘K,,,, * % ,‘) ZZ: Apupd (n——l)

p#(*2)

(n—2) Kypaatu = i Klﬂ,uz + Z Kl*#*/t/l) —6(n—1),

or

(n+2) Ku*p:;"l-u — 4Ku—'3m+5 y
ie
(2‘ 7) Koina = (4Ku —3m+5 —U)/(n+2) ,

where we put u= Z e and take account of K, =K and Ky, =1.

Taking sum of (2. ’7) from A=1 to A=n, we have

(2. 8) u=(2K—(1/2) (m—1) (8m—1))/(m+1).
So from (2.7) and (2. 8) we get
2.9 Kivi = 8K, —4k—3m+7)/(m+3) .

On the other hand, as

(2.10) Ky = (Ku+K,,—k+4)/(m-+3),
(2.11) Ky = Ko

we obtain from (2. 1), (2.5) and (2. 9)~(2.11)

1
abba+mUabba:O (|a|#:lbl>

1
m—+3

Boyoa =
(2.12)

Bzz*m - Ku*z*x+ Uu*z*z =0
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So by Lemma 2.1, we get
B=0.

The converse is trivial since U,p,q=0 for [a|, |b], |c|, |d]#.

REMARK: In this proof, we know the property (2.12) depends only
on the property (2. 6).

Next we have several necessary and sufficient conditions to be B=0
in terms of the sectional curvature which is an analogous to that of Kashi-
wada [2].

THEOREM 2.3. Let M be an m(=9)-dimensional Sasakian space. Then,
the followings are equivalent to one another at every point P of M.

(1) The contact Bochner curvature tensor B(P)=0.

(2) For every ¢-basis at P,

H(e;, el*) + H(e;u eﬂ*) = 8H(€1, e,u) - 6 (27&#) ’

where H(X,Y) means the sectional curvature with respect to the plane
spanned by X and Y.
(3) For each ¢-holomorphic 8-plane WC Tp(M),
kp(W, b) = H(ey, e5)+ H(es, €)
is independent of ¢-basis b=/{ey, ---, ey, ey, -+, ey of W.
(4) For every orthogonal 8 wvectors {e, -+, e, @ey, -+, pes of Tp(M),
H(ey, e;)+ H(es, ) = Hley, €;) + He, €5) -
Proor. (2)=(1) is noted at the last of proof of Theorem 2.2. (1)=(2)

is trivial since (2.1) and

1

Kappa = — mL3

Uabba, .

(3)=>(4) is trivial.
(4>1): Let {n, ey, -+ en, @ey, -+, @e,} be arbitrary ¢-basis of T,(M). For
{en €15 €y €5 PE,y PE;, D,y (pey}, by assumption,

K;us + K;wup = Kxuv: + Kk,uyl .

We take another orthonormal vectors {e,, ¢}, €., e,, ve., pe;, e, pe,} such
that

e, = te;+se,
e, = —se,+te,, (P45t =1, ts+£0).
Since Hle,, e})+ H(e,, e,) = H(e,, e,)+ H(e,, €)), it follows
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(2. 13) K. =K

Avvp o

Since (2.13) is true for every ¢-basis, for the above basis,
g(Klea €) € e)=g(Kle, ¢)) e e,)

which implies
K. +K.,..=0.

Then by Bianchi identity, we get K,,,,=0. Replacing e,—e,., e,—e;, -+ etc,
we obtain K e=0 ([al, |b], |c|, |d]#). So, by Theorem 2.2, the contact
Bochner curvature tensor vanishes.

(1)=>(3): Let B=0. Then, for a ¢-basis, it follows

1 )
Kabbazm—+§(Kaa+Kbb—k+4) (lal+#16]) .

Let b= e, e, e, s, pe;, pes, ges, pes, b = {el, &, €, e}, pe1, e, i, e}, be
basis of WC Tp(M). We construct two basis of T»(M) such that

f: {v’ €1y ** 5 Eny 9931; ) (Pen}

r___ / / / /
f —{ﬁy €1y * "y €y €5ty €y PO, t 00, V4, PE5, 0, @en} .

Then we have
1 4
(2.14)  Hle, e)+ Hiew ¢) :-m( by Kw—2k+8).

Let K;;, Kj; be components of Ricci tensor with respect to the basis f
and f', respectively. So, as K=Y K;=> K/, and Ky=K}, K,,=K], and
Kip=K\n(2>4), we have

Y K,.= 5 K. .
a=1 a=1

Then by virtue of (2.14), we know that kx(W, b) is independent of b.

We note that the proof of (1)=>(2) in the above is true too in the case
of m=5.

§ 3. Contact conformal connection.

An affine connection F is said to be contact conformal connection if
its coefhicients I';* are given by

h
J i} 0" —n;1") P08 —mrf) p3— (50— n5m:) P

+ o (g —n) +0/Mg—15) —i(gd"—7") ,

Iy =
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where p;=0;p for a certain function p, ¢;= —o/p; and <, p=p;7*=0. Then
we have

g =0, pi¢* =0, 2A=pip* = q: ¢,
and
Viol =0, V0 =0, V105 = (05— 757 -
Now, we compute the curvature tensor of I';:
Ryl =04l —0; i + T Uit — 'y i
By a straightforward computation, we find ([5])
Ry = K — (0" — e ") P04 —0;7") Pri— P95 —1m)
+P (G —em0) — 06" Qi+ Qi — Q@5+ Q" i
+ (g —V jq0) 9+ 201;(qip" — i q")
"0 i — 0 Ori — 200 0")

(3.1)

where

Pu=V;pi—pipi+(a:—0) (@—n)+ %1(% =07 s
Qji = —Puo =V ;9:—pi(qi—2) — Pi(q;—n5) + ‘%’39%' :
Then we have
Rijin = — Rjkin = Ricjni -
Now, we assume (cf. T. Sakaguchi [4]) that
Viqi—2q;pi+pinit+nipitie; =0.
Then, by a direct computation we have
Ryjin+ Rjan+ Rajn =0,
from which we get
Rujin = Rinj -

For any ¢-holomorphic section ¢=(«" ¢uf), ¢-holomorphic sectional
curvature with respect to F is defined by

H(o) = H(u") = — (Rkjih pfut ul Qﬁsi uw’ uh)/(glcj ! g utut) .

Then we can easily see that this H(s) is uniquely determined by the ¢-
holomorphic section ¢ and is independent of the choice of «* on ¢. If this
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¢-holomorphic sectional curvature is independent of the ¢-holomorphic section
at each point of M, then a contact conformal connection is said to be of
constant ¢-holomorphic sectional curvature. If we assume that 7 is of con-
stant @-holomorphic sectional curvature, then we obtain

Ryjin=c <(gkh —600) (0550370 — (G n— 3 7n) (Ges — 76 7:)
(3.2)
+(th90ji —@inPri— 2§ij(/7ih> ’
¢ being a scalar function.
If m=9, then from (3.1) and (3. 2) we get

Kerea =0, (la[,lbl,lcl,]dl;t)

for every ¢-basis. Thus we have by virtue of Theorem 2.2,

THEOREM 3.1. In an m(=9)-dimensional Sasakian space M. If M
admits a contact conformal connection V which satisfies the following :

D) V3q:=29;pi+pymi+;0i+2p;:=0,

(2) T is of constant o-holomorphic sectional curvature,
then the contact Bochner curvature tensor of M wvanishes.

We note that by Sakaguchi’s method [Theorem 3.1 holds in the case
of m=5.

§ 4. The second Betti number of M.

M. Matsumoto and G. Chuman have studied the contact Bochner
curvature tensor and the second Betti number in a compact Sasakian space

and had

TueoreM 4.1 ([3]). Let M(m=5) be a compact Sasakian space with
vanishing contact Bochner curvature tensor. Then the second Betti number
by(M) of M wvanishes, if M satisfies one of the following conditions :

(1) 0>2, where 6 denotes the smallest eigenvalue of the Ricci tensor,

(2) H(eye,) + Hlewes) > —3(2 —0,,)/(m —2), (especially Z (H(e, e,) +
Hiey €,))>—3), ’

(3) M 1is p-holomorphically pinched with p>(m—3)/(2(m—1)).

In this section, we show that the condition (3) in the above Theorem
4.1 may be replaced by the condition p>0.

Now, we assume that H and L defined by

H=sup {H(X, ¢, X); XED», PEM},

L=inf{H(X,¢, X); XEDs, PEM],
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exist and H+3>0, where D is the distribution defined by the equation 7;dx’
=0. Then M is said to be p-holomorphically pinched, p being (L4 3)/(H+3).

Let g is positive. Then we have H(X, oX)=L>—3, for any vector
X orthogonal to 7. Moreover, if the contact Bochner curvature tensor

vanishes, by virtue of [Theorem 2 3, we get the inequality
8H(e;, e,) = Hle,, ex)+ Hle, €,0) +6 >0 (A#p) .
Replacing e, with e¢,. we also get
8H(ey ) >0  (A%p) .

Thus we have
H(e; e,)+ H(e,, €,) >0 (A#p,

from which we obtain

% (Hlew e)+ Hiew €,)) > Hie, ) > =3,

and we have the condition (2) in [Theorem 4. 1. Thus we have

THEOREM 4.2. Let M(m=5) be a compact Sasakian space with van-
ishing contact Bochner curvature tensor. If M is p-holomorphically pinched
with p>0, then the second Betti number b,(M)=0.
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