Some studies on group algebras

By Tetsuro Okuyama
(Received April 14, 1978; Revised February 21, 1980)

In this paper we study a ring theoretical approach to the theory of modular representations of finite groups which is studied by several authors ([5], [6], [8], [9], [10], e.t. c.). Most of results in this note is not new but is proved by a character-free method.

Let F be a fixed algebraically closed field of characteristic p, a rational prime. If G is a finite group, we let $F G$ denote the group algebra of G over F. If X is a subset of G, we let \hat{X} be the sum of elements of X in $F G$. Other notations are standard and we refer to [2] and [5].

In section 1 we shall give a proof of the result of Brauer which appears in [1] without proof. In section 2, using results in section 1 we investigate the center of a group algebra and an alternating proof of the result of Osima [7] is given.

1. In this section we give a characterization of elements of the radical of a group algebra which appears in [1] without proof. Related results also appear in [12]. Let G be a finite group of order $p^{a} k,(p, k)=1$. Choose an integer b so that $p^{b} \equiv 1(\bmod k)$ and $b \geqq a$. Let U be the F-subspace of $F G$ generated by all commutators in $F G$. Then $U=\left\{\sum_{g \in G} a_{g} g ; \sum_{g \in C} a_{g}=0\right.$ for every conjugacy class C of $G\}$ and it holds that $(\alpha+\beta)^{p} \equiv \alpha^{p}+\beta^{p}(\bmod U)$ for α and β in $F G$. For these results see [2].

LEMMA (1. A). Let $e=\sum_{g \in G} a_{g} g$ be an idempotent of $F G$. then we have $\sum_{g \in C} a_{g}=0$ for every p-singular conjugacy class C of G.

Proof. As $e^{p^{b}}=e$, we have $\sum_{g \in G} a_{g} g \equiv \sum_{g \in G} a_{g}{ }^{p^{b}} g^{p^{b}}(\bmod U)$. Since coefficients of p-singular elements in the right-hand side of the above equation are all 0 , we have the lemma.

LEMMA (1. B). Let $e=\sum_{g \in G} a_{g} g$ be a primitive idempotent of $F G$. Then there exists a p^{\prime} conjugacy class C of G such that $\sum_{g \in C} a_{g} \neq 0$.

Proof. Since e is primitive, $e \notin U$. Thus the lemma follows from (1. B).
Using the above lemmas, we can prove the assertion of Brauer stated in the begining of this section. Let S_{1}, S_{2}, \cdots be p^{\prime}-sections of G. If X and
Y are subsets of $F G$, then we set $A n n_{Y} X=\{\alpha \in Y ; \alpha X=0\}$. We denote the radical of $F G$ by $J(F G)$.

Theorem (1. C) (Brauer [1]). $\quad J(F G)=\bigcap_{i} A n n_{F G} \hat{S}_{i}$.
Proof. First we shall prove the following.

$$
\begin{equation*}
J(F G) \supseteq \bigcap_{i} A n n_{F G} \hat{S}_{i} . \tag{1.D}
\end{equation*}
$$

Proof of (1. D). Since $\bigcap_{i} A n n_{F G} \hat{S}_{i}$ is an ideal of $F G$, if it contains an idempotent, then also contains a primitive idempotent e. Considering the coefficient of 1 in $e \hat{S}_{i}$ this contradicts to (1. A) and (1. B). Thus $\bigcap_{i} A n n_{F G} \hat{S}_{i}$ contains no idempotent of $F G$ and therefore ($1 . \mathrm{D}$) follows.

Next we prove;
(1. E). $J(F G) \subseteq A_{n} n_{F G} S_{i}$ for each i.

Proof of (1. E). Let $\alpha=\sum_{b \in G} a_{g} g \in F G$ and assume $\alpha^{p^{b}} \in A n n_{F G} \hat{S}_{i}$. Then
 So $\sum_{g \in S_{i}^{-1}} a_{g} g^{p^{b}}=\left(\sum_{g \in S_{i}^{1}} a_{g}\right)^{p^{b}}=0$ and $\sum_{g \in S_{i}^{-1}} a_{g}=0$. This implies that the coefficient of 1 in $\alpha \hat{S}_{i}$ is 0 . Thus $F G / A n n_{F G} \hat{S}_{i}$ has no nilpotent ideal and therefore $J(F G) \subseteq$ $A n n_{F G} \hat{S}_{i}$.

Corollary (1. F). $\quad \sum_{i} \hat{S}_{i} F G$ is the socle of $F G$. In particular, for a primitive idempotent e of $F G$ there exists i such that $e \hat{S}_{i} F G$ is an irreducible $F G$-module.

Proof. This follows from the fact that $F G$ is a symmetric algebra and (1. C).

Corollary (1.G). Let e be a primitive idempotent of $F G$ and α an element of the form $\sum_{i} a_{i} \hat{S}_{i}$. Then ex $=0$ if and only if the coefficient of 1 in ea is 0 .

Proof. It is sufficient to show that if the coefficient of 1 in $e \alpha$ is 0 then $e \alpha=0$. Let t be the F-homomorphism from $F G$ to F defined by the rule; $F G \ni \sum_{g \in G} a_{g} g \rightarrow a_{1} \in F$. Then the kernel of t has no non-zero right ideal of $F G$. Since $e \beta=e \beta e+(e e \beta-e \beta e)$ for $\beta \in F G$, we have $e \alpha F G \subseteq e \alpha F G e+U$. $e F G e$ $=F e+e J(F G) e$ as $e F G e / e J(F G) e \cong F$. Thus by (1.C) $e \alpha F G \subseteq F e \alpha+U$. U؟ $\operatorname{Ker} t$ and $F e \alpha \subseteq \operatorname{Ker} t$ by our assumption. Therefore e e $F G \subseteq \operatorname{Ker} t$ which implies that $e \alpha=0$.

Proposition (1. H). Let $\alpha=\sum_{g \in G} a_{g} g$ be an element of the center of $F G$
with $a_{g} \neq 0$ for some p^{\prime}-element g. Then there is a primitive idempotent e of $F G$ such that the coefficient of 1 in ex is not 0 .

Proof. Let $\beta=\sum_{g \in \boldsymbol{\sigma}_{0}} a_{g} g$ where G_{0} is the set of all p^{\prime}-elements of G. And write $\beta=\sum_{i} b_{i} \widehat{C}_{i}$ where C_{i} is the p^{\prime}-conjugacy class of G contained in S_{i} and set $\gamma=\sum_{i} b_{i} \hat{S}_{i}$. By (1. A) for an idmpotent f of $F G$ the coefficient of 1 in $f \alpha$ is equal to that in $f \gamma$. Since $\gamma \neq 0$, the result follows from (1. G).
2. Let $Z(F G)=Z$ denote the center of $F G$. For $\alpha=\sum_{g \in G} a_{g} g F G$ we set $\sup \alpha=\left\{g \in G ; a_{g} \neq 0\right\}$. The result of Osima [7] shows that for a central idempotent e of $F G$ sup e does not contain any p-singular element. Ringtheoretical proofs of this fact appear in [5] and [8]. Furthermore we have the following.

Theorem (2. A) (Osima [7]). Let α be in Z and T a p-section of G. Then $\sup \alpha \cap T=\phi$ if and only if sup $e \alpha \cap T=\phi$ for every idempotent e of Z.

Proof. If $\sup e \alpha \cap T=\phi$ for every idempotent e of Z, then it is clear that $\sup \alpha \cap T=\phi$. Conversely assume that $\sup \alpha \cap T=\phi$. Let x be a p element in T and C the conjugacy class of G containing x. Considering the Brauer homomorphism from Z to $Z\left(F C_{G}(x)\right)$ defined by the rule; $Z \ni$ $\sum_{g \in G} a_{g} g \rightarrow \sum_{g \in C_{\left.G^{(}\right)}} a_{g} g \in Z\left(F C_{G}(x)\right)$, we may assume that $G=C_{G}(x)$ and $C=\{x\}$. Then we may also assume that $x=1$ and T is the set of all p^{\prime}-elements of G. Suppose that $\sup e \alpha \cap T \neq \phi$. Then by (1.H) there exists a primitive idempotent f of $F G$ such that the coefficient of 1 in $f e \alpha$ is not 0 . Since f is primitive, $f e=f$ and then $f e \alpha=f \alpha$. Thus by (1. A) $\sup \alpha \cap T \neq \phi$ which is a contradiction.

The following is the result of Reynolds and is proved in [11]. We shall give here an elementary proof of it.

Theorem (2. B) (Reynolds [11]). $\quad Z_{p^{\prime}}=\sum_{i} F \hat{S}_{i}$ is an ideal of Z.
Proof. Let S be a p^{\prime}-section and C a conjugacy class of G. Let M be a p^{\prime}-conjugacy class and N a p-singular conjugacy class of G such that M and N are contained in the same p^{\prime}-section of G. Let $\widehat{S} \widehat{C}=a \hat{M}+b \hat{N}$ $+\cdots$. To prove the theorem it will suffice to show that $a=b$. Let $z \in N$ and $z=x y=y x$ where x is a p-element and y is a p^{\prime}-element of G. Since $S \cap C_{G}(x)$ is a union of p^{\prime}-sections of $C_{G}(x)$, considering the Brauer homomorphism with respect to $C_{G}(x)$ we may assume $G=C_{G}(x)$. Then $\hat{S} x=\hat{S}$ and $\hat{M} x=\hat{N}$. Thus $\hat{S} \widehat{C}=a \hat{M}+b \hat{N}+\cdots=a \hat{M} x+b \hat{N} x+\cdots$ and we have $a=b$.

Lemma (2. C). Let e be an idempotent of $F G$ such that $e+J(F G)$ is
central in $F G / J(F G)$. Then $e \hat{S}_{i}$ is in $Z_{p^{\prime}}$.
Proof. By (1. C) $e \hat{S}_{i}$ is in Z. Let $e \hat{S}_{i}=\alpha+\beta$ where α is in $Z_{p^{\prime}}$ and $\sup \beta$ consists of p-singular elements. Such elements α and β can be chosen. Then for a primitive idempotent f of $F G$ the coefficient of 1 in $f\left(e \hat{S}_{i}-\alpha\right)$ is 0 by (1. A). Since f is primitive, $f e \hat{S}_{i}=0$ or $=f \hat{S}_{i}$. Thus by (1.G) we have $f\left(e S_{i}-\alpha\right)=0$. Therefore $f \beta=0$ for every primitive idempotent f of $F G$ and then $\beta=0$. So the proof of the lemma is complete.

Proposition (2. D). Let e be an idempotent of $F G$ such that $e+J(F G)$ is centrally primitive in $F G / J(F G)$. Then $\operatorname{dim}_{F} e Z_{p^{\prime}}=1$.

Proof. Let $e=e_{1}+\cdots+e_{n}$ where e_{i}^{\prime} s are mutually orthogonal primitive idempotents of $F G$. Then $e_{1} F G \cong e_{i} F G$ for all i (see [2]). It is easily shown that there are elements $\alpha_{i} \in e_{1} F G$ and $\beta_{i} \in e_{i} F G$ such that $e_{1}=\alpha_{i} \beta_{i}$ and $e_{i}=$ $\beta_{i} \alpha_{i}$. Therefore $e_{i}-e_{1} \in U$. By (1.G) $\operatorname{dim}_{F} e_{1} Z_{p^{\prime}}=1$ and again by (1.G) and the fact that $e_{i}-e_{1} \in U$ we have $\operatorname{dim}_{F} e Z_{p^{\prime}}=1$.

As a consequence of (2. C) and (2. D) we have the following. For this result see [3].

Theorem (2. E). Let B be a p-block of G with corresponding centrally primitive idempotent e. Then the number of irreducible $F G$-modules in B equals to $\operatorname{dim}_{F} e Z_{p^{\prime}}$.

Proof. Let $e=e_{1}+\cdots+e_{n}$ where e_{i}^{\prime} s are mutually orthogonal idempotent and $e_{i}+J(F G)$ is centrally primitive. Then n is the number of $F G$. modules in B. Thus the result follows from (2. C) and (2. D).

References

[1] R. BrauER: Number theoretical investigations on groups of finite order, Proceedings of the International Symposium on Algebraic Number Theory, Tokyo and Nikko, 1955, 55-62, Sience Council of Japan, Tokyo, 1956.
[2] W. Feit: Representations of Finite Groups, Yale University, 1969.
[3] K. Iizuka, Y. Ito and A. Watanabe: A remark on the rpresentations of finite groups IV, Memo. Fac. Gener. Ed. Kumamoto Univ. 8 (1973), 1-5 (in Japanese).
[4] K. Iizuka and A. Watanabe: On the number of blocks of irreducible characters of a finite group with a given defect group, Kumamoto J. Sci. (Math.) 9 (1973), 55-61.
[5]. G. O. Mrchler: Blocks and Centers of Group Algebra, In "Lecture Notes in Math." 246, Springer Verlag, Berlin and New York, 1972.
[6] G. O. Michler: The kernel of a block of a group algebra, Proc. Amer. Math. 37 (1973), 47-49.
[7] M. Osima: Notes on blocks of group characters, Math. J. Okayama 4 (1955), 175-188.
[8] D. S. PASSMAN: Central idempotents in group rings, Proc. Amer. Math. Soc. 22 (1969), 555-556.
[9] D. S. PASSMAN: Blocks and normal subgroups, J. of Alg. 12 (1969), 569-575.
[10] W. F. Reynolds: Block idempotents and normal p-subgroups, Nagoya Math. J. 28 (1966), 1-13.
[11] W. F. Reynolds: Sections and ideals of characters of group algebras, J. of Alg. 20 (1972), 176-181.
[12] Y. Tsushima: On the annihilator ideals of the radical of a group algebra, Osaka J. Math. 8 (1971), 91-97.

Osaka City University

