Note on Hadamard matrices of Pless type

To Goro Azumaya on his sixtieth birthday

Noboru Ito* (Received May 14, 1979)

Let H be an Hadamard matrix of order n. Namely H is a ± 1 matrix of degree n such that $HH^t=nI$, where t denotes the transposition and I is the identity matrix of degree n. We assume that n>1. It is well known that n=2 or n is divisible by 4.

Let $P = \{1, \dots, n, 1^*, \dots, n^*\}$ be the set of 2n points, where we assume that $(i^*)^* = i$ for $1 \le i \le n$. Then with each row vector a of H we associate the block a, and n-subset of P, as follows. a contains j or j^* according as the j-th entry of a is 1 or -1. The complement $a^* = P - a$ of a is also called a block. Let B be the set of 2n blocks. Then we call M(H) = (P, B) the matrix design of H. M(H) is a 1-design, namely each point belongs to exactly n blocks. Moreover it is almost a symmetric 2-design. Namely by the orthogonality of column vectors of H each 2-subset of P not of the form $\{i, i^*\}$ is contained in exactly $\frac{1}{2}n$ blocks, while $\{i, i^*\}$ is contained in no blocks.

Let G(H) be the set of all permutations s on P such that (i) s(B)=B and that (ii) if s(a)=b then $s(a^*)=b^*$. Then G(H) forms a subgroup of the symmetric group on P, namely the automorphism group of H. Let $z=\prod_{i=1}^n (i,i^*)$. Then z belongs to the center of G(H) and it interchanges a with a^* for every a. We call z the *-element of G(H).

Now the purpose of this note is the following: (i) to show that an Hadamard matrix of order 2(q+1), where q is a prime power with $q\equiv 3\pmod 4$, constructed by V. Pless in [6], $H_3(q)$ in her notation, which we call an Hadamard matrix of Pless type, is inequivalent to the Hadamard matrix of order 2(q+1) of Paley type, provided that q>3. It is well known that there exists exactly one equivalent class of Hadamard matrices of order 8; (ii) to determine the automorphism groups of two types of Hadamard matrices of degree 2(q+1) mentioned above.

130 N. Ito

§ 1. Kimberley and Longyear number.

Let H be an Hadamard matrix of order n and M(H)=(P,B) the matrix design. Let $\{a,b\}$ be a 2-subset of B not of the form $\{c,c^*\}$. Then $\mathscr{K}(a,b)$ and K(a,b) denote the set and half of the number of 2-subsets $\{c,d\}$ of B such that $a \cap b \cap c = a \cap b \cap d$ respectively. We notice that $\{a,b\}$ and $\{a^*,b^*\}$ belong to $\mathscr{K}(a,b)$. We call $K(H)=\max_{\{a,b\}}K(a,b)$ and $L(H)=K(H^t)$ the Kimberley and Longyear numbers of H respectively. If G(H) is transitive on B, then $K(H)=\max_{b}K(a,b)$ for any given a. But we notice that this is not the case in general. Clearly K(H) and L(H) are invariant under the equivalence of Hadamard matrices.

Now let $H=H_1\times H_2$ be a Kronecker product of two Hadamard matrices of orders n_1 and n_2 respectively. Then H is an Hadamard matrix of order $n=n_1n_2$. Let $M(H_i)=(P_i,B_i)$ and M(H)=(P,B) be the matrix designs of H_i and H respectively (i=1,2). Then it is convenient to regard P as the set of all ordered pairs (a_1,a_2) , where $a_i\in P_i$ (i=1,2), with the rule that $(a_1,a_2)^*=(a_1^*,a_2)=(a_1,a_2^*)$ and $(a_1^*,a_2^*)=(a_1,a_2)$. Then we denote the block of B corresponding to an ordered pair (a_1,a_2) of blocks, where $a_i\in B_i$ (i=1,2), by (a_1,a_2) itself. Since $(a_1,a_2)=(a_1^*,a_2^*)$, (a_1,a_2) contains $(a_1,a_2)^*$ if and only if exactly one of a_i contains a_i (i=1,2).

LEMMA 1. If $\{c_i, d_i\}$ belongs to $\mathcal{K}(a_i, b_i)$ (i=1, 2), then $\{c, d\}$ belongs to $\mathcal{K}(a, b)$, where $a = (a_1, a_2)$, $b = (b_1, b_2)$, $c = (c_1, c_2)$ and $d = (d_1, d_2)$.

Proof is straightforward.

Conversely let us assume that $a \cap b \cap c = a \cap b \cap d$, where $a = (a_1, a_2)$, $b = (b_1, b_2)$, $c = (c_1, c_2)$ and $d = (d_1, d_2)$. First we consider the case where $b_i \neq a_i$, a_i^* (i=1, 2). Then we have that either $a_i \cap b_i \cap c_i = a_i \cap b_i \cap d_i$ or $a_i \cap b_i \cap c_i = a_i \cap b_i \cap d_i^*$ (i=1, 2). There remain the cases where $a_1 = b_1$ and $b_2 \neq a_2^*$, or $a_2 = b_2$ and $b_1 \neq a_1$, a_1^* . If $a_1 = b_1$, then let $d_1 = c_1$ for any $c_1 \in B_1$. Now if $\{c_2, d_2\}$ belongs to $\mathcal{K}(a_2, b_2)$, then $\{(c_1, c_2), (c_1, d_2)\}$ belongs to $\mathcal{K}(a, b)$. The rest is similar. So we have the following lemma.

Lemma 2. If $b_1 = a_1$ and $b_2 \neq a_2$, a_2^* then $K(a, b) = n_1 K(a_2, b_2)$. If $b_2 = a_2$ and $b_1 \neq a_1$, a_1^* then $K(a, b) = n_2 K(a_1, b_1)$. If $b_i \neq a_i$, a_i^* (i = 1, 2) then $K(a, b) = 2K(a_1, b_1) K(a_2, b_2)$. In particular, $K(H) \ge \max\{n_1 K(H_2), n_2 K(H_1)\}$.

Now let G_i and G denote the automorphism groups of $M(H_i)$ and M(H) respectively (i=1,2). Let 1_i , z_i , 1 and z denote the identity and *-elements of G_i and G respectively (i=1,2). Let $s_i \in G_i$ (i=1,2). Then consider the mapping $s_1 s_2(a_1, a_2) = (s_1 a_1, s_2 a_2)$ of P. Since $s_1 s_2(a_1, a_2) = (s_1 a_1, s_2 a_2)$, it induces an element of G. Clearly $z_1 1_2$ and $1_1 z_2$ induce the same element of G. On the other hand, let $s_1 s_2$ induce the identity element of

G. Then $(\mathbf{s}_1 a_1, \mathbf{s}_2 a_2) = (a_1, a_2)$ for every $(a_1, a_2) \in P$. So $\mathbf{s}_1 a_1 = a_1$ and $\mathbf{s}_2 a_2 = a_2$, or $\mathbf{s}_2 a_1 = a_1^*$ and $\mathbf{s}_2 a_2 = a_2^*$ for every (a_1, a_2) . Thus we have the following lemma.

LEMMA 3. G contains a subgroup isomorphic to $G_1 \times G_2/\langle z_1 z_2 \rangle$. In particular, if G_i is transitive on P_i (or B_i) (i=1, 2), then G is transitive on P (or B).

LEMMA 4. Let T be an Hadamard matrix of order 2. Then G(T) is a dihedral group of order 8.

PROOF. Let $T=\begin{pmatrix}1&1\\1&-1\end{pmatrix}$. Then the permutations (1,1*) and (1,2) (1*,2*) generate G(T).

Remark. It is easy to see that if K(H) L(H) > 1 then $n \equiv 0 \pmod{8}$.

§ 2. Hadamard matrices of Pless type.

Let GF(q) be a field of q elements, where q is a prime power such that $q\equiv 3\pmod 4$, and x the quadratic character of GF(q) with x(0)=0.

Let
$$S = \begin{pmatrix} 0 & 1 & \cdots & 1 & 1 \\ -1 & & & \\ \vdots & \mathbf{x}(b-a) & & \\ -1 & & & \\ -1 & & & \end{pmatrix}$$
, where $\mathbf{x}(b-a)$ is the (a, b) -entry of $S(a, b \in GF(q))$.

Here we give the label ∞ to the first column and row of S, but we omit to indicate an ordering of elements of GF(q). Then $H_0=I+S$ is called an Hadamard matrix of order q+1 of quadratic residue type.

We begin with the following lemma.

LEMMA 5. Let H_0 be the Hadamard matrix of order q+1 of quadratic residue type. Then $K(H_0)=L(H_0)=1$ for q>7.

PROOF. By a theorem of M. Hall Jr. [2] H_0^t is equivalent to H_0 . So it suffices to show that $K(H_0)=1$. Since $G(H_0)$ is doubly transitive on the set $\{\{\boldsymbol{a}(\infty),\boldsymbol{a}(\infty)^*\},\ \{\boldsymbol{a}(a),\boldsymbol{a}(a)^*\},\ a\in GF(q)\}$, it suffices to show that $K(\boldsymbol{a}(\infty),\boldsymbol{a}(0))=1$. Now assume that $K(\boldsymbol{a}(\infty),\boldsymbol{a}(0))>1$. Then there exist $a,b\in GF(q)$ with $a\neq b$ such that $Q\cap Q+a=Q\cap Q+b$, where $Q=(GF(q)^\times)^2$. This implies that $Q\cap Q-a=Q\cap Q+b-a$ and that $Q\cap Q+ac=Q\cap Q+bc$, $c\in Q$. So we have that $K(\boldsymbol{a}(\infty),\boldsymbol{a}(0))=\frac{1}{2}(q+1)$. Then by a theorem of C. Norman [5] H_0 is equivalent to the character table of an elementary Abelian 2-group. By theorems of W. Kantor [4] this is a contradiction for q>7.

REMARK. Ronald Evans (UCSD, La Jolla, CA) has obtained a more informative proof for Lemma 5.

Now let $H_1 = T \times H_0$. H_1 is called an Hadamard matrix of Paley type. Then it follows from Lemma 2 that $K(H_1) = L(H_1) = q + 1$.

132 N. Ito

On the other hand, in [6] V. Pless has constructed a series of Hadamard matrices of order 2(q+1) of the following type

$$H_2 = \begin{pmatrix} I+S & I+S \\ I-S & -I+S \end{pmatrix},$$

which we call Hadamard matrices of order 2(q+1) of Pless type. Moreover, V. Pless has shown that $G(H_2)$ is transitive on both P and B, where $M(H_2)=(P,B)$. Multiplying the second, third, ..., (q+1)-st rows of H_2 by -1 we normalize H_2 , and from now on H_2 indicates the normalized matrix.

Putting subscripts 1 and 2 to $\{\infty\} \cup GF(q)$, we indicate the left and right halves, and top and bottom halves of H_2 . Moreover, we put

$$P = \left\{ \infty_{1}, GF(q)_{1}, \infty_{2}, GF(q)_{2}, \infty_{1}^{*}, GF(q)_{1}^{*}, \infty_{2}^{*}, GF(q)_{2}^{*} \right\}$$

and $Q_i = (GF(q)_i)^2$ (i=1, 2). Let $a(\infty_i)$ and $a(a_i)$ denote the blocks corresponding to the rows ∞_i and a_i respectively $(i=1, 2; a \in GF(q))$. Then we have that

$$\mathbf{a}(\infty_1) = \left\{ \infty_1, \ GF(q)_1, \ \infty_2, \ GF(q)_2 \right\}$$

$$\mathbf{a}(\infty_1) \cap \mathbf{a}(a_1) = \left\{ \infty_1, \ -Q_1 + a_1, \ \infty_2, \ -Q_2 + a_2 \right\}$$

$$\mathbf{a}(\infty_1) \cap \mathbf{a}(\infty_2) = \left\{ \infty_1, \ GF(q)_2 \right\}$$

and

$$a(\infty_1) \cap a(a_2) = \{\infty_1, a_1, -Q_1 + a_1, Q_2 + a_2\},$$

where $a \in GF(q)$. Now let us consider $K(\boldsymbol{a}(\infty_1), \boldsymbol{a}(\infty_2))$. We have that $\boldsymbol{a}(\infty_1) \cap \boldsymbol{a}(\infty_2) \cap \boldsymbol{a}(a_1) = \{\infty_1, -Q_2 + a_2\}$ and $\boldsymbol{a}(\infty_1) \cap \boldsymbol{a}(\infty_2) \cap \boldsymbol{a}(a_2) = \{\infty_1, Q_2 + a_2\}$. Thus $K(\boldsymbol{a}(\infty_1), \boldsymbol{a}(\infty_2)) = 1$, unless q = 3. The rest is similar. So we have the followin proposition.

POROPOSITION 1. $K(H_2)=1$. In particular, H_1 and H_2 are inequivalent for q>3.

Porposition 2. $L(H_2)=q+1$.

PROOF. Let us consider H_2^t . Then using the same notation as above we have that

$$oldsymbol{a}(\infty_1)\capoldsymbol{a}(a_1)=\{\infty_1,\ Q_1+a_1,\ a_2\ Q_2+a_2\}$$
 $oldsymbol{a}(\infty_1)\capoldsymbol{a}(\infty_2)=\left\{\infty_1,\ GF(q)_1\right\}$

and

$$a(\infty_1) \cap a(a_2) = \{\infty_1 \ Q_1 + a_1, \ \infty_2, \ -Q_2 + a_2\}$$
.

So we have that $a(\infty_1) \cap a(\infty_2) \cap a(a_1) = a(\infty_1) \cap a(\infty_2) \cap a(a_2) = \{\infty_1, Q_1 + a_1\}$ for every $a \in GF(q)$ and hence $K(a(\infty_1), a(\infty_2)) = q + 1$.

Remark. (i) If q=7, then H_1 and H_2 are equivalent to H_1 and H_4 of [1] respectively. (ii) If q=11, then H_1 and H_2 are equivalent to H_1 and H_{10} of [3] respectively.

§ 3. Automorphism groups.

For q=7 and 11 $G(H_1)$ and $G(H_2)$ are determined in [1, 3]. So from now on we assume that q>11.

PROPOSITION 3. $G(H_1)$ is isomorphic with $G(T) \times G(H_0)/\langle z_T z_0 \rangle$, where z_T and z_0 are *-elements of G(T) and $G(H_0)$ respectively.

PROOF. Let $M(T)=(P_T,B_T)$, $M(H_0)=(P_0,B_0)$ and $M(H_1)=(P,B)$ be the matrix designs of T, H_0 and H_1 respectively. Let $\mathbf{a}=(a_1,a_2)$, $\mathbf{b}=(b_1,b_2)$ and $\mathbf{c}=(a_1,\mathbf{c}_2)$ be three blocks of B such that $b_1\neq a_1$, a_1^* and $c_2\neq a_2$, a_2^* . Then by Lemmas 2 and 5 we have that K(a,b)=q+1, K(a,c)=2 and K(b,c)=1. Let $G(H_0)_{\{a_2,a_2^*\}}$ and $G(H_1)_a$ be the stabilizers of $\{a_2,a_2^*\}$ and a in $G(H_0)$ and $G(H_1)$ respectively. Then there is no element of $G(H_1)_a$ which transfers a to a. So $G(H_1)_a$ is isomorphic with $G(H_0)_{\{a_2,a_2^*\}}$. Since $G(H_1)_a=4(q+1)$ and by a theorem of a. Kantor a in a

Proposition 4. $G(H_2)$ is isomorphic to the semi-direct product of a two-dimensional semi-linear group over GF(q) and a cyclic group of order 2.

PROOF. First we remark that the automorphisms of H_2 (or the code C(q) in [6]) corresponding to the automorphisms of GF(q) are not explicitly mentioned in [6].

Now $G(H_2)$ and $G(H_2^t)$ are clearly isomorphic. So we consider $G(H_2^t)$ instead of $G(H_2)$. Then the automorphism of H_2^t corresponding to Z_2 in [6] is the generator of the cyclic group of order 2 mentioned in Proposition 4, and takes the following form; $Z_2 = (\infty_2, \infty_2^*) \prod_{a \in GF(q)} (a_2, a_2)^*$. Z_2 interchanges $a(\infty_1)$ with $a(\infty_2)$, and $a(a_1)$ with $a(a_2)$ ($a \in GF(q)$).

Now in the notation of Proposition 2, we have that

$$egin{aligned} m{a}(\infty_1) \cap m{a}(a_1) \cap m{a}(b_1) \ &= \left\{ \infty_1, (Q_1 + a_1) \cap (Q_1 + b_1), \ \{a_2, Q_2 + a_2\} \cap \{b_2, Q_2 + b_2\} \right\}, \ m{a}(\infty_1) \cap m{a}(a_1) \cap m{a}(c_2) \ &= \left\{ \infty_1, (Q_1 + a_1) \cap (Q_1 + c_1), \ \{Q_2, Q_2 + a_2\} \cap \{\infty_2, -Q_2 + c_2\} \right\}, \end{aligned}$$

and that

134 N. Ito

$$a(\infty_1) \cap a(a_2) \cap a(c_2)$$

= $\{\infty_1, (Q_1+a_1) \cap (Q_1+c_1), \infty_2, (-Q_2+a_2) \cap (-Q_2+c_2)\}$.

So it follows that $K(\boldsymbol{a}(\infty_1), \boldsymbol{a}(a_1)) = K(\boldsymbol{a}(\infty_1), \boldsymbol{a}(a_2)) = 2.$

Let $X=G(H_2^t)_{\boldsymbol{a}(\infty_1)}$ be the stabilizer of $\boldsymbol{a}(\infty_1)$ in $G(H_2^t)$. Then X leaves $\{\boldsymbol{a}(\infty_2), \boldsymbol{a}(\infty_2)^*\}$ invariant, and so it leaves $\{\infty_1, GF(q)_1\}$ and $\{\infty_2, GF(q)_2\}$ invariant or interchanges them. X is an automorphism group of an Hadamard 3-design of H_2^t at $\boldsymbol{a}(\infty_1)$. So if X does not leave $\{\infty_1, \infty_2\}$ invariant, then it follows that an Hadamard 3-design of H_0 at $\infty_i \cup GF(q)_i$ (i=1 or 2) has a doubly transitive automorphism group, which is against a theorem of W. Kantor [4], since I-S is equivalent to H_0 by a theorem of M. Hall, Jr. [2]. So X leaves $\{\infty_1, \infty_2\}$ invariant.

Let Y be a subgroup of X of index at most 2 leaving $\{\infty_1\}$ and $GF(q)_1$ invariant. Then Y can be represented as an automorphism group of the matrix design corresponding to I-S. The kernel of this representation leaves ∞_1 and $GF(q)_1$ pointwise. Hence it is trivial by the construction of C(q) [6].

Finally we show that Y=X. Otherwise, we have an involution r which interchanges ∞_1 with ∞_2 and $GF(q)_1$ with $GF(q)_2$. r leaves $\{a(a_2), a \in GF(q)\}$ invariant. Since q is odd, r fixes at least one of them, say $a(b_2)$. Then r interchanges b_1 with b_2 , Q_1+b_1 with $-Q_2+b_2$ and $-Q_1+b_1$ with Q_2+b_2 . Now if r fixes another $a(c_2)$, then r interchanges c_1 with c_2 . Since c_1 and c_2 are both squares or non-squares, this contradicts the above. If r interchanges $a(c_2)$ with $a(c_2)$, we get the similar contradiction.

By theorems of V. Pless [6] this proves Proposition 4.

Bibliography

- [1] M. HALL Jr.: Hadamard matrix of order 16. J.P.L. Research Summary No. 36-10, 1 (1961), 21-26.
- [2] M. HALL Jr.: Note on Mathieu group M_{12} . Arch. Math. 13 (1962), 334-340.
- [3] N. ITO, J. LEON and J. LONGYEAR: Classification of 3-(24, 12, 5) designs, to appear.
- [4] W. KANTOR: Automorphism groups of Hadamard matrices, JCT 6 (1969) 279-281.
- [5] M. E. KIMBERLEY: On the construction of certain Hadamard designs. MZ 119 (1971) 41-59.
- [6] V. PLESS: Symmetry codes over GF(3) and new five-designs, JCTA 12 (1972), 119-142.
- * This work is partially supported by NSF Grant. MCS 7810017

Department of Mathematics University of Illinois at Chicago Circle