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Regularity of solutions to hyperbolic mixed problems

with uniformly characteristic boundary

By Toshio OHKUBO
(Received April 22, 1980; Revised July 16, 1980)

§0. Introduction and results

Let G be a domain in R® with smooth boundary 9G. We consider
the following mixed problem for a hermitian hyperbolic system P:

Pu=f in  [t, 2] XG,
(P, B) Bu:g on [tl’ tg] XaG,
u(t, x) =h for =G,

where ¢, <t,,
(0. 1) P(t, z; D, D) =D+ 3 Aj(t, 2) D;+Clt, ).,
i=1

A; and C are mXm matrices, A;=Aj, Dt:—i% and Dj:—i—%. The
B(¢, ) is an IXm matrix of constant rank [/ and all of A;, C and B are
smooth and constant for large |¢]4|x].

For the sake of simplicity of description, throughout in the present
paper we may suppose that G is the open half space {z,>0}. Furthermore
it is assumed that 6G is uniformly characteristic for P, i.e., the boundary
matrix A, is of constant rank d less than m near 8G. This article is con-
cerned with the Lz-well possedness for (P, B) and the regularity of solutions
to (P, B) under the L2-well posedness. In particular, we are here interested

in the problem whose solution « satisfies the estimates of the type
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for y >y, where p>0 are integers and 7, C,>0 are constants independent
of t;, t,, f, g and h (see §1 for notations).
Without loss of generality, we may take A, to be block diagonal :

0.3 An:[A 0]’ A:[A+ 0_],
0 A

0 0
where A*(A~) is a positive (negative) definite d* X d* (d~ X d~) matrix respec-
tively and d*+d-=d. Furthermore, it is natural to assume that /=d* and
(P, B) is reflexive, i.e., ker A,Cker B on dG. So, under (0. 3) we may take
B to be of the form

(O 4) B = (BI’ O) ’ BI = (Id+) S> ’

where I; denotes the 7 X unit matrix and S is a d* Xd~ matrix (cf. Kubota
and Ohkubo [3], Lemmas 2.9 and 2.10). Let Py(t, x; , 0, 2) be the principal
symbol of P, where 7, 6=(qy, ---, On_1), A are covariables of ¢, 2/ =(z,, -+, Ln_y),
x, respectively. Then we have

THEOREM 1. Let Pyt, x; 7,0, A) be of constant multiplicity in v. Sup-
pose that the kernel of B is maximally non-positive for P on 0G, i.e.,
(0. 5) Awuu<0 for uckerB on 4G

and ker B is a maximal subspace obaying the above property. Then, for
every ty, ty and every fEC[t,, t,]; LX(G)), g=C¥([t,, t,]; H:(3G)) and he L*G)
there exists a unique strong solution ueC[ty, ts]; LXG)) to (P, B) satisfying
inequality (0. 2) with p=0.

To get higher order estimates (0.2) with p=1 which are analogous
to those under Kriess’ condition (cf. Majda and Osher [6]), we must assume
additional conditions besides those of Theorem 1 (cf. Tsuji [12]). Let us
write Py(t, x; 0,0,0) as
Arg Arn
AIII AII 11
where A;; and Apq are dxd and (m—d) X (m—d) matrices respectively.
We now make the following assumption (A) on P,:

(A-1) (An1AAri— AnuAn 1A (¢, x50 =0 for s=R !,
(A‘“Z) (AII IA_IAI II) (t, X, 0') =0 fOI‘ sE R .
Then we have

THEOREM 2. Suppose the conclusion of Theorem 1 and in addition
the condition (A). For each integer p>1, if the data f, ¢, h belong

(0. 6) :Z::iAj(t, x)o;= [ ] (t x; a),
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b »
to .ﬂoci([tl, ] ; HH(G)), NCH [ ta) 5 Hr+3-4(3G)), H?(G) respectively and
i= =0
Sfulfill compatibility conditions of order p—1 (see Definition 5.1 below),
then the solution u belongs to r%C"([tl, to] ; H?%(G)) and satisfies inequality
i=0

(0.2) together with the following inequality which yields an estimate for
the first term on the right side in (0.2):

b ZCy I3+ 5 | DA osoer) -
i=0

©.7  3|Diue

Estimates (0.2) are as sharp as those in [6]. Furthermore the con-
dition (A) with respect to P is satisfied by important physical examples such
as the curl operator, Maxwell system and the linearized shallow water equa-
tions, which are treated also in [6]. But the conditions in [6], satisfied by
these examples, seem to be too complicated to compare with our conditions
(cf. §6).

Here we shall explain briefly why (A) is required to obtain higher
order estimates (0.2). Let us write u="(uy, ‘un) ©C™ where u and uy are
d- and (m—d)-vectors respectively, and denote by A;x operators with symbols
As(t,z; o) (J,K=LI). Then by (0.3) and (0.6) the equation Pu=f is

rewritten as
(0- 8) Dyu; = A“1< I—DtuI—AI IuI—AI IIuII_(Cu)I> ’
(Dt +Aru+ Cu n) Un :fn —An 1t — Crrusy
where Cy; and Cip are the lowest left (m—d) X d and right (m—d) X (m—d)
blocks of C respectively. Unlike the noncharacteristic case, these do not

yield directly an estimate of D,uy in terms of f and tangential derivatives
of u. So we apply D, to the second equation of the above to get

(Dt + AII nt CII 11) (Dn un)
= nfn—‘ AII I(DnuI) - Cn IDnu1+K1u ’

where (and in what follows) K; stand for first order (tangential) differential
operators not containing D,. Substituting (0. 8) into the second term on

the right and rearranging yield

(Dz +Annt Cu II) (Dn un)
=D, fu—Au1 A7 fi—Cu1Dpus+ Kyu
+An1 A A rur+ Ant A Arnun + An1A 1 Dyuy.

Rewriting the last term of the above as D; An1A ™ ur+ Ksu; we get for x,>0
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(0. 9) (Dy+ A u+Cy ) (Dypun— At A v uy)
=D, fu—An1 A7 fi—Cu1Dyur+ Kyu
+(An1A ' Arr— Anun At A Y ur+An1 A Arnun

Note that (D;+Anu+Cun) is a hermitian hyperbolic operator which does
not contain D,. Then, under (A), we can obtain an estimate of (D, u—
Au1A™'uy) and hence D,uy in terms of first order derivatives of f and u
and tangential derivatives of uy (c.f. Cemma 4.1). Thus, using estimates
of D,u; following from (0.8) and of tangential derivatives of % which are
obtained from (0. 2) with p=0 as in the noncharacteristic case, we can raise
the differentiability of « to obtain (0. 2) with p=1. The analogous procedures
together with differentiations of (0.8) and (0. 9) will yield (0.2) with p>2.
Section 2 is concerned with the proof of Theorem 1 and LZ?-estimates
of u are derived from the assumptions of Theorem 1. Sections 3 and 4
are concerned with the proof of Theorem 2, or higher order estimates.
In section 3, assuming the conclusion of Theorem 1 we mainly discuss
tangential estimates of #, and in section 4, assuming further the condition
(A) we do normal estimates of u;. The proofs of Theorems 1 and 2 are

accomplished in section 5. In section 6 we give examples of (P, B) for
which (A) is satisfied.

§1. Norms and notations

Let HYR"') be the usual Sobolev space of vector valued functions
v(Z)=(vy, -, vi), (QERY. We use the following norm with 7>0 of HY(R"):

(1.1) (Vg =LAV,
where (), is the standard norm of L*R"!) and

(/I?'U) (x/> — (2ﬂ)—(n—1)j <7.2+ lo'lz>q/27j(0') ' do ,

Rn—x

oa)=| _erold)da.
R -1

As the norm of the Sobolev space H?(G) (p=0,1,---) of vector valued
functions u(x)=(u,, -+, ux) we use

(12 fuly, = (3, |4 Dbuli)f

=0

which is equivalent to (Y] [y*Du|)%, |+|, being the standard norm of L3(G).

i+lal<p

Let X be a Banach space and C7([t,,2,]; X) be the space of X-valued
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functions of t&[t, 2] which are j times continuously differentiable. For
by [q]

ut) e DOCj([tl, ) ; HP79(G)) and v(t) e ?] Ci([ty, t5] ; HTI(R*Y)) with ¢>0 we
j= J=0

define the norms by

R P

[q]

{(2)))r = 2 (DI00)i-s

respectively. Then we see from (1.2) and (1. 1) that

Lo Juok.~

(1. 5) (o)), =

where =~ stands for the equivalence of norms. Hence putting

AP D] Dru(e)s

J+k<P

> {4 D)3,

J<L4q]

(1.6) utf, = |47 Diutof,

(1.7) <<<u<z>>,>>z,, o (DI D)},
we get

.8  [e@l = LDk

(((ute >>>qr~2<<D" (©))ir-

Now, for real 7 (y=0) we set
(@)= (et e,
L9 = e e,

leell,, = Z D5l p-r,, -

Here A!=A%D,, D, ; 7) is the pseudo-differential operator with the symbol
(r*+7*+ o972 =(|7% 4 |0]|?¥? where r=%—ir and a pseudo-differential operator
B(t, x; Dy, D, ; y) with the symbol g(¢t, x; 9, a; 7)=8(t, x; 7,0) is defined by

(1.10) Bt x; Dy, Do 5 1)ev(t, )

S -
= (2n)‘"e"S Bt x5 p—ir, 0) e o(y, o) €7 dpdo
R
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(cf., for instance, Ohkubo and Shirota [8]). We denote by H,,(R'x R*1),
H, ., (R'x G) and H,,e,(R'X G) the completions of C5(R!'x R, Ce(R'xG)
and C®(R!xG) with respect to the norms in (1.9), respectively (cf. Kubota
[2). We finally remark that for y>0

@ | e o0)isde,  a20,

(@) dt

11l = e

.. -

el | e fluty

§ 2. L*estimates

In this section, under the assumptions of Theorem 1, we first discuss
the L2-well posedness for the following boundary value problem (P, B),:

[Pu=f in R'XG,

P, B
(F Blo \Bu=g on R'%X3G,

and next derive a priori estimate (0.2) with p=0.

Hereafter in all inequalities let y be sufficiently large and denote by C
suitable positive constants independent of 7y, #, ¢, and functions appeared
there, unless especially stated.

ProrosiTION 2.1. Let Py(t,x; 7,0,2) be of constant multiplicity in
r. Then there exist constants C, 1,>0 such that for every y>y, and ue&
Cy(R*xG)

(2.1) (A, < Cllalls, +12LF 1 +7oMs)

the norms being defined by (1.9).

Proor. From (0.4) and [3], Lemma 2.10 there exists a small ¢>0
such that for all (¢, &, 7,0) ER'X0G X ((C_ x R*1)\0) with |a| <¢lz|

(2.2) R(t, 2 ; 7,0)x0,

where C_={r&C"; Im <0} and R is a Lopatinskii determinant for (P, B),
Let pi(r,0) and pB,(r,0) be positively homogeneous scalar valued C*-
functions of degree 0 in (9, g,7) with (p—iy, 9)E(€_ x R*1)\0 satisfying 8+
B:=1 whose supports are in {(r,0); |a|>(¢/2)|z[} and {(z,0); |o] <e|z|} re-
spectlvely Let B;(D,, D, ; 7) (1=1, 2) be the pseudo differential operators as
n (1.10); noting us=pi(D;, Dy ; 7) s+ Bo(Ds, Dy ;5 7) ux we shall estimate B, uy
and Beus (cf. Miyatake [7]).
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Since on the support of (z, o)
<72+{0}2)—1385_207)2—{—]0[2)_1 for y=—-Imz>0,
we see from (1.9) that for every ucCy(R!x G)

(472 Buuay,, < CAF )i,

where C.>0 is independent of 7 and u;. Since €A~ Tury: =2Im (e (Dyuy),
e A un) 12w xy, from (0. 8)

(A4, < C (1l +772 11 F1R,) -

Therefore (2. 1) follows if we prove under (2. 2) that for every ucCy(R'x G)
23 (B < Cl i A (00 + (A ).

To establish this we shall localize and reduce (P, B), to a noncharacteristic
problem for B,u; Set

QI I QI 1I
QII I QII II

where Qrr, Quun are dXd, (m—d)x(m—d) matrices respectively. Then
(P, B)y is rewritten as
J(Dn +A Q) ur + A Qrnun = A_l(fl —(Cu)y),
l Qunun =fu—Qnru— (Cu)rr in R'XG,
Blu:[:g on RlxaG,

(24> [ :I(t’x; Tyo'):POOf’ x; T,O'ro):z'lm_*'nz—:lAjaj,
Jj=1

where the last equality is due to (0. 4).

In what follows, for J, K=I, II we denote again by Qik(t, x; 7,0)
an appropriate positively homogeneous C*-extention to (£_ x R*)\0 of Qsx
(¢, x; 7,0) restricted to the support of B(r,0) such that for any (r, o)E
(O_x R™M\0 there exists a (ro, g, Esupp B. satistying Qyk(t, x; 7, 0)=Qyx
(t, x; 7o, 00) and 75|24+ |0o|2=1 (cf. for instance). Since the degrees of g,
and Qyx are 0 and 1 respectively, it follows from the above equations that

| (Dn+ A7 Q1) Batr+ A7 Qru(Boters) = B A i+ Ry
IQIIH,BzuII: _QIIIﬂ2uI+ﬁ2ﬁI+K2u in R'xG,
(2.6) Bi(Byur) = B9+ B, o] on R'xoG,

(2. 5)

where (and in what follows) K; stand for pseudo-differential operators of
degree 0.
Since from (2. 4) det Quu(t, x; +1,0)=(+1)"?x0, we have
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det Quul(t, x; 7,0) %0 on (C_xR1\0,

if ¢ is taken sufficiently small. Hence there exists an inverse Qi'y of Quu
whose principal symbol is Qi'u(t, x; 7, 6) of degree —1. Therefore we get
from the second equation of (2.5)

Bety = — Qi Qu 1 ftr + Qii'u fo fu+ K 47w .
Inserting the above into the first of (2.5) yields
(2.7) (Da—Mit, 23 Dy Dar5 7)) (Bt
= (B A fi—A'QuQi'nfef)+Riw  in R'XG,

where M denotes the dXd matrix
(2. 8) Mt, x; 1,0)= —A Q11— QruQu'uQuy) t, x; 7,0).

Let us recall that R is a Lopatinskii determinant for the noncharacteristic
problem (2.7) with boundary condition (2.6) with respect to Bur (see [3],
(2.20) and (2. 21)). Therefore, applying Kreiss’ methods we can derive (2. 3)
from (2.2) and the following lemma (see, for instance, [8], Lemma 5.1 and
subsection 8.1):

LemMA 2.2. Under the assumption of Proposition 2.1, there exist
constants ¢, C>0, nonsingular dxd C*-matriz Si(t, x; t,0) and C*-func-
tions 4(t, x; 7,0) (i=1, -+, d) such that for |o|<e|t| and |z|*+|o|?=1

A
SrtMS; = [ 1'-, ] and  |Im 2| =>C|Im ] .
g

Proor. Let 7; be the roots in 7 of det Py(¢, x; 7,0, ) =0 and m; their
multiplicities. Then from the assumption, all z;(#, x; ¢,1) are infinitely
differentiable over R!X G X R* and analytic, real and distinct for (g, 2) € R\0.
Furthermore by (0.3) we may assume that

7(t, x; 0,2) = a;t, x) A for i<d,
(¢, x; 0,4 =0 for i1 >d+1,

where ;20 are the eigenvalues of —A and & is the number of distinct
ot; )
ones. Hence we get a—‘;(t,x; 0,0 for i<d' and > m;=d. So, accor-
i<d’
ding to the implicit function theorem, there exist C*-functions (¢, x; 7, o)

which are real and analytic in rER! such that

(2.9 t—1;(t, x; o, l)z(l—]i(t,x; T, a)> ci(t,x; ©,0,A) i<d,
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0

with ¢;(¢, z; 7,0, 4)20. Since (2. 9) implies alz_i 20, |Im 2;] > C|Im 7| holds

for small |¢] and some C>0.
1

Now, since nZ_] Ajoj+ A, A is hermitian and has eigenvalues —r;, there
im1 N

exist linearly independent associated C*-eigenvectors {h/}; ;.. m, so that
Py, x; 7,0, 2) ﬁf(t, x; 0, )=0. Set hi(t, x; 7,0)=hit, x; 0, 4(t, x; T, 6)) EC*
for i<d', j=1, -, m; and for small |g|, then it follows from (2.9) that A]
are null vectors of Py(t, x; 7,0, 4). Therefore we get from (2.4) and (0. 3)

(h)u = — Q' Qu 1(A): .

So putting

St ]
— [hl, ey mx’ ceey hl,’ ceny h"ﬁd’ "
[ — Q' O 151 ' ' ‘ 1

where S;eC* is the upper d X d matrix, we see from the linear independence
of {h{};; that det S5;3x0. Furthermore since

Py(z ) [A 0 ] I:zild—M A_IQIIIQ;IIII:I [Id 0 ]
sy X5 T, 0y 4;) =
o(t, x5 T 0 I._q 0 I, Our Oun

according to (2.4), (2.8) and (0. 3), we conclude that M(h{);=2;(h{). This
implies the desired diagonalization of M by S;.

Using Proposition 2.1 essentially we will obtain

PrOPOSITION 2.3. Suppose the conditions of Theorem 1. Then for
any integer p there exists constants C,, 1p,>0 such that for every y>y,,
feEH, ,,(R'XG) and g with A%gEHp,,(RlxaG) the problem (P, B), has
a unique solution uec H,,., (R'X G) satisfying the inequality

(2.10) [l (A7, < Cor (|| F 1B+ (4Eg),)

Moreover, for any real t, if f=9=0 for all t<t, then u=0 for all
t<to.

In order to prove Proposition 2.3, we first discuss the maximal non-
positiveness of (P, B). Let wu;='('u*,'u~) where u* are d*-vectors respec-
tively. Then from (0.3) we have

(2.11) Anucu=A utvut+A " uu.

Since by (0. 4) ucker B implies «™= —Su~, substitute this into (2. 11). Then
(0. 5) becomes

(2.12) (A+S*A*S)uu~<0 for v—C* on oG.
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Now, for convenience, we put &*'={u; u, D,u, D;u(j=1, ---, n—1) and
Dyur € L([t;, ts] X G)} ; then HY([ty, t5] X G) Tt C C[#, 8] ; L¥G)). For
we ! it follows from (0.1) and (0. 3) that

2 Ju(ef = —2 Im (Du(e) u(t)
< {(Anw, up—2Tm (f, ) +Cluli) (1),

where C>0 and (-, +), {+, »> stand for the inner products in L*(G), L*0G)
respectively. Set g=Bu|,;. Then we have from (0.4) and (2. 11)

Anry ud(t) = {{(A~+5% A* ) u, u™)
+(A* g, gy =AY g, STy — (AT Sum, o} ().
Therefore, we find (2. 12) implies that for any positive §<1
Grluok<rluop+cr ok
—i—C( -1 —1<A1/2g >—|—5;‘<A 2gy (¢ >>
1. e.,

21y glefuoh) < ce (|
+o- (Mg +or (At uew,

where ¢ is independent of C, 7, ¢, ¢, and u (c.f. Taniguchi [1I]).
LemMA 2.4. Let h(t)>0 be an integrable function and y>0. Then

S ds‘ e+ B(s') ds gy-lgt B A, t>a.

Using this lemma which is verified directly, we obtain

LEMMA 2.5. Assume the conditions of Theorem 1. Then for any
integer p there exist constants Cyp 7,>0 such that for every y>y, and
u, veCy(R* X G)

(2.14) [y, A ), < Cop 2 (11 Pacllp, + (472 Bud, )

(2.15)  [[olf o+ {40 -, < Cor 2 (|PF o3+ (A2 B o) ),

where
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PH(t,z; D, D) =Di+ 3, A3, 1) Dy+ 3, (Dy A3 6, 0) +C*(t, 2),
(2.16)
Bt ©)=(Bi(t, x) A*(t, 2),0),  BuBy*=0

and B, B' are (d—1)xd, (d—1) X m matrices of rank d—1 respectively.

Proor. Since (P, B) is maximally non-positive, (2.13) holds for u &
Cr(R'X G); integrating it from —oo to ¢ we get

u(t)
b (oo (ag)) )

Multiplying the above by e~ and integrating from —oo to oo, we see from

[Lemma 2.4 and (1.11) that

aells, < C{oQ A7 a)l, +72 (L IR, +071 (412015, )} -

This with 6«1 and (2.1) lead to (2.14) with p=0.
Next, apply A? to the both sides of Pu=f and Bu|,=¢ and use (2. 14)
with p=0. Then by the relations (0. 8) and

(A7 4 uni,, < Cll AP a3,

e

5 < C{ﬁr St_ e"s</1,‘1’2u1(s)>§ds

we obtain (2. 14) for each integer p.

Now according to Lemma 3.2, if N=ker B is maximally non-
positive for A, then N'= ker B =(A,(N))t is non-positive for (—A,). Fur-
thermore (0.4) implies codim N'=d—d*=d~ (see [3], Lemma 2.1). So
ker B’ is maximally non-positive for (—A4,). Hence applying the same argu-
ments to the problem

JP*(—t,x; —D, D) v(—t, x) =f (—t, x) in R'xG,
lB’(—t,x)v(—t,x)zg'(—t,x) on R'xdG,

as we derived (2.14), we obtain (2. 15).

LemMMA 2.6. For an integer p let A°= A?(D, Dy ; ¥) be a pseudo-
differential operator whose symbol is (c+|o])?=(p—ir+|a])? where yx0.
Then :

() (Y= BN,  for veH,,(RXR™Y.

(i) Let y>0 and p<0. Then, for any real t, v belongs to H,,
(R*X R™Y and wvanishes identically for t<t, if and only if APv belongs
to H,,(R*X R"™Y) and wvanishes identically for t<t,.

Proor. The equivalence (i) follows from the inequality

(2.17)
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|+ o[ < Ci(y*+o2+102) < Cofte+ ol ,

where C; do not depend on 7 and a.

To show (ii) it suffices, in view of (i), to prove that, for v&eCy (R X R
v=0 (¢<t) is equivalent to fPr=0 (¢t<t). Set w=A?v, then v=/1-?w and
w does not depend on 7 since (r+|g)? is analytic in = with y>0. First
let w=0 (¢<¢), then v=0 (¢<¢,) since (r+|0|)~? is entire analytic in & C*
for every fixed = R. Next since |(z+]0|)7?|2>1 foy y>1 we have

(Wi, < (A2 wi, = (ol .

Therefore we can derive w=0 (¢<t) from v=0 (¢t<#) by the standard
technique : According to (1.9) v=0 (¢<#,) implies that the right side of the
above is dominated by Ce %, where C does not depend on y. So making
r sufficiently large lead to w=0 (t<t).

ProoF oF ProposiTION 2.3. The former statement of the proposition
follows from (2. 14) and (2. 15) (see [3]). Since the latter statement for p>0
follows from (2. 10) with p=0 as usual, we shall prove that for p<<0. (2.10)
and (i) imply that the solution we H,,. (R'X G) satisfies

12wl < (12211, + (A2 A2 g),)

Let f=g=0 (t<t,). Then from [Lemma 2. 6 (ii) we have /T?f:/ff’Ar%g:O
(¢<ty). This and the above inequality yield A?%=0 (¢<t,), which implies
u=0 (t<to) by (ii).

ProrosiTION 2.7. Under the assumptions of Theorem 1, there exist
constants Cy, 70>0 such that for every y>y, and uc &*

t
(2.18)  eu)f+r j; e

u(s) lﬁ + <u1(s)_>2_%,7> ds
<Gtz e (| ff+(a,) ds}.

where %' is the function space defined in the first line of p. 102.

Proor. According to Proposition A. 1 in the Appendix below we have
(A.1). Moreover, (2.13) holds since (P, B) is maximally non-positive. Inte-
grate (2.13) with d=1 from ¢# to ¢ and apply (A.1) to the resulting last
term. Then we get

u(t)f
<cle a7 e (| A9h+(a)i) ).

2

(2.19) e
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Multiply (2.19) by e, integrate from # to ¢ and use Lemma 2. 4. Then
after replacing 7 by 7/2 we obtain

(2. 20) rS; e"slu(s) lﬁds

<Clemafity | e (| A9f+(a9)3) o).

(A.1), (2.19) and (2. 20) imply (2. 18).

§ 3. Tangential estimates

Throughout this and the following sections we suppose p>1 and, for
ue HP\([t,, t,) X G), set f=Pu, g=Bu|,q and h=u(t). We first list in two
lemmas some inequalities following from only the relations Pu=f and u(t,) =h,
which include (0.7) and estimates of normal derivatives of #;. Then under
the conclusion of Theorem 1, we will derive estimates of tangential deriva-
tives of u, an estimate for the last term on the left side in (0.2) and the
differentiability in tangential directions of the solution to (P, B),. |

LEMMA 3.1. There exists a constant C,>0 such that for every y>0
and uwe H?*1([t,, t,] X G)

6.1 Juwlp. <C(nk, A1),

B2 e <Gl -

LEMMA 3.2. Let 1<k<p. Then there exists constants Cp, 7,>0 such
that for every y>r, and ue H**1([t, t,] X G)

(3. 3) e"‘l

Diust) ]l%_k,,+rjj e

Diu(s)[p-s., s
LA 2s)
(o). ds)

k—1 t
+ 3, (| Dlun(@f s, 47 e
J=1 2

< Cp{<e“”1

Juteo|p,+7 )f -

(o)

t

Dj uy(s) "%?—j,r ds}
and
(3. 4) | Dan(t)

L <G (|u 0+ fO-1) -

Proor oF LEMMA 3.1. Let 1<j<p. Then, since f=Pu it follows
from (0. 1) that
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Djult) = Di~f(e)—Di~ (5 AD+C) ult.

Hence by (1.2) and the relation |«|;,<|+|;, for £<I/ we have for some
C=0 ‘

|Ditd o < | DI A1+ CF [ Deedps

This together with (1.3) implies (3.1), i.e., (0.7), and (3. 2) follows similarly.
To prove we use '

LeMMA 3.3. It holds for every y >0 and fe H'([t;, t:] X G) that

¢ a
rop<z(|rep+r | e |2
tl
Proor. This is a direct consequence of the equality

(e~ 72 a=9) (e(r/m =9 —a];—;i_sl) ds+f(ty)

éa’s>, L<t<ty.

=1,

2
and Schwarz’ inequality.
Proor oF LEMMA 3.2. Let 1<k<p. Then it follows from (0. 8) that

(3.5) Diuy = Dﬁ_lAﬂ( 1—Dyur— Agyur— Ag IIuII_(Cu)I> .

By this, (1. 6) and the relation ||+||;,<||+||;, for ¢<j we have for some C>0
"C_l . .

3.6 |Diufor, <CE (IDIAO-ss DI OB-).

Since k<p, (1.8) implies that the first terms in the brackets on the right
are dominated by | fi()ll%_;,; rewriting the second terms as ||Dju;(t)|[5-;,,+
||D} un(t)||5-;,, we inductively deduce that for k=1, .-, p

Dt uttos, < L0k + ZIPin0-s).
Moreover, since fi& H?([t;, t,] X G) and (1. 4) give
V-, < C(MA@ ], e baods).
Hence, by (3.2)
Dk ur(8) -,

<clefJut)

e""

A 0

i 1%
+or(Jutop+ S Dt b))
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since £>¢,. This means that the first term on the left in (3. 3) is estimated
by the right. The estimate of the second term is obtained from the above
inequality as we derived (2.20) from (2.19). Thus (3.3) is established, and
(3. 4) follows from (3.6) with k=1.

LemMa 3.4. Under the conclusion of Theorem 1, there exist constants
Cp 15>0 such that for every y>y, and ue H?*([ty, t;] X G)

8.1 erutftr ) e (b (a6, ds
<Colemfuteo, +1, e (LA9k,+ {06 sus) a4}

Proor. Let 0<i<p and uwe& H***([t, 1] X G); then PDiA~u) =
H([ty, t:] X G) C C[ty, t] ;5 LX(G)) and B(Di AP u)|se € C([ty, s ; HH(3G)).
Hence, by the assumption we can apply a priori estimate (0.2) with p=0
to D} A?*u ; noting that DA ()% 1, SCCAL DA u(e)p2 s, we get

t
2

(3.8) e~| D} AP0 (2) |g+~,j e (| D Az=tu(s) -+ (Di A2 ur())24.,) ds
| < C{e‘”l | Dt 2= u ()

L e (| PO Azt (B! A2 (). )
Observe that
P(D{ A7) = Di A2~ f— [Di 42, C]
— 5Dt A2, A, Dy D147, A, (D), 0),
B(Di A2t u)) = Di AP~ g — [Di AP, By] sy .

Then we find from (1.5) and (1.6) that the first and second terms in the
brackets ( ) on the right in (3.8) are dominated respectively by constant
times

LS+ B+ Daea(s) o

(o6 st () osr-

Therefore (3. 8) leads to
b, e (b + Gt s
< c{e—rtxuu(tl) |lz,,+r—1j: e (LA +({o)))2us,) ds
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1 e (Juh+Gule)ost

Applying (3. 4) to the last term we obtain (3. 7).

D, ux(s) “Z_L,) ds} :

LEMMA 3.5. Under the conclusion of Theorem 1, there exist constants
Cp 1o>0 such that for every y>yp, and u& HP ([t t,] X G)

6.9 1) e 4 Au ))ds
<G, {3_”‘"”(?51)"%,7‘*‘7’52 e‘”" u(s) mﬁ,,,ds

1 e (WOl + (o)) 4.

PrOOF. According to (1.7) we have A ¥ Anu(s)Y,p, <CL A ui(s) Yy,
and hence

(3.10) e Sz e’ <<</1,‘ 3 A,u (s)>>>§,,, ds

<G en({(artm)yn+ B (45 F*DiDsun(s))y) ds.
' k>1

By (3.7) and the relation ||+||,,<ll*ll,, the first term on the right in (3. 10)
is dominated by the right of (3.9). Therefore it is enough to estimate the
second term.

Let £>1 and j+k<p and apply A*~3"*D] D" to (0.8). Then we have
AP=3=1-k DI Dk yy = — AP35 D] D' A7 D,uy
— A7t A2~ D Dt A7 Arvun+ Arniem+(Cui—£i)
Here we remark that A7 %2/131 A7 and
<A§u>0£CluI1,r ue H(G).
Then we see from (1.4) that

(47457 D} Diaa(0))§ < ({4747 DI* DI M1l

+ o (DD, +H 4 A0f.)

where the sum is taken over i+/<j+k—1, i<j+1 and [<k—1. Observe
that the first and second terms on the right are, for #=1 and j=0, -+, p—1,
dominated by C{4;%u;(2))%, according to (1.5). Employing the above in-
ductively for k=2, .--,p with j=0,-.:,p—k we obtain, for any k>1 and
J+EZp,
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(4~¥-+- D} Dyurlt)
< (b)), He @ b Hl 4 A0 ) -

Combining this with (3.7) we conclude that the second term of (3.10) is
dominated by the right of (3.9). Thus the lemma is proved.

PROPOSITION 3. 6. Under the conclusion of Theorem 1, that of Propo-
sitton 2.3 is valid.

Proor. It suffices to prove the conclusions of under our
assumption. (2.14) for p=0 and z=Cy(R'XG) follows from (0.2) with
p=0 by replacing 7 by 27, since {ug(s)y_3,<C{Anuls))-3, and #;, t, are
arbitrary. To prove (2.15) for p=0 we claim that for every f eCy(R* X G)
and g=0 (P, B), has a solution « satisfying (2. 10) with p=0. In fact, choose
£, so that supp fC{t>t), and let « be an extension to {¢t<t;} of the solu-
tion to the mixed problem (P, B) with g=h=0 such that #=0 in {t<ty}.
Then since ¢, is arbitrary and the solution is unique in [t;, 2] X G, u is well
defined for all z=R! and is a desired solution to (P, B), according to (0. 2)
with p=0. Therefore (2.15) for p=0 and veC(R'xG) follows from
Green’s formula (cf. [2], and (A.4) below) and Proposition 2.1
applied to the problem (2.17). (2.14) and (2.15) with p=>1 follow from
those with p=0.

§ 4. Normal estimates
We first show the following lemma concerning the equation
{Dt+ Anult, 3 De)+Cuult, x)} un =jfu in R'XG:

LemMma 4.1. (1) For any integer p>0 there exist constants Cp 72>0
such that for every y>y, and un(t, x)€ HP ([ty, 2, X G)

4.1 efunldff, < Cole funte ||;,,+r-1SZ e farls) o s) -

(i) For any integer p there exist constants Cy, r,>0 such that for
every 1>1, and fu€ Hy,p, (R*X G) there exists a unique solution un< Hyp;,
(R*x G) satisfying
(4.2) lunll},, < Cor~* || full,; -

PROOF. Since Apy is hermitian and does not contain D,, as we derived
(2.13) we have

(4.3) ?5? (e|un@f) < Cre| Al -
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Integrating (4. 3) over [#;,¢] yields (4.1) with p=0; applying it to (AP~ D} uyy)
with un&€ HP*!([t;, 1] X G) and i<p we get (4.1) with p>1 as in the proof
of Lemma 3.4, (ii) follows from (4.3) by the same fashon as in the proofs
of and Proposition 2. 3.

In what follows, we suppose p>1 and the condition (A). We shall
first derive a priori estimates (0. 2) and then the differentiability in the normal
direction of the solution to (P, B),.

Now, in order to prove (0.2) we use

- LemMma 4.2 Let 1<k<p. Then there exist constants C,, 7,>0 such
that for every y>y, and uc H?*1([t, t,] X G)

(4. 4) et D u(s)[-s, ds

IDzuH(t)"%"c’r"'TSt e—rsl
2
<Cf(em e+ ek, )
—}—(e"tllu(t)"?,,,—l—rgzle‘”"u(s)li,,,ds>

k=1
+ (e
Jj=1

Diws-s,+1 |, e |Diutsp-. )

t
+7’_IS ¢ D{;ul(s)"i_k,rds}.
tl
Proor. The definition of f yields (0.9) and (A) implies that there are
no second order derivatives on the right side of (0.9). Hence, applying
Dt with 1<k<p to (0.9) we have

(4 5) (Dt+ AII II+CII II) (DI; Ui — DI;;—IAII I A_IHI) =F for Xy Z 0 ’
where
(4.6) F=D; YD, fu—Anu1 A fi—Cy 1D, u;+ Ksu}

+[AuutCuw DEY (D, un— An 1 A uy) .

Since u &€ H"*!([t}, 1] X G), (4.5) together with Lemma 4.1 (i) with p
replaced by p—*k implies that

e"’ rt

Dy un(t)— DE T Ay 1 A7 uy (2) "?a—k,r

<C, {6_”‘ l Dyun(t) —Di ' An 1 A u(ty) "%—k,r

+7-1S5 e |FO . ds} .
by

Hence
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)l
] IR s 1T W

Note that Kj in (4.6) is a first order differential operators not containing
D, whose coefficients depend only on those of P. Then from (4.6) we

n

see that for some C>0

e Tt

(@), < Cler

k-1
+ e
=0

[P, <c(lrok. wl®)p-s.+H| DS s )
Therefore we get for 1<k<p v
| Dsun(®)-r.s
<cl(erfuilp ], k)
+ 5 (e Dt foss 1, D1 s, )

+771, e Dl ds).

This means that the first term on the left in (4. 4) is estimated by the right.
The estimate of the second term is obtained from the above inequality as
we derived (2.20) from (2. 19).

~ From Lemmas 3.2 and we have

LeMMA 4.3. There exist constants Cp, 7,>0 such that for every =y,
and uwe HP ([, ] X G)

O 0] s (0 2%
<Gy {(6"”1“|u(t1) III%’,r’*_T_lSZ e"smf (s) "%,,ds)
e a4 e fuepds).
2
Proor. From (3.3) and (4.4) we get for 1<k<p
st e[ Diu-crds
fultfs 7| D05

where K is the right side of (4.7). Using this inductively for £=1,---, p
yields (4. 7). -

e | DEule)

-1
< C{K—I— 5 (e"‘
i=t
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From Lemmas (4.3, and we obtain (0. 2), that is,

PROPOSITION 4.4. Under the assumptions of Theorem 2, there exist
constants Cyp, 1,>0 such that for every y>y, and uc H**2([t,, t,] X G)

o+, e (ol (7 Ants)))s,)
< Cp{e‘mmu(tl) |||§,,,+r‘15 (Aol +{o (S)>>?a+%,r) dS} :

t
tl
The rest of this section is devoted to the proof of

ProprosiTION 4.5. Under the assumptions of Theorem 2, there exist

constants Cy, 1,>0 such that for every >y, fEH,,,(R'XG) and ¢ with
ArgE H, (R X 8G) there exists a unique solution ue H,, (R'xG) to (P, B),
satisfying the inequality

el < Cor 2 (A2, + A g))3,) -

First, from (3. 5) and (3. 6) we deduce the regularity result corresponding
to Lemma 3. 2:

LemMma 4.6. Suppose that uc H, ,,,(R'XG) and feH,,,(R*xG). Let
1<k<p. If ||IDjullp-;, are finite for all j=1,---,k—1, then ||Diuw|} s, is
finite and the inequality

k-1 .
| D a5, < C(IHﬂ“%—LT-}‘HuH%,,-F jlelszuH?o—f,r)

holds.

Next we have the regularity result corresponding to [Cemma 4. 2:

LemMA 4.7. Suppose that uc Hy ,, (R*'XG) and fEH,,.,(R'XG). Let
1<k<p. If |IDjullp-;, are finite for all j=1,---,k—1 and so is | DEu||p_y.,
then ||DEuy|p_x, is finite and the inequality

DS 3 < C(r I+l
k-1 ,
+ 3 13l g, 77 I D,

holds.

Proor. Since (A) implies (4. 5) with F=F; defined by (4. 6), it follows
from the assumptions and £<p that F, belongs to Hj, ;.. (R'XG) and that

k-1 )
4.8 (FdBer, < (1A + S 1Dl +IDflos,)

So applying (ii) with p replaced by p—#% to (4.5), we get
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| Drun— Dyt Ap 1 A7 5i, < Cr 2| Full-s., »

hence

k-1 )
1Dl < (72 1Ful o 5 1Dl

This together with (4. 8) implies the lemma.

ProoF OF ProPoOSITION 4.5. Since f&H,,,(R'XG) implies f€H,,.,
(R'X G), we have the unique solution w& H,,,,(R'XG) described in Propo-
sition 3.6. For such f and « apply Lemmas (4. 6 and alternately. Then
we see that ue H,,, (R'XG) and

iy, < C (a3, 47720113, -

This together with (2.10) implies the proposition.

§ 5. Proofs of Theorems 1 and 2

To define the compatibility conditions for (P, B), let the solution
k
ult, ) NC{[#, t] ; H?"*(G)). Then from Bu|,;=¢ the relations
i=0

(5.1) (Dtg) (¢, x) = (D} Bu) (¢, x) |
- io(;ﬁ)(Dg—fB) (s 2) (Di ) (1 7), on G, (0<i<k)

must hold. Representing (D/u)(t;, x) by f and A and inserting them into
the above, we arrive at the following

DeFINITION 5. 1. Let p>1, fE H?([t,, t,]) X G), Mg H?([t,, t,] X3G) and
he H?(G). Let these data satisfy

6.2 (0B 2k @)= Do) 6 o
j=0
on oG for i=0,--k,
where k<p—1, h®(x)=h(x),

6.3 RO@=Dr - 5 () Lo o), 1<isp),
6.4 Lit)=(DIP—D)) ()= % (DiA) (s 2) Dy+DiC) e 2).

Then we say that the compatibility conditions of order % or, for convenience,
{f,g, h; p, k} are fulfilled.

Now in order to prove our theorems we need
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LEMMA 5.2. Suppose that p>1 and {f, g, h; p, p—1} are fulfilled and
let g>p-+1 be an integer. Then there exist sequences {f,} C HY([t, to] X G),
(A2 g,) C Hi([ty t5) X 3G) and {ha} © HP(G) such that {fo gus hus p+1,p) are
Fulfilled and that f,—f in H([t, ] XG), Mg, —Atg in HP([t,, t,] X 9G)
and h,—h in H?(G) as n—oo.

Proor. Since this lemma can be proved by a minor modification of
the proof of Rauch and Massey III [9], Lemma 3.3, we only describe dif-
ferent points preserving the same notations as in [9], p 309 as far as possible.
First let B(¢, x) be independent of z. Then the data fulfills Bh® =(D;g) (¢,
on 8G for 0<i<p—1, and we must approximate f, g, h by sequences {f},
{0}, {ha satisfying BhY=(D}g,)(t;) on oG for 0<i<p.

Let ¢>p-+1 and first take sequences {f.} CH?*([t;,t,] XG), (A2 g} C
Hr+o([t, £,] X 0G), {h} C HP*(G) with f,—f in H([t, ;] XG), Atg.—Aig
in H?([t,, t;] X9G), h,—h in H?(G) and write the desired sequence {A,} as
h,=h,—h,. Here h),c H(G) must be chosen so that A,—0 in H?(G) and

BB}k, = B(Bh,+E; f,)—(Dig,) (t) on aG for 0<i<p,

where B; and E; are such operators as in p 309, i.e, (5.3) is rewritten
as h =B,h+E, fe HG). Let T:‘(‘(B}“ (B Bf)™,0) be an m X/ matrix,
where B is the /X d matrix in (0.4). Then TB=1I, so it suffices to solve
the equation (B;hL)i=(a;.); on G for 0<i<p, where a;n=T{B(B;h,+
E.f.)—(Dig,) )} =((asn) “a:n)m)- ‘

According to (5.3) and (5. 4), the operator B; has the form

A i-1 _
B;h= < ) Dyh+ 3 Cyy_iDih,

0 7=0
where C;;_; are m X m matrix valued operators of order ¢{—; which only
invlove differentiations tangential to G. We now choose A} so that (h})y=0.
Then the equation (B;hl)i=(a;.); can be written as Dj(h;)1=b;, where

bin=(—A)" ((ai,n)l - Eo(ci,i—j)l 1 bj,n)

and (C;;_)r1 is the upper left dxd matrix of C;;_;. Now the assumption
implies that (a;,): belongs to Hrt=i=3(3G) for 0<i<p and tends to zerc
in H»3(0G) for 0<i<p—1, hence so do b;, Therefore we can con-
struct (A€ HYG) so that (h,);—0 in H?(G) and Di(h)y=b;, on oG for
0<i<p by the same fashion as h, is done in [9], p 310 (decompose (Ay)=
v, 4w, so that, on 0G, Div,=b;, 0<i<p—1), D;v,=0 (p<i<p+q—1)
and Diw,=0 (0<i<p—1), Diw,=byn—D5vy).
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Next, when B depends on #, we can reduce our arguments to the above
case, by using such a transformation 7 of dependent variables as in the proof
¢ — : _[H@#, x) H ' (t,x) 0
of [9], Lemma 3 1 (in our case let r(z x)_[ 0 I d] where
H=(Bf, (B)*) and By is the matrix in (2. 16)).

COROLLARY 5.3. Suppose that p>0 and feHP([t,t,)xG), Mrge H?
([t ts) X0G) and he H?(G). When p>1 suppose further that {f, g, h; p,
p—1} are fulfilled. Then, for q>p+3, there exist sequences { f,} C HY([¢,, t,]
X G), {A2¢,) C Hi([t), )] X0G) and {h,} C HYG) such that {fp, Gn, hn; p+3,
p+2} are fulfilled and that f,—f in HP([t;, t;] X G), Ar%gn—mlr%g in H([t,, t,]
x 0G) and h,—h in H?(G) as n—co.

Proor. First let p=0. Take sequences {f,} C H!([t, t;] X G), {Ar%gn} -
H([t,, ;] X 9G) and {h,} C HY(G) such that fo—fin L¥[t, t,]) X G), Akg,—Aig
in L2<[t1, tZ]XaG) and hn“?h in L2<G)’ hnlaG:Tgn(tl)EH%(aG> respectively,
where T is the m X! matrix defined in the proof of Lemma 5.2. Then
{Ffus Ons hn 3 1,0} are fulfilled. Applying with p=1 we approx-
imate, for every fixed n, the sequences {f.}, {¢.} and {h,} above taken.
Then we obtain new ones {f.}, {g9.} and {h,} such that {f,, ¢, h.; 2, 1)
are fulfilled. Applying once more with p=2 to these sequences
we obtain the desired ones. Next, when p>1, the desired sequences are

obtained by the analogous uses of [Lemma 5. 2.

Proor oF THEOREM 2. First let p>—1 for later convenience and
suppose that fe& Hr3([t, t,] X G), A2ge Hr*2([t,, t,] X8G), he H?*3(G) and
{fi9,h; p+2,p+1} are fulfilled. Let uy= HP*3([¢, t,] X G) be a solution to
the Cauchy problem ,

[Puy=f in [t, ] XG,
| 24 (t, x) = h for &G,

we shall consider the boundary value problem

[Puy=0 in R'xG,
(5.5) ’ .
| Bu, = g on R'xdG,
where
j— [0 for t<¢, and for large ¢,
lg— Buolse for 1,<t<t,.

Since {f, 9, h; p+2,p+1} are fulfilled, it follows from (5. 1), (5.2) and (5. 3)
that

(D} Buy) (t,) = (D}g) (t,) on IG 0<i<p+1).
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So, we can take ¢ to be 42 §E Hp,s (R**x8G). Now let p>1. Applying
Proposition 4.5 we obtain the solution w,& H,p,,,(R'XG) to (5.5), which
satisfies #,(¢t;, x)=0 by Proposition 3.6. Thus #=uwuy+u; is a solution to

(P, B) belonging to HP*%([t;, ;] X G) (hence to I.)(j:C"([tl, ts] ; Hp“‘i(G))) and

satisfies (0.7) and (0. 2) according to Lemma 3.1 and Proposition 4. 4 respec-
tively.

Next suppose f, ¢, h are general data satisfying the hypotheses of the
theorem and let {f.}, {gn}, {h.} be such approximating sequences as described
in Corollary 5.3. If u, is such a solution to (P, B) as above corresponding
to the data f,, ., hn. then inequality (0.2) with (0.7) applied to u,—uny
shows that the sequence {u,} converges in C([¢;, ;] ; HP™*(G)) for all i<p.

V4
Since u, tends to a function u in L*([z, ] X G), u belongs to N C¥([t, t,] ;
i=0

H?"%(G)) and is a (strong) solution to (P, B) with data f, ¢, A satisfying (0. 2)
and (0.7). Thus the conclusions of the theorem follow from the uniquness

in C'[t, t] ; L¥G)) of the solution to (P, B).

Proor oF THEOREM 1. First let &€ H([t,, t;] X G), A7g< HY([t,, t5] X 3G),
he HG) and {f,¢,h; 1,0} be fulfilled. We apply the arguments in the
first part of the proof of Theorem 2 to p=—1. Then we see from Pro-
position 2.3 and (0. 8) that there exists a solution u,&H, ;.. (R*XG) to (5.5)
such that D,(u); belongs to Hy,, (R'XG) and w,(t, x) =0. Therefore
u=wuy+u, is a solution to (P, B) which belongs to .&* so that to C([¢, t,] ;
L*(G)); by this and Proposition 2.7 u satisfies (2.18) (hence (0.2) with
p=0). Now the existence in C[z,, 2] ; L*G)) of such a solution for £, g, A
as in Theorem 1 follows from the same arguments as in the proof of Theo-
rem 2 by using Corollary 5.3 with p=0 and inequality (0.2) with p=0.
The uniquness of solutions in C%[#;, ;] ; L*G)) follows from the uniqueness
of solutions to (P, B), owing to Proposition 2.3 with p=0.

§ 6. Examples

We first present three examples of hermitian hyperbolic operators which
(i) are of constant multiplicity, (ii) are uniformly characteristic and (iii) fulfill
the condition (A).

ExaMpPLE 6. 1. (the curl operator)

P(D,, D,) = ID;,*+curl = D, + i A;Dj, m=n=3:
i=1
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0 0 O 0 0 1 0—-1 0
P(r,0,) =Le+:[ [0 0 —1|o+ 0 0 Ofey+{1 0 0f2],
0 1 0 -1 0 O 0 0 O
det P(r,0, ) =7(c*—|o|2—2) ( (1)),
rank A, =2 ( (i) ).

We only show (iii) for the operator I,D,+curl (similarly for LD,—curl).
Let T, be the following 3 X3 matrix

114 o 1 1—:] 0
T,=|v2|i 1] o], so T7=|V2|-i 1 0] .

0 0 1 0 0 1
Then P is transformed so that (0.3) is valid, obtaining

1 0 0 —1
T:'A,T,= -1 , T;lAlTn:-é~f 0 0 —Zf,

-1 0

i
T;lAzTn:leZ: 0 0 1].
—i 1 0]

Hence, T;'PT, fulfills (A) since A;;=Anun=0 and Ay A1A;z=0.
ExXaAMPLE 6. 2. (Maxwell system)

0 —curl

P(D, Dx):IﬁDt—k%.—[ ]:IﬁDmL 5T A,D;, m=6, n=3:
i1

curl 0
det P(z, 0, 2) = t%(z?— |g|2— 2)2 ((Q)).

Since the curl operator is invariant under rotations of the coordinates, make
the change of variables: =x—x,, x;—>x, 25—z in [3], pp 153—154. Then
we see (designate there Ty, A,, A, As by T,, A, A, A, respectively) that,
by the orthogonal matrix

(0 0 0 0 0 427
1 0 0 —1 0 0
110 1 1 0 0 0
Tn:T —- ’
Y2lo o o0 o0 42 0
0 -1 1 0 0 0
L1 0 0 1 0 0
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P is transformed so that (0. 3) is valid, obtaining

(1 7 B 0 —11
1 10
—1 1 O 1
T A, T, = » TR AT, = o
0 0 1 1 0 O
) 0 -1 0 0 —1: )
- =1 07
0 -1
1 O 0 1
WAL= 1o
-1 0 0 1 O
L 0-1 1 o0

So, rank T;'A,T,=4, t.e, (ii) is fulfilled, furthermore 7,'PT, fulfills (A)
since A;1=Anun=0 and Ay A 'A;x=0.

ExamprLE 6.3. (The linearized shallow water equations with uni-
formly characteristic boundary (c. f. [6]))

a 0 ¢ 0O 0 O
P(Dt, D.’L’) = I3Dt_ 0 a 0 DI— 0 O C D2 )
c 0 a 0 ¢ O

c>|al >0, m=3, n=2:
det P(z,q, A)

=(r—ao) (t—ag— N+ 1) (r—ac+cNa®+2) ( (1)),
rank A,=2 ( () ).

P(z, 0, 4) is transformed by the 3 X3 matrices

0 0 1 0 1 [-1
1 [—-11 0| and its inverse [0 V2 11]],
V2

11 0 1 0 0
to
a 0 W2)ic c
Lz—]| O W2)ytc|le+| —c 2
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This fulfills (A) since Ay1A1A;1=W2)a(l,1)=AnuAn:A~! and Ay A™?
AI u=0.

We remark that, for the operators in Examples 6.1 and 6.3, all L2
well posed boundary conditions are maximally non-positive after a change
of dependent variables if necessary (see [I]J). Furthermore for Maxwell
system P, so is (P, B) if either B is real and (P, B) satisfies Hersh’s con-
dition or else (P, B) satisfies Kreiss’ condition (see [3], [4]).

For each operator above, all roots 1 of det P(r, g, )=0 are bounded
whenever (r, ¢) is bounded (cf. case (iv) of Theorem 3 in [6], where Kreiss’
condition is assumed for (P, B)). There are further such operators fulfilling
(A):

ExaMPLE 6.4. Let

n-1l a; Ej a 0
Pz, 0,2 = L+ j};‘l & b, g+ 0 0 A, ax0,
4 b () 1
Pyr,0, ) =L+ | b a, —W2)ytife+]| -1 |2,
—W2)t W2)l a 0

Then, if P; fulfills (A), all roots A of the equation det Py(r,e,2) =0 are
bounded whenever (r, s) is bounded (i=1, 2).
Proor. Since

n—1
det Pz, a,1) :(f+ 5 bjoj) al
=

2
’

n—1
Z Cj0j
Jj=1

o+ L) (4 B 00
all roots A of det Pi(r, s, )=0 are bounded whenever (r,0) is, if and only
if Elcjoj:O for all ¢, that is, ¢;=---=c,_;=0, which is equivalent to (A)
forj?’l. Since

det Py(r, 0,2 = —(r+as0) B+(r+as0) (a.— a;) 64
+(r+as0) {(r—l—am) (t+a0)— Iblzaz}

—02{r+<2‘1(a1+a2)—lm b> a} ,

we see that all roots 2 of det Py(r, s, 1) =0 are bounded whenever (z, ) is,

if and only if
2 Y ay+a)—Im b=ay.
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This holds if
a,=a;+2i{(Reb) and a3;=a,+ib,

which is equivalent to (A—1). Since (A—2) is always fulfilled for P,, the
assertion for P, is proved.

We finally give a remark on (A). Let P, be the operator in Example
6.4 with >0 and n=2 and ker B be maximally non-positive for P;. If
estimates (0.2) with p>1 hold for the solution to (P;, B) then the condition
(A) must be fulfilled, that is, ¢;=0 in Example 6.4 (see [12], Theorem 3).

Appendix

The following proposition is used for the proof of Proposition 2.7 :

ProrositioN A.1l. Suppose that (P, B) is maximally non-positive and
Py(t, x; ,0,2) is of constant multiplicity in . Then there exist constants
C, 70=>0 such that for every y>y, and ue !

Ay [ e Ata)ids < clem g
t,
, .
e Sn e (| FOp+ (4t 99)3) )
To prove this proposition we use the methods as in Sakamoto [I0].
We start with

LEMMA A.2. Assume the same conditions as in Proposition A. 1.
Then for every fixed t,(>t) and every f Cy((t, 0)XG) and ¢ €Cy((t,

) X 0G) with f =¢' =0 (¢t >t,) the dual boundary value problem for (P, B),:
Pro=f in R'xG,
P8
Bv=¢g on R'X0G,

has a unique solution v with v=0 (t>t,) such that for large y veH,,,_,
(Rl X G), Dnv]je Hoyo;__r(Rl X G) and

(A. 2) et l v(t,) I(z, +7 SZ ers (I v(s) Iﬁ + </I,‘ 7 vI(s)>?,> ds
<o e (|7 b+ (e 6)7) s,

where C>0 is independent of 71,ty ty, f' and (.

Proor. The assumption implies that (2.17) is maximally non-positive
and that Pj(—¢,x; —rt,0,4) is of constant multiplicity in z. So, let us
apply Proposition 2.3 to (2. 17) noting that any changes of fand ¢ in t> —¢,
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have no influence on the solution « to (P, B)y in t< —¢#. Then we obtain
such a solution v as described in the lemma which satisfies, by (1.9), for
large 7

(A.3) TL e (|olf+ {4 o)) ds
< Cr‘lfz’ e (|7 (I +{4bg ()3) ds .

Since v belongs also to ¥, the maximal non-positiveness of (2. 17) yields
an analogue of (2.13); (integrating it over (—#, —1t;)) we can derive the
inequality

to 1 ’ gy
o)< | e fr (o)t s (| O+ (aha (9)3) s,
since v(t,)=0. This and (A.3) imply (A. 2).
LEMMA A.3. Let Bi be the matrizx in (2.16) and set
-1
Gi=(BB)BiA*,  Ci=(0, 1) (Bf, (By*)

where Cy, C| are IXd, (d—1)Xd matrices respectively. Then every u; and
i€ C? satisfy the following :

(A 4) Aul"UI = BIuI-CI U1+C{u1°(B§A*) V1,
(A.5)  ul < C(|Bual*+|Clal?),

where C>0 is a constant independent of u;.

Proor. Set H=(Bf, (B)*), then according to (2.16) H is a dxd
nonsingular matrix ; clearly, (1, 0) H¥*=B;, (0, I;_) H*=B{ and (I, 0)H =
(BiB)™'Br.  Applying these relations to the identity

AuI"UI = H_luI-H* A* K%
= <(Il, 0) H_1> uI'<(IL, 0) H*) A* vy
0, Log) Hare (0, L) HY) A¥vy,  w, veC?,

we see (A.4). (A.5) follows from (A.4) and Cluy|*<|Auseu].

Proor oF ProprosiTioN A.1. Let uc. %! and apply (A. 5 to A tu.
Then, noting BiA; % uy=A;4g4-[By, 47} ur on G we get

. j” e (A uls))ids
. tl N

< Crl, e (atglo)ds+ || et Chuaoias].
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So it suffices to estimate the last integral.
Let v be the function satisfying the conditions of Lemma A.2 with
f'=0. Then (A.4) implies that

(Clug, ¢ () = CAug, v () + R(us, v) (5), -

where
| R, v ()} < C{Abg(5))3 (A7 0e(9))5

Now integration by parts yields
[ {Puy 0 (9=t Proi (9
tl
to i
_ iStl { Aus, w1 (s) ds— i, w) ()it
Hence noting that P¥*v=0 and v(t)=0 and using (A. 2), we obtain

[\ (Ccrus o'y 9 ds| <CriFi (e are 9 sl

(A. 6)

where

Fe(t) = e u(t)ff
i (| roh+ (o)) as.

Observing that (A.6) holds for every ¢ €Cy((t, to) X 0G) and £y(>t;) is ar-
bitaray we get for >t

rS’ ¢+ (A7 Clan(s)Yids < CFX(0)
2
Therefore we obtain (A.1) and complete the proof.
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