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Some properties of the algebra H^{\infty}(m)
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\S 1. Introduction.

For a complex commutative Banach algebra B, let M(B) be the maximal
ideal space of B endowed with the Gelfand topology, let \hat{f} and \hat{B} be the
Gelfand transform of f(\in B) and B respectively, and let \Gamma(B) be the Shilov
boundary of B.

Let A be a uniform algebra on a compact Hausdorff space X. We
suppose that m\in M(A) has a unique representing measure m on X, and
that the Gleason part P of m for A is nontrivial. We denote by H^{\infty}(m)

the w^{*} ( i . e. , weak-star) closure of A in L^{\infty}(dm) , and define \tilde{m}\in M(H^{\infty}(m))

by \tilde{m}(f)=\int fdm, f\in H^{\infty}(m) . Then it is known that H^{\infty}(m) is a logmodular
algebra on \tilde{X}=M(L^{\infty}(dm)) and hence \Gamma(H^{\infty}(m))=X, and the Gleason part
\mathscr{P} of \tilde{m} for H^{\infty}(m) is nontrivial. We put I^{\infty}=\{f\in H^{\infty}(m):\phi(f)=0 for all
\phi in \mathscr{P} }. Let Z be the Wermer’s embedding function (see \S 2), and let \mathscr{L}^{\infty}

be the w^{*} closure of the polynomials in Z and \overline{Z} in L^{\infty}(dm) . Then M(\mathscr{L}^{\infty})

can be identified with the Shilov boundary Y of the algebra fl\infty(m)|\overline{\mathscr{T}} ,
where \overline{\mathscr{T}} is the closure of \mathscr{P} in M(H^{\infty}(m)) (see \S 2). If M is a closed
subspace of L^{1}(dm) , we define the support set of M (denoted by E(M))
as the complement of a set of maximal measure on which all \hat{J}\in M are
null. A function f\in H^{\infty}(m) with |f|=1a . e . (dm) is called an inner func-
tion.

In \S 3 we shall prove the following.
Lemma. \tilde{X}\cap\overline{\mathscr{T}}=\tilde{X}\cap Y.
THEOREM A. Let E=E(I^{\infty}) and let F=Xn Y. Then we have the

following.
(i) The characteristic function \chi_{E} of E belongs to \mathscr{L}^{\infty} .
(ii) \{\phi\in Y:\hat{\chi}_{E}(\phi)=1\}=Y\backslash F.
(iii) \{\tilde{x}\frac{}{arrow}\tilde{X}:\hat{\chi}_{E}(\tilde{x})=1\}=\tilde{X}\backslash F.
COROLLARY 1. \tilde{\pi}(\tilde{X}\backslash F)=Y\backslash F (for \tilde{\pi} see \S 2).
COROLLARY 2. \tilde{X}\supset Y if and only if H^{\infty}(m) is maximal as a w^{*}

closed subalgebra of L^{\infty}(dm) .
COROLLARY 3. \tilde{X}\cap Y=\phi if and only if there is an inner function h
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in I^{\infty} .
THEOREM B. (i) The space M(H^{\infty}(m))\backslash \mathscr{P} is connected.
(ii) If I^{\infty}\neq\{0\} , then M(H^{\infty}(m))\backslash \overline{\mathscr{T}} is disconnected, and hence M(I^{\infty}) is

disconnected.
Theorem B, (i) is a generalization of Hoffman’s theorem (cf. Hoffman

[4], Theorem 3).
In \S 4 we shall construct a certain algebra H^{\infty}(m) with \tilde{X}\cap Y\neq\phi and

I^{\infty}\neq\{0\} . In our example \tilde{X}\cap Y can be any clopen (i. e. , closed and open)

set in Y. In \S 2 some preliminaries are given.
The author would like to express his sincere thanks to the referee

whose valuable advise led to the improvement of this paper.

\S 2. Preliminaries.

Let A be a uniform algebra on a compact Hausdorff space X. When
\phi\in M(A) has a unique representing measure, sometimes we use the same
symbol \phi to denote its representing measure. (In other places, the represent-
ing measure is denoted as \mu_{\phi} .) Hereafter we suppose that m (fixed) in
M(A) has a unique representing measure m, and that the Gleason part
P=P(m) of m is nontrivial. There is a probability measure \tilde{m} on \tilde{X}=

M(L^{\infty}(dm)) such that

\int_{X}fdm=\int_{a_{1}}\underline{.}fd\overline{m} , f\in L^{\infty}(dm)

This measure \tilde{m} is called the Radonization of m (cf. Srinivasan and Wang
[11], p. 222). It is known that \phi\in M(H^{\infty}(m)) belongs to X if and only if
|\phi(f)|=1 for every inner function f in H^{\infty}(m) (cf. Douglas and Rudin [2],
p. 318).

An inner function Z known as Wermer s embedding function satisfies
ZH^{\infty}(m)=\{f\in H^{\infty}(m):.\backslash \cdot fdm=0\} , and \phi\mapsto\hat{Z}(\phi)=JZd\phi is a one-t0-0ne map
of P(m) onto the open unit disk D. The inverse map \tau of \hat{Z} is a one-t0-
one continuous map of D onto P(m) , and for every f in H^{\infty}(m) the com-
position f\circ\tau is analytic in D (Wermer’s embedding theorem, cf. Leibowitz
[7], p. 143).

Let \mathscr{A}^{p} be the closure in L^{p}(dm) norm of the polynomials in Z, and
let \mathscr{L}^{p} be the closure in L^{p}(dm) norm of the polynomials in Z and \overline{Z}.
(For p=\infty , the closure is taken in the w^{*} topology.) Let \sigma be the normal-
ized Lebesgue measure on the unit circle \partial D in the complex plane, and let
H^{\infty}(d\sigma) be the classical Hardy space on \partial D. By Fatou’s theorem, H_{\iota}^{\infty/}d\sigma) is
identified with the Banach algebra H^{\infty}(D) of all bounded analytic functions
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in D.
The correspondence

(2. 1) T:z_{Iarrow e^{i\theta}}

induces an isometric * -isomorphism of \mathscr{L}^{p} onto L^{p}(d\sigma) , for 1\leqq p\leqq\infty . This

map is also an isometric isomorphism of \mathscr{A}^{\infty} onto H^{\infty}(d\sigma)(=H^{\infty}(D)) . There-

fore the adjoint T^{*} of T is a homeomorphism of M(L^{\infty}(d\sigma)) and M(H^{\infty}(D))

onto M(\mathscr{L}^{\infty}) and M(\mathscr{A}^{\infty}) respectively.
For 1\leqq p\leqq\infty , if we set

I^{p}=\{f\in H^{p}(m) : \sqrt|\overline{Z}^{n}fdm=0 , n=0,1 , 2, \cdots\}

and

N^{p}=\{f\in L^{p}(dm) : \int Z^{n}fdm=0 , n=0, \pm 1 , \pm 2 , \cdots\}

then we have

(2. 2) H^{p}(m)=\mathscr{A}^{p}\oplus I^{p} and L^{p}(dm)=\mathscr{L}^{p}\oplus N^{p} :

where \oplus denotes algebraic direct sum. The set N^{p} is the closure of \overline{I^{p}}\oplus I^{p}

in L^{p}(dm) (norm closure for 1\leqq p<\infty ; w^{*} closure for p=\infty ) and we have
I^{p}= { f\in H^{p}(m) : .|fd\phi=0 for all \phi\in P(m)}. (Cf. Merrill and Lal [9].) Here

we shall state a consequence of Nakazi [10].

NAKAZI’S THEOREM. Let E=E(I^{\infty}) be the support set of I^{\infty} . Then

there is a function h\in I^{\infty} with |h|=\chi_{E}, where \chi_{E} is the characteristic func-
tion of E.

We shall collect some results in Kishi [6] which will be needed in \S \S 3

and 4. (Sometimes we do not distinguish between a Banach algebra B and

its Gelfand transform \hat{B} .) The set I^{\infty} is an ideal of H^{\infty}(m) , and, by the

map S:f+I^{\infty}\vdash\Rightarrow f, f\in \mathscr{F}^{\infty} , the quot\’ient Banach algebra H^{\infty}(m)/I^{\infty} is is0-

metrically isomorphic to \mathscr{A}^{\infty} . Hence, under the adjoint \Sigma of S, the space
M(\mathscr{A}^{\infty}) can be identified with hull (I^{\infty})(\subset M(H^{\infty}(m))) . Since M(H^{\infty}(D))=\overline{D}

(Carleson’s corona theorem) and \Sigma(T^{*}(D))=\{\phi\in hu11(I^{\infty}) : |\phi(Z)|<1\}=\mathscr{P} (cf.

Kishi [5], p. 469), we have \Sigma(T^{*}(\overline{D}))=\Sigma(M(\mathscr{A}^{\infty}))=\overline{\mathscr{T}} . Hence we have

(2. 3) \Sigma(M(\mathscr{A}^{\infty}))=hu11(I^{\infty})=\overline{\mathscr{T}}

If we put Y=\Sigma(\Gamma(\mathscr{A}^{\infty}))=\Sigma(M(\mathscr{L}^{\infty})) , then, as functions on Y, we have
\log|(\mathscr{A}^{\infty})^{-1}|=C_{R}(Y) . By using the map \Sigma\circ T^{*} we see that the space Y is

stonian (i . e. , if U is open in Y, then \overline{U} is also open), and that a unique

representing measure \lambda

- on Y of \overline{m}\in \mathscr{P}(\subset\Sigma(M(\mathscr{A}^{\infty}))) for \mathscr{A}^{\infty} is a normal
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measure. We have

\tilde{m}(f)=\int_{Y}fd\lambda_{\overline{m}}r
,

f\in \mathscr{A}^{\infty}

If \phi\in M(I^{\infty}) , then there is some h\in I^{\infty} such that \phi(h)=1 . We define
\Phi\in M(H^{\infty}(m)) by \Phi(f)=\phi(fh) , f\in H^{\infty}(m) . By well known fact, the map

\prod:\phi 1arrow\Phi

is a homeomorphism of M(I^{\infty}) onto M(H^{\infty}(m))\backslash \overline{\mathscr{T}} , and under \Pi the space
M(I^{\infty}) can be identified with M(H^{\infty}(m))\backslash \overline{\mathscr{T}} . On the other hand the algebraic
direct sum B=\mathscr{L}^{\infty}\oplus I^{\infty} of \mathscr{L}^{\infty} and I^{\infty} is a Banach algebra, and I^{\infty} is an
ideal of B. We define \Phi’\in M(B) by \Phi’(f)=\phi(fh) , f\in B . The map \phi- \Phi’

is a homeomorphism of M(I^{\infty}) onto M(B)\backslash hu11(I^{\infty}) , and M(I^{\infty}) can be iden-
tified with M(B)\backslash hu11(I^{\infty}) . Since log |(\mathscr{F}^{\infty})^{-1}|=\mathscr{L}_{R}^{\infty} , \Phi’|\mathscr{L}^{\infty}\in M(\mathscr{L}^{\infty}) and
\Phi|_{c}\mathscr{K}^{\infty}=\Phi’|\mathscr{A}^{\infty}, \Phi|\mathscr{F}^{\infty} can be identified with a complex homomorphism of
\mathscr{L}^{\infty} . Now we define a continuous map \pi_{1} of M(H^{\infty}(m))\backslash \overline{\theta}\mathscr{B} into Y(\subset\overline{\circ}\mathscr{B})

by
\pi_{1}(\Phi)=\Sigma(\Phi|\mathscr{F}^{\infty}) , \Phi\in M(H^{\infty}(m))\backslash \overline{\mathscr{T}}

Further we define a continuous map \tilde{\pi} of X=M(L^{\infty}(dm)) onto Y by

\tilde{\pi}(\tilde{x})=\{

\Sigma(\tilde{x}|\mathscr{L}^{\infty}) if \tilde{x}\in\tilde{X}\backslash .\overline{\mathscr{T}}

\tilde{x} if \tilde{x}\in Xn_{\overline{\mathscr{T}}}

If \phi\in Y, then for every f in \mathscr{L}^{\infty},\hat{f} is a constant (=\phi(f)) on the closed
support (=supp\mu_{\phi}) of the representing measure \mu_{\varphi} for \phi .

\S 3. Proofs of the results.

PROOF OF Lemma. If \phi\in\tilde{X}\bigcap_{c}\overline{\mathscr{P}} , then we have |\phi(f)|=1 for every
inner function f in \mathscr{F}^{\infty}(\subset H^{\infty}(m)) . Hence, by Kishi [6], Lemma 2. 3m\phi

belongs to Xn Y.
PROOF 0F THEOREM A. (i) Let E=E(I^{\infty}) and E^{c}=X\backslash E. Then we

have .|\chi_{E^{C}}fdm=0 , f\in I^{\infty} , and hence \downarrow.\chi_{E^{C}}fdm=0 , f\in I^{2}+\overline{I^{2}}. So, by (2. 2),
\chi_{E^{C}}\in \mathscr{L}^{2}\cap L^{\infty}(dm)=\mathscr{L}^{\infty}, and hence we have \chi_{E}=1-\chi_{E^{C}}\in \mathscr{L}^{\infty} .

(ii) Let F=Xn Y. By Nakazi’s Theorem there is a function h\in I^{\infty}

with |h|=\chi_{E} . Then we have \hat{\chi}_{E}=\hat{|h}|=|\hat{h}|=0 on F, and hence we have
F\subset\{\phi\in Y:\hat{\chi}_{E}(\phi)=0\} .

If \phi_{0}\in Y\backslash F, then there is an inner function f\in H^{\infty}(m) such that |\phi_{0}(f)|

<1 . If f=g+h, where g\in \mathscr{F}^{\infty} and h\in I_{:}^{\infty} then we have |\phi_{0}(g)|<c<1

for some constant c. Let V(\phi_{0}) be a clopen neighborhood of \phi_{0} in Y such
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that V(\phi_{0})\subset\{\phi\in Y:|\phi(g)|<c\} . Then there is a \chi_{G}\in \mathscr{L}^{\infty} with V(\phi_{0})=\{\phi\in Y ;
\hat{\chi}_{G}(\phi)=1\} . If \tilde{x}\in\tilde{\pi}^{-1}(V(\phi_{0})) and \tilde{\pi}(\tilde{x})=\phi , then we have |\tilde{x}(h)|\geqq|\tilde{x}(f)|-

|\tilde{x}(g)|=1-|\phi(g)|>1-c>0 . Hence we have |\hat{h}|>1-c on \tilde{\pi}^{-1}(V(\phi_{0}))=\{\tilde{x}\in X :
\hat{\chi}_{G}(\tilde{x})=1\} . So we have \hat{\chi}_{G^{C}}+\hat{\chi}_{G}||\hat{h,}|>1-c on X, and hence \chi_{G}c+\chi_{G}|h|\geqq 1-c

a . e.(dm) . Thus we have G\subset E, and hence V(\phi_{0})\subset\{\phi\in Y:\hat{\chi}_{E}(\phi)=1\} . there

fore we have Y\backslash F\subset\{\phi\in Y:\hat{\chi}_{E}(\phi)=1\} , and obtain (ii).

(iii) If \tilde{x}\in X\backslash F=\tilde{X}\backslash \wedge\overline{\mathscr{T}} , then there are a clopen neiborhood V(\tilde{x}) of \tilde{x}

in X\sim and a function h\in I^{\infty} such that |\hat{h}|\geqq c>0 on V(\tilde{x}) , where c is a con-
stant with 0<c<1 . Then, by the same method as (ii), we obtain X\backslash F\subset

\{\tilde{x}\in\tilde{X}:\hat{\chi}_{E}(\tilde{x})=1\} . Further we have F\subset\{\tilde{x}\in X:\hat{\chi}_{E}(\tilde{x})=0\} . Hence we obtain
X\backslash F=\{\tilde{x}\in X:\hat{\chi}_{E}(\tilde{x})=1\} .

PROOF 0F COROLLARY 1. Let E=E(I^{\infty}) and F=Xn Y. Then, by

Theorem A, we have 1=\hat{\chi}_{E}(\tilde{x})=\hat{\chi}_{E}(\tilde{\pi}(\tilde{x})) for \tilde{x}\in\tilde{X}\backslash F, so we obtain \tilde{\pi}(X\backslash F)\subset

Y\backslash F. Further we have \tilde{\pi}(X)=Y and \tilde{\pi}(F)=F. Hence we obtain \tilde{\pi}(X\backslash F)=

Y\backslash F.
PROOF OF COROLLARY 2. If \tilde{X}\supset Y, then, by Corollary 1, we have

\tilde{\pi}(X\backslash Y)=\tilde{\pi}(\tilde{X}\backslash (XnY))=Y\backslash (\tilde{X}\cap Y)=\phi , and hence we obtain X=Y. Hence
we have I^{\infty}=\{0\} , and hence H^{\infty}(m) is maximal as a w^{*} closed subalgebra

of L^{\infty}(dm) (cf. Merrill [8]). Conversely, if H^{\infty}(m) is maximal as a w^{*} closed
subalgebra of L^{\infty}(dm) , then I^{\infty}=\{0\} (cf. Merrill [8]), and hence X=Y.

PROOF 0F COROLLARY 3. If \tilde{X}\cap Y=\phi , then, by Theorem A, (iii) and
Nakazi’s theorem, there is an inner function h in I^{\infty} . Conversely if there

is an inner function h in I^{\infty}, then we have \hat{h},=0 on Y and |\hat{h}|=1 on \tilde{X},

and hence we obtain \tilde{X}\cap Y=\phi .

PROOF OF THEOREM B. (i) Let Z be Wermer’s embedding function,

let S=\{1, Z, Z^{2_{ }},\cdots\} , and let \mathscr{A} be the norm closure in L^{\infty}(dm) of the set
\{\overline{s}f:s\in S, f\in H^{\infty}(m)\} . Then \mathscr{A} is a Banach algebra, and M(\mathscr{A}) can be
identified with the set M(H^{\infty}(m))\backslash \mathscr{P} (cf. Douglas and Rudin [2], p. 317

and Kishi [5], p. 469). If we put B=\mathscr{L}^{\infty}\oplus I^{\infty}, then B is a Banach algebra

which contains \mathscr{A} and M(B) can be identified with set M\langle H^{\infty}(m))\backslash (\overline{\mathscr{T}}\backslash Y)

(cf. Kishi [6], Theorem 3. 5). If f(=g+h) in \mathscr{A} vanishes on \partial \mathscr{P}=\overline{\mathscr{T}}\backslash \mathscr{P} ,

where g\in \mathscr{L}^{\infty} and h\in I^{\infty}, then f\in I^{\infty} . In fact, since f=0 on Y(\subset\partial \mathscr{P}) and

h=0 on Y, we have g=0 on Y. And, remembering that Y can be identified
with M(\mathscr{L}^{\infty}) , we have g=0, and hence we have f=h\in I^{\infty} .

Suppose that M(H^{\infty}(m))\backslash \mathscr{P} is not connected. Then there is a non-
trivial clopen set V in M(H^{\infty}(m))\backslash \mathscr{P} . Since \mathscr{P} is open in M(H^{\infty}(m)) , V is

closed in M(H^{\infty}(m)) .
If V\cap\overline{\mathscr{T}}-=\phi , then V is open in M(H^{\infty}(m))\backslash \overline{\mathscr{T}} , and hence V is open
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in M(H^{\infty}(m)) . Thus V is a nontrivial clopen set in M(H^{\infty}(m)) . This is
absurd (cf. Leibowitz [7], p. 167).

Suppose V\cap^{j}(\overline{\mathscr{B}’}\neq\phi . Then V\cap\overline{\mathscr{T}}=V\cap\partial \mathscr{P} is a non-empty clopen set
in \partial \mathscr{P} . Since \partial \mathscr{P}=(\Sigma\circ T^{*})(\overline{D}\backslash D) (see (2. 1) and (2. 3)) and \overline{D}\backslash D is connected
(Hoffman [4], Theorem 3), \partial \mathscr{P} is connected. Hence we have \partial \mathscr{P}\subset V\doteqdot\subset

M(\mathscr{A}) . By Shilov idempotent theorem (cf. Leibowitz [7], p. 167) there is
an element f\in \mathscr{A} such that f=0 on V and f=1 on M(\mathscr{A})\backslash V. Hence
f=0 on \partial \mathscr{P} , and we have f\in I^{\infty} . Therefore f=0 on V\cup\overline{a}\mathscr{B}(\subset M(H^{\infty}(m)))

and f=1 on M(H^{\infty}(m))\backslash (V\cup\overline{\mathscr{T}}) . This is absurd.
(ii) If we put F=\tilde{X}\cap Y, then F is a clopen set in Y such that F_{\neq}\subset Y.

In fact, if Xn Y=Y, then X\supset Y and, by Corollary 2, we have I^{\infty}=\{0\} .
For any element \tilde{x} in X\backslash F, we have \tilde{\pi}(\tilde{x})=\pi_{1}(\tilde{x}) . Now, since Y is a stonian
space, there is a nonempty clopen set U such that U_{\Rightarrow}^{\subset}Y\backslash F. Then \pi_{1}^{-1}(U)

is a nontrivial clopen set in M(H^{\infty}(m))\backslash \overline{\mathscr{T}} , as this set does not contain all
of \tilde{\pi}^{-1}( Y\backslash F) . Hence the subspace M(H^{\infty}(m))\backslash \overline{\mathscr{T}} is disconnected. And,
since \Pi^{-1}(\pi_{1}^{-1}(V)) is a nontrivial clopen set in M(I^{\infty}) , the space M(I^{\infty}) is
disconnected.

\S 4. An example.

Let H^{\infty}(m) be any Banach algebra with Xn Y=\phi . (Two examples
in Kishi [6], \S 5 satisfy such a condition.) Let \chi be any function in \mathscr{L}^{\infty}

with \chi^{2_{=}}\chi and \chi\neq 0,1 , and let A_{1}=\mathscr{A}^{\infty}\oplus\chi I^{\infty} . Let X_{1}=(\tilde{X}\backslash E)\cup U, where
U=\{\phi\in Y:\chi(\phi)=0\} and E=\tilde{\pi}^{-1}(U) , and let m_{1} be a probability measure
on X_{1} such that m_{1}=\tilde{m} on X\backslash E and m_{1}=\lambda_{\overline{n}\iota} on U (for \tilde{m} and \lambda_{\overline{m}} see \S 2).
Then we have the following.

(i) A_{1} is a w^{*} Dirichlet algebra in L^{\infty}(dm_{1}) and A_{1}=H^{\infty}(m_{1}) , where
H^{\infty}(m_{1}) is the w^{*} closure of A_{1} in L^{\infty}(dm_{1}) .

(ii) M(L^{\infty}(dm_{1}))=X_{1} , and M(A_{1}) can be identified with M(H^{\infty}(m))\backslash

(\pi_{1}^{-1}(U)\backslash U)(\subset M(H^{\infty}(m))) , and \mathscr{P} is the Gleason part of m_{1} for A_{1} . Hence
we have \overline{\mathscr{T}}\cap M(L^{\infty}(dm_{1}))=U. Thus A_{1} is a logmodular algebra on X_{1} and
H^{\infty}(m_{1}) is an example which has the properties of \tilde{X}\cap Y\neq\phi and I^{\infty}\neq\{0\} .

Indeed, since both \tilde{X} and Y are stonian spaces, X_{1}=(\tilde{X}\backslash E)\cup U is a
compact stonian space. Let \xi be a continuous map of \tilde{X} onto X_{1} defined by

\xi(\tilde{x})=\{_{\tilde{\pi}(\tilde{x})}^{\tilde{X}}

if \tilde{x}\in E

if \tilde{x}\in\tilde{X}\backslash E

Then there is a linear transformation \rho induced by \xi of the dual space of
C(X) onto the dual space of C(X_{1}) . If m_{1}=\rho(\tilde{m}) , then we have m_{1}=\overline{m} on
\tilde{X}\backslash E and m_{1}=\lambda_{\tilde{m}} on U (cf. Kishi [6], p. 489). Hence m_{1} is anormal prob-
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ability measure on X_{1} such that supp m_{1}=X_{1} , and hence the natural injec-
tion C(X_{1})\subset L^{\infty}(dm_{1}) is an isometric isomorphism of C(X_{1}) and L^{\infty}(dm_{1})

(cf. Bade [1], Lemma 8.16). Thus we have M(L^{\infty}(m_{1}))=X_{1} .
The measure m_{1} is multiplicative on a subalgebra A_{1} of L^{\infty}(dm_{1}) . In

fact, if f=g+\chi h\in A_{1} , where g\in \mathscr{A}^{\infty} and \chi h\in\chi I^{\infty} , then we have

\int_{X_{1}}gdm_{1}=\int_{X_{1}}gd(\rho(\tilde{m}))=\int_{\overline{X}}g\circ\xi d\tilde{m}=\int_{r}*gd\overline{m}

and, by using \chi=\chi_{\overline{x}\backslash E} on \tilde{X},

\int_{X_{1}}\chi hdm_{1}=\int_{\overline{X}\backslash E}\chi hd(\rho(\overline{m}))+\int_{U}\chi hd(\rho(\tilde{m}))

= \int_{\tilde{x}\backslash E}\chi hd\tilde{m}=\int_{\overline{X}}\chi hd\tilde{m}(=0),\cdot

and hence we obtain

\int_{X_{1}}fdm_{1}=\int_{\overline{X}}fd\overline{m} , f\in A_{1}

The set \mathscr{A}^{\infty} is w^{*} closed in L^{\infty}(dm_{1}) . In fact, \mathscr{A}^{\infty} is a convex set
in L^{\infty}(dm_{1}) . Let \{f_{n}\} be a sequence in \mathscr{F}^{\infty} such that ||f_{n}||\leqq M, where M
is a constant, f_{n}arrow fa . e.(dm_{1}) . Then, since (1-\chi)f_{n}\in C(Y)(=\hat{\mathscr{L}}^{\infty}) , ||(1-\chi)

f_{n}||\leqq M and (1-\chi)f_{n}arrow(1-\chi)fa . e.(d\lambda_{\overline{m}}) , we have (1-\chi)f\in L^{\infty}(d\lambda-) . But,
since C(Y) is isometrically isomorphic to L^{\infty}(d\lambda -) , (1-\chi)f can be identified
with a function in C(Y) . There is a subset N of U such that \lambda_{\overline{m}}(N)=0

and (1-\chi)f_{n}arrow(1-\chi)f on Y\backslash N. Then \tilde{m}(\tilde{\pi}^{-1}(N))=\lambda_{\overline{m}}(N)=0 and (1-\chi)f_{n}arrow

(1-\chi)f on \tilde{\pi}^{-1}(Y\backslash N) , and hence (1-\chi)f_{n}arrow(1-\chi)fa . e.(d\overline{m}) . Of course
\chi f_{n}arrow\chi fa . e.(d\tilde{m}) , so f_{n}arrow fa . e.(d\tilde{m}) . Since \mathscr{A}^{\infty} is w^{*} closed in L^{\infty}(d\overline{m}) ,

f\in \mathscr{A}^{\infty} . Therefore, by Gamelin and Lumer [3], Lemma 3. 5, \mathscr{A}^{\infty} is w^{*}

closed in L^{\infty}(dm_{1}) .
It is easy to see that \chi I^{\infty} is w^{*} closed in L^{\infty}(dm_{1}) . Hence A_{1} is w^{*}

closed in L^{\infty}(dm_{1}) (see the proof of Kishi [6], Theorem 3. 5). Hence we
have A_{1}=H^{\infty}(m_{1}) . And, we easily see that A_{1} is a w^{*} Dirichlet algebra
in L^{\infty}(dm_{1}) . Further we note that \chi I^{\infty} is an ideal of A_{1} and A_{1}/\chi I^{\infty} is
isometrically isomorphic to \mathscr{F}^{\infty} .

M(A_{1}) can be identified with \overline{\mathscr{T}}\cup M_{1} , where M_{1}=M(H^{\infty}(m))\backslash (\overline{\mathscr{T}}\cup

\pi_{1}^{-1}(U)) . In fact, since A_{1}/\chi I^{\infty} and H^{\infty}(m)/I^{\infty} are isometrically isomorphic,
hull(\chi I\infty ) can be identified with hull(I\infty ) =\overline{\mathscr{T}} . The map \Lambda:f}arrow\chi f, f\in I^{\infty} is
a homomorphism of I^{\infty} onto \chi I^{\infty}, and the kernel \Lambda^{-1}(0) of 11 is {(1-\chi)f :

f\in I^{\infty}\} . Hence M(\chi I^{\infty}) can be identified with hu11(\Lambda^{-1}(0)) , i . e. , we have
M(\chi I^{\infty})= { \phi\in M(I^{\infty}) : \phi(h)=\phi(\chi h) for all h\in I^{\infty}}
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If \phi\in M(\chi I^{\infty}) , there is some h\in I^{\infty} such that \phi(h)=\phi(\chi h)=1 . We define
\Phi\in M(H^{\infty}(m)) by \Phi(f)=\phi(fh) , f\in H^{\infty}(m) . As we stated in \S 2, \Phi|\mathscr{F}^{\infty} can
be identified with a complex homomorphism of \mathscr{L}^{\infty} . Since \Phi(\chi)=\phi(\chi h)=1 ,
we have \pi_{1}(\Phi)\in Y\backslash U. Hence \Phi belongs to M_{1} . Conversely, if \Phi\in M_{1} and
\phi=\Pi^{-1}(\Phi) , then \Phi is defined by \Phi(f)=\phi(hf) for f\in H^{\infty}m , where h is a
function h\in I^{\infty} with \phi(h)=1 . Since \pi_{1}(\Phi) is in Y\backslash U, \pi_{1}(\Phi)(\chi)=1 . Hence
\Phi(\chi)=1 , which means \phi(\chi h)=1 , and \phi is a nonzero complex homomorphism
of \chi I^{\infty} . Thus M(\chi I^{\infty}) can be identified with M_{1} . Therefore M(A_{1}) can be
identified with \overline{\mathscr{T}}\cup M_{1} .

For Wermer’s embedding function Z we have \mathscr{P}=\{\phi\in M(A_{1}):|\phi(Z)|

<1\} (cf. Kishi [5], p. 469). Hence \mathscr{P} is a nontrivial Gleason part of m_{1} for
A_{1} .
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