On Amitsur cohomology of rings of algebraic integers

Dedicated to Professor G. Azumaya on his 60th birthday

By Akira HATTORI

(Received February 1, 1980)

In connection with the study of Azumaya algebras over rings, we introduced in [4] certain Amitsur-type cohomology groups $H^q(S/R)$ for an extension S/R of commutative rings. The present article is a supplement to that paper, and deals with special features of groups $H^q(S/R)$ in arithmetical context.

As is the case for the groups $H^q(S, G)$ of group cohomology-type [3], [6], we can apply the device of mapping cones to the construction of groups $H^q(S/R)$, thus dispensing with the intermediary of the whole category of invertible modules. This is done in § 1, based upon the general foundations in [6] § 1. In § 2 we deal with local fields, and in § 3 global fields, where we proceed almost parallel to [3] § 6. Parallel though they are, the results are not the same since, roughly speaking, $H^q(S/R)$ almost ignores the ramification, while $H^q(S, G)$ is essentially involved with it. The relationship between these two series of cohomology groups is studied to some extent in [5], but remains to be further clarified. As an example, we show in the final § 4 that for the integer rings of imaginary quadratic fields the unit-valued Amitsur cohomology vanishes in every dimension.

§ 1. Groups $H^q(S/R)$ via mapping cone

1.1. Let R be a commutative ring (with unity). Let F be a covariant functor from the category of commutative R-algebras to the category of abelian groups. Denote the Amitsur's complex of F concerning an R-algebra S by Am (S/R, F), and its cohomology groups by $H^q(S/R, F)$. (F need not be meaningful on the whole category of R-algebras. It is only required that R is defined in a subcategory sufficient to work with Amitsur cohomology.) A morphism of functors $f: F \rightarrow F'$ yields a complex morphism Am $(S/R, F) \rightarrow \text{Am}(S/R, F')$. We denote the mapping cone of this morphism by Am (S/R, f). Hence we have an exact sequence

 $0 \longrightarrow \operatorname{Am} (S/R, F') \longrightarrow \operatorname{Am} (S/R, f) \longrightarrow \operatorname{Am} (S/R, F)_{\sharp} \longrightarrow 0$

where C_{\sharp} for a cochain complex C is defined by $C_{\sharp}^{q} = C^{q+1}$, $d_{\sharp}^{q} = -d^{q+1}$.

General constructions about mapping cones are carried out in $\S1$ of [6], and are applied in $\S2$ to the group cohomology. This time, we adapt it to Amitsur cohomology and will quickly summarize the main facts in the following lines.

We denote the cohomology of the complex $\operatorname{Am}(S/R, f)$ by $H^q(S/R, f)$. Then the above exact sequence of complexes leads to the *first exact sequence* associated to f:

(1.1)
$$\cdots \longrightarrow H^{q}(S/R, F) \longrightarrow H^{q}(S/R, F')$$

 $\longrightarrow H^{q}(S/R, f) \longrightarrow H^{q+1}(S/R, F) \longrightarrow \cdots$

Associated to $f: F \rightarrow F'$, we have two functors ker f and coker f, together constituting an exact sequence of functors:

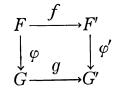
(1. 2)
$$0 \longrightarrow \ker f \longrightarrow F' \longrightarrow \operatorname{coker} f \longrightarrow 0$$

This gives rise to another exact sequence due to MacLane [8]:

(1.3)
$$\cdots \longrightarrow H^{q}(S/R, \ker f) \longrightarrow H^{q-1}(S/R, f)$$
$$\longrightarrow H^{q-1}(S/R, \operatorname{coker} f) \longrightarrow H^{q+1}(S/R, \ker f) \longrightarrow \cdots$$

which we call the second exact sequence associated to f.

Let



be a commutative square of functor morphisms. It gives rise to a commutative square of their Amitsur complexes

(1. 4)
$$\begin{array}{c} \operatorname{Am}\left(S/R,F\right) \longrightarrow \operatorname{Am}\left(S/R,F'\right) \\ \downarrow \\ \operatorname{Am}\left(S/R,G\right) \longrightarrow \operatorname{Am}\left(S/R,G'\right) \end{array}$$

Following § 1.2 of [6], we obtain the first exact sequence associated to $\{\varphi, \varphi'\}$:

$$(1.5) \qquad \cdots \longrightarrow H^{q}(Y) \longrightarrow H^{q}(S/R, f) \longrightarrow H^{q}(S/R, g) \longrightarrow H^{q+1}(Y) \longrightarrow \cdots$$

under suitable conditions, where Y is the *center* of the square (1, 4).

Let $\varphi: S/R \rightarrow S'/R'$ be a morphism of algebras ([4], § 6), and assume that the following square

A. Hattori

is meaningful and commutative, then we have the following exact sequence for change of rings:

$$(1.7) \qquad \cdots \longrightarrow H^{q}(Y) \longrightarrow H^{q}(S/R, f) \longrightarrow H^{q}(S'/R', f) \longrightarrow H^{q+1}(Y) \longrightarrow \cdots$$

under suitable conditions, where Y is the center of the square (1.6).

1.2. Now we assume that R is an integral domain with the field of quotients k, and restrict our attention to the category of R-faithfully flat R-orders Λ in finite dimensional commutative separable k-algebras A. The q-fold tensor product $\Lambda^q = \Lambda \bigotimes_R \cdots \bigotimes_R \Lambda$ is an order in the separable algebra $A^q = A \bigotimes_k \cdots \bigotimes_k A$, and the machinary of the Amitsur cohomology can be set up in this category. Let U be the functor of units : $\Lambda \rightarrow U(\Lambda)$, while U_k be the functor $\Lambda \rightarrow U(\Lambda \bigotimes k) = U(A) = A^*$. Let further $I(\Lambda)$ be the group of invertible Λ -ideals in $A = \Lambda \bigotimes k$. Then the assignment $a \in A^* \rightarrow (a) = a\Lambda \in I(\Lambda)$ defines a morphism of functors pr : $U_k \rightarrow I$, with the kernel U and the cokernel denoted Pic, so that we have an exact sequence

$$(1.8) \qquad 0 \longrightarrow U \longrightarrow U_k \xrightarrow{\text{pr}} I \longrightarrow \text{Pic} \longrightarrow 0$$

We shall apply the construction of $\S 1.1$ to (1.8), and obtain the following facts, which are parallel to the case of group cohomology of [6] $\S 3$.

We introduce the notation

$$H^{q}(\Lambda/R) = H^{q-1}(\Lambda/R, \operatorname{pr})$$

Then we have the first exact sequence

(1.9)
$$\cdots \longrightarrow H^{q}(A/k, U) \longrightarrow H^{q}(A/R, I) \longrightarrow H^{q+1}(A/R)$$
$$\longrightarrow H^{q+1}(A/k, U) \longrightarrow \cdots$$

and the second exact sequence

(1.10)
$$\cdots \longrightarrow H^{q}(\Lambda/R, U) \longrightarrow H^{q}(\Lambda/R) \longrightarrow H^{q-1}(\Lambda/R, \operatorname{Pic}) \\ \longrightarrow H^{q+1}(\Lambda/R, U) \longrightarrow \cdots$$

The latter is the exact sequence of [4] Theorem 1.1.

Noticing that we are assuming that Λ is *R*-faithfully flat, we easily observe that

 $(1.11) \qquad H^0(\Lambda/R) \simeq U(R),$

(which is [4] Proposition 2.1). For q=1, we have

(1. 12)
$$H^{1}(\Lambda/R) \simeq \operatorname{Pic}(R)$$

([4] Theorem 2.2). This follows from the first exact sequence:

We quote the following isomorphism without proof ([4] Theorem 5.2):

(1.13)
$$H^2(\Lambda/R) \simeq \operatorname{Br}(\Lambda/R)$$
,

which holds when Λ is *R*-faithfully projective (cf. also [14]).

Let $\varphi: \Lambda/R \to \Lambda'/R'$ be a morphism of algebras, and assume the U-injectivity and Pic-surjectivity for every $\Lambda^r \to \Lambda'^r$ $(r=1, 2, \cdots)$ (cf. [4] § 6). Then the exact sequence for the change of rings (1.7) reads in the present context as follows:

$$(1. 14) \qquad \cdots \longrightarrow H^{q-1}(Y) \longrightarrow H^{q}(\Lambda/R) \longrightarrow H^{q}(\Lambda'/R') \longrightarrow H^{q}(Y) \longrightarrow \cdots$$

([4] Theorem 6.1). Here, Y is the center of the square

$$\begin{array}{c} \operatorname{Am}\left(A/k,\,U\right) \longrightarrow \operatorname{Am}\left(\Lambda/R,\,I\right) \\ \downarrow \\ \operatorname{Am}\left(A'/k',\,U\right) \longrightarrow \operatorname{Am}\left(\Lambda'/R',\,I\right) \end{array}$$

where k' is the field of quotients of R', and $A' = \Lambda' \otimes k'$. Explicitly, Y^q consists of $[P, \alpha']$ $(P \in I(\Lambda^{q+1}), \alpha' \in U(A'^{q+1}))$ such that $P \otimes_{\Lambda^{q+1}} \Lambda'^{q+1} = \alpha' \Lambda'^{q+1}$, where $[P, \alpha']$ and $[Q, \beta']$ are identified if their 'difference' equals to $[\alpha \Lambda^{q+1}, \varphi(\alpha)]$ with some $\alpha \in A^{q+1}$. The boundary is defined by $d[P, \alpha'] = [dP, d\alpha']$. This agrees with the formulation in [4] (where Y is denoted as Am (φ , Pic)).

§ 2. Local fields

We begin with

PROPOSITION 2.1. If F is a C_1 -field, then we have $H^q(A/F, U)=0$ $(q\geq 1)$ for any finite dimensional primary algebra A.

PROOF. Let A' be the residue class algebra of A by the radical. Then we have $H^q(A/F, U) \simeq H^q(A'/F, U)$ by [12] Proposition 3.3. So we assume that A is an extension field of F. If K/F is the maximal purely inseparable subextension of A/F, we have the following exact sequence

(*)
$$\cdots \longrightarrow H^{q-1}(A/K, U) \longrightarrow H^{q}(K/F, U) \longrightarrow H^{q}(A/F, U)$$
$$\longrightarrow H^{q}(A/K, U) \longrightarrow \cdots$$

([12] Theorem 4.3). Now, $H^{q}(K/F, U)=0$ for $q \neq 2$ by Berkson's theorem, and $H^{2}(K/F, U) \simeq Br(K/F)$ also vanishes by the C_{1} -assumption. Hence $H^{q}(K/F, U)$ vanishes for every $q \geq 1$. Next we consider the separable extension A/K. Let L be a finite Galois extension of K, containing A. Let G=Gal(L/K) and H=Gal(L/A). Then $H^{q}(A/K, U)$ is isomorphic to the relative Galois cohomology group $H^{q}([G:H], L^{*})$ by [11] Theorem 1. Now we have $H^{q}(D, L^{*})=0$ for every subgroup D of G and $q\geq 1$, since the fixed subfield of D, being a finite extension of F, is likewise a C_{1} -field (cf. e. g. [13] Chap. IV § 3). In this case, there is an exact sequence [1]:

$$0 \longrightarrow H^{q}([G:H], L^{*}) \longrightarrow H^{q}(G, L^{*}) \longrightarrow H^{q}(H, L^{*})$$

from which follows that $H^q([G:H], L^*)=0$, *i.e.* $H^q(A/K, U)=0$ $(q\geq 1)$. Applying these facts to the above exact sequence (*), we obtain $H^q(A/F, U)=0$ $(q\geq 1)$.

Conjecture. The triviality of $H^q(A/F, U)$ will hold for all A without the assumption of primary-ness.

We apply the above Proposition to prove the following result.

PROPOSITION 2.2. Let \mathfrak{o} be a complete discrete valuation ring, k its field of quotients. Let K/k be a finite extension, and \mathfrak{O} the integral closure of \mathfrak{o} in K. Assume that the residue field $F = \mathfrak{o}/\mathfrak{p}$ is a C_1 -field. Then the Amitsur cohomology $H^q(\mathfrak{O}/\mathfrak{o}, U)$ vanishes for $q \ge 1$.

PROOF. Put $A = \mathfrak{O}/\mathfrak{p}\mathfrak{O}$, which is a finite dimensional primary algebra over F. Let t be a uniformizing parameter in $k: \mathfrak{p}=(t)$, and introduce a filtration of $U(\mathfrak{O})$ by

$$V^{(j)}(\mathfrak{O}) = \left\{ u \in U(\mathfrak{O}) \middle| u \equiv 1 \mod t^j \mathfrak{O} \right\}, \qquad j = 0, 1, 2, \cdots$$

Putting $W^{(j)}(\mathfrak{O}) = V^{(j)}(\mathfrak{O})/V^{(j+1)}(\mathfrak{O})$, we have

$$W^{(j)}(\mathfrak{O}) \simeq \begin{cases} U(A) & (j=0) \\ A \text{ (additive group)} & (j>0) \end{cases}$$

Apply a similar construction to \mathfrak{Q}^q for every $q \ge 1$, and we have a series of subgroups of $U(\mathfrak{Q}^q)$:

$$V^{(j)}(\mathfrak{Q}^q) = \left\{ u \in U(\mathfrak{Q}^q) \middle| u \equiv 1^q \bmod t^j \mathfrak{Q}^q \right\}$$

(where 1^q is the identity of \mathfrak{O}^q), and isomorphisms

$$W^{(j)}(\mathfrak{D}^q) = V^{(j)}(\mathfrak{D}^q) / V^{(j+1)}(\mathfrak{D}^q) \simeq \begin{cases} U(A^q) & (j=0) \\ A^q & (j\geq 0) \end{cases}$$

One immediately verifies that these yield isomorphisms of Amitsur's complexes :

$$\operatorname{Am}\left(\mathfrak{O}/\mathfrak{o}, W^{(j)}\right) \simeq \begin{cases} \operatorname{Am}\left(A/F, U\right) & (j=0) \\ \operatorname{Am}\left(A/F, \operatorname{additive}\right) & (j>0) \end{cases}$$

Now the preceding proposition shows that $H^{q}(A/F, U)=0$ for $q\geq 1$, while $H^{q}(A/F, \operatorname{additive})=0$ as is well known. It follows that if $u\in U(\mathfrak{O}^{q+1})$ is such that $du=1^{q+2}$, we can successively find $v_{j}\in V^{j}(\mathfrak{O}^{q+1}), j=0, 1, 2, \cdots$, so that $u\equiv d(v_{0}\cdots v_{j}) \mod V^{(j+1)}$. Clearly $\{v_{0}, v_{0}v_{1}, \cdots\}$ is a Cauchy sequence, and the limit $v=\lim v_{0}\cdots v_{j}$ satisfies u=dv, q. e. d.

§ 3. Global fileds

3.1. Let k be an algebraic number field, and R the ring of integers. Let A be a finite dimensional commutative separable algebra over k, and A an R-order in A. $k_{\mathfrak{p}}$ denotes the completion of k at a prime \mathfrak{p} , $R_{\mathfrak{p}}$ the closure of R in $k_{\mathfrak{p}}$, $A_{\mathfrak{p}} = A \bigotimes_k k_{\mathfrak{p}}$ and $\Lambda_{\mathfrak{p}} = A \bigotimes_R R_{\mathfrak{p}}$ which is an $R_{\mathfrak{p}}$ -order in $A_{\mathfrak{p}}$. (For an archimedean \mathfrak{p} , we put $R_{\mathfrak{p}} = k_{\mathfrak{p}}$, and $\Lambda_{\mathfrak{p}} = A_{\mathfrak{p}}$.) Let J(A) be the idele group of A, which is defined as the restricted direct product of $U(A_{\mathfrak{p}})$ with respect to $U(\Lambda_{\mathfrak{p}})$, the local unit groups. J(A) is independent of the specified order Λ .

An idele $a = (\dots, a_{\mathfrak{p}}, \dots)$ determines an invertible Λ -ideal P of A such that $P_{\mathfrak{p}} = a_{\mathfrak{p}} \Lambda_{\mathfrak{p}}$ for every \mathfrak{p} . Following Fröhlich we denote this ideal P as $a\Lambda$. The map $a \mapsto a\Lambda$ defines an epimorphism from J(A) to the group $I(\Lambda)$ of invertible Λ -ideals, and the kernel is the group of unit ideles $UJ(\Lambda) = \prod_{\mathfrak{p}} U(\Lambda_{\mathfrak{p}})$. Thus we have an exact sequence

$$(3.1) \qquad 0 \longrightarrow UJ(\Lambda) \longrightarrow J(\Lambda) \longrightarrow I(\Lambda) \longrightarrow 0$$

(cf. [2] Theorem 1).

Denote by A^q (resp. Λ^q) the q-fold tensor product $A \bigotimes_k \cdots \bigotimes_k A$ (resp. $\Lambda \bigotimes_R \cdots \bigotimes_R A$). Λ^q is an R-order in the separable algebra A^q , and (3.1) gives rise to a series of exact sequences

$$(3.2) \qquad 0 \longrightarrow UJ(\Lambda^q) \longrightarrow J(\Lambda^q) \longrightarrow I(\Lambda^q) \longrightarrow 0 \qquad (q \ge 1) .$$

As is easily observed, the aggregate of these sequences may be interpreted as an exact sequence of Amitsur's complexes. It yields a long exact sequence

$$(3.3) \qquad \qquad \cdots \longrightarrow H^{q}(\Lambda/R, UJ) \longrightarrow H^{q}(\Lambda/k, J) \xrightarrow{\mathcal{W}^{q}} H^{q}(\Lambda/R, I) \\ \longrightarrow H^{q+1}(\Lambda/R, UJ) \longrightarrow \cdots$$

A. Hattori

PROPOSITION 3.1. Let K be a finite extension field of k, and denote by r the number of infinite primes of k which ramify in the extension K/k. For an R-order S in K, we have

$$H^{1}(S/R, UJ) = 0$$
$$H^{2}(S/R, UJ) \simeq (\mathbb{Z}/2\mathbb{Z})^{r}$$

PROOF. For a finite prime \mathfrak{p} , the \mathfrak{p} -component $H^q(S_\mathfrak{p}/R_\mathfrak{p}, U)$ of $H^q(S/R, UJ)$ vanishes for q=1, 2. This is clear for q=1, since $H^1(S_\mathfrak{p}/R_\mathfrak{p}, U)\simeq$ Pic $(S_\mathfrak{p}/R_\mathfrak{p})$ [7] and $R_\mathfrak{p}$ is local. For q=2, we argue as follows. Put $F=R_\mathfrak{p}/\mathfrak{p}R_\mathfrak{p}$ and $\mathfrak{A}=S_\mathfrak{p}/\mathfrak{p}S_\mathfrak{p}$. Then F is a finite field and \mathfrak{A} is a finite dimensional F-algebra. Hence we have $H^2(\mathfrak{A}/F, U)\simeq$ Br (\mathfrak{A}/F) [11], and this vanishes clearly. Then, applying the standard arguments as in the proof of Proposition 2.2, we obtain $H^2(S_\mathfrak{p}/R_\mathfrak{p}, U)=0$. Therefore we have $H^q(S/R, UJ)\simeq \prod_{\mathfrak{p} \text{ infinite}} H^q(S_\mathfrak{p}/R_\mathfrak{p}, U)$ for q=1, 2. Since $H^1(C/R, U)=0$ and $H^2(C/R, U)\simeq$ Br $(C/R)\simeq Z/2Z$, we have the results as described in the Proposition.

PROPOSITION 3.2. $H^{1}(S/R, I) = 0$.

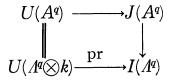
PROOF. We make use of the exactness of (3.3). First, we have $H^1(K/k, J)=0$. This follows immediately from the local triviality $H^1(K_{\mathfrak{p}}/k_{\mathfrak{p}}, U)=0$, $H^1(S_{\mathfrak{p}}/R_{\mathfrak{p}}, U)=0$. Next, any $P \in I(S^2)$ can be represented as aS^2 with a such that $a_{\mathfrak{p}}=1$ for every infinite prime \mathfrak{p} . Then da satisfies the same condition. Since $H^2(S_{\mathfrak{p}}/R_{\mathfrak{p}}, U)=0$ for finite primes, this means that the map $H^1(S/R, I) \rightarrow H^2(S/R, UJ)$ in (3.3) is a 0-map. It follows that $H^1(S/R, I)=0$.

3.2. Let C(A) be the idele class group J(A)/U(A). Then we have the following *basic diagram*, analogous to the one in [6] § 4.

PROPOSITION 3.3. There are homomorphisms ω^q : $H^q(A/k, C) \rightarrow H^{q+1}(A/R)$ $(q=0, 1, 2, \cdots)$ such that the following diagram is commutative:

where the upper exact sequence is derived from the exact sequence $0 \rightarrow U \rightarrow J \rightarrow C \rightarrow 0$, and the lower one is the first exact sequence.

 P_{ROOF} . This is an immediate consequence of the naturality of the first exact sequence applied to the commutative diagram



Consider the most important case q=1, again assuming that A=K is an extension field of k and A=S is an R-order in K. Since $H^2(K/k, U) \simeq$ Br (K/k) by Amitsur, and $H^2(S/R) \simeq$ Br (S/R) by [14], [4], we have the following diagram:

(The left-most 0 is due to Proposition 3.2.) The situation is quite similar as in [3] § 6, and Br (S/R) is isomorphic to a subgroup of $H^2(K/k, J)$ which is the simultaneous kernel of maps denoted j and w^2 respectively in the above diagram. For convenience, we assume that the extension K/k is normal. Now, ker w^2 is isomorphic to $(\mathbb{Z}/2\mathbb{Z})^r$ by the considerations of § 3.1, and each element of it is described in terms of a system of Hasse invariants taking value in $\mathbb{Z}/2\mathbb{Z}$ at real infinite primes of k. Since the map j is given by the sum of local invariants, we have the following result.

PROPOSITION 3.4. Let K/k be a finite Galois extension, and r the number of infinite primes of k which ramify in the extension K/k.

1) For an R-order S in K, the map $Br(S/R) \rightarrow Br(K/k)$ is injective, and

2) Br
$$(S/R)$$
 $\begin{cases} = 0 & (r=0) \\ \simeq (Z/2Z)^{r-1} & (r \ge 1) \end{cases}$

It follows that, if K is totally imaginary, Br(S/R) is the whole Br(R), and we obtain the structure theorem for Br(R) as is described in [10] Theorem 6.36.

§4. Imaginary quadratic fields.

PROPOSITION 4.1. For the integer ring R of an imaginary quadratic field k, $H^q(R/\mathbb{Z}, U)$ vanishes for every $q \ge 1$.

COROLLARY 4.2. Under the same assumption, we have $H^{q}(R/\mathbb{Z}) \simeq H^{q-1}(R/\mathbb{Z}, \operatorname{Pic})$ for every $q \ge 1$.

This is an immediate consequence of the exactness of (1.10). For q = 1, 2, these groups are trivial. If the conjecture of § 2 is confirmed, we will obtain the triviality of these groups for all $q \ge 1$.

PROOF. Let $k = Q(\sqrt{m})$, where *m* is a square-free negative integer. As is well known, we have

A. Hattori

$$U(R) = \begin{cases} \{\pm 1\} & (m \neq -1, -3) \\ \{\pm 1, \pm i\} & (m = -1) \\ \{\pm 1, \pm \omega, \pm \omega^2\} & (m = -3) \end{cases}$$

where ω is a cubic root of unity (\neq 1).

LEMMA. $U(R^q) = \{e_1 \otimes \cdots \otimes e_q | e_i \in U(R)\}.$

PROOF OF LEMMA. First, let q=2. There is an embedding $R^2 \rightarrow R \times R$, denoted $\alpha \mapsto (\alpha_1, \alpha_2)$, defined by the map $a_1 \otimes a_2 \mapsto (a_1 a_2, a_1 \bar{a}_2)$, where \bar{a} denotes the complex conjugate of a. We consider the case m=-3. Then $\{1, \omega\}$ is an integral basis of R. For $\alpha \in U(R^2)$, $\varepsilon = \alpha_2 \alpha_1^{-1}$ must satisfy $1-\varepsilon \equiv 0$ (mod \mathfrak{d}), where \mathfrak{d} is the different, generated by $\omega - \omega^2$. Hence ε is one of 1, ω , ω^2 . If $\alpha = a \otimes 1 + b \otimes \omega \in U(R^2)$, then $\alpha_1 = a + b\omega \alpha_2 = a + b\omega^2$, and we easily verify that

if
$$\varepsilon = 1$$
, then $\alpha = a \otimes 1$, $a \in U(R)$,
if $\varepsilon = \omega$, then $\alpha = b \otimes \omega$, $b \in U(R)$, and
if $\varepsilon = \omega^2$, then $\alpha = a \otimes 1 + a \otimes \omega = (-a) \otimes \omega^2$, $-a \in U(R)$.

This proves the assertion for m = -3. Other cases are easier and we omit the verification of these cases. Now we proceed by induction on q. Let

 $\varphi_q: R^q \longrightarrow R^{q-1} \times R^{q-1}; \alpha \longmapsto (\alpha_1, \alpha_2)$

be defined by $a_1 \otimes a_2 \otimes \beta \mapsto (a_1 a_2 \otimes \beta, a_1 \overline{a_2} \otimes \beta)$ (where $q \ge 3$, and $a_1, a_2 \in R$, $\beta \in \mathbb{R}^{q-2}$). We observe that

(4.1)
$$\varphi_{q+1}(\alpha \otimes a) = (\alpha_1 \otimes a, \alpha_2 \otimes a) \text{ (where } q \ge 2, \text{ and } \alpha \in R^q, a \in R)$$

Again we consider the case m = -3. Then, our task is to show the following fact:

(4.2) If
$$\varepsilon = \alpha \otimes 1 + \beta \otimes \omega \in U(\mathbb{R}^{q+1})$$
, then $\beta = 0$, or $\alpha = 0$, or $\alpha = \beta$.

By (4.1), we have

$$\varphi_{q+1}(\varepsilon) = \langle \alpha_1 \otimes 1 + \beta_1 \otimes \omega, \ \alpha_2 \otimes 1 + \beta_2 \otimes \omega \rangle$$

We may assume that (4.2) holds for these two units of R^q in the right hand side. If $\beta_1=0$, then β_2 is a non-unit since $\beta_1-\beta_2\in \mathfrak{d}\otimes R^{q-1}$. Hence $\alpha_2 \neq 0$. The case $\alpha_2=\beta_2$ is also excluded, since this should imply that β_2 is a unit. Hence, only the case $\beta_2=0$ remains. This means that $\beta=0$. Similarly, if $\alpha_1=0$, then we have $\alpha=0$. Further, if $\alpha_1=\alpha_2$ we have $\alpha_2=\beta_2$, which means $\alpha=\beta$. Thus (4.2) is verified, and the Lemma is true for m=-3. Other values of m can be dealt with more easily. Now return to the proof of Proposition. Write $u \in U(R^q)$ as $u = \pm e_1 \otimes \cdots \otimes e_q$, $e_i \in U'(R)$, where $U'(R) = \{1\}$, $\{1, i\}$, $\{1, \omega, \omega^2\}$ according as $m \neq -1$, -3, m = -1, m = -3. Then

$$du = \begin{cases} \pm 1 \otimes e_1 e_2 \otimes 1 \otimes e_3 e_4 \otimes \cdots \otimes e_{q-1} e_q \otimes 1 & (q \text{ even}) \\ e_1^{-1} \otimes e_1 \otimes e_3^{-1} \otimes e_3 \otimes \cdots \otimes e_q^{-1} \otimes e_q & (q \text{ odd}) \end{cases}$$

Noticing that $e_1 \otimes \cdots \otimes e_q = e'_1 \otimes \cdots \otimes e'_q$ for e_i , $e'_i \in U'(R)$ implies $e_i = e'_i$ for every i, we immediately observe that any u such that du=1 can be expressed as u=dv, q. e. d.

Remark. Morris [9] shows that $H^2(R/\mathbb{Z}, U)=0$ even when R is the integer ring of a real quadratic field. We can not yet determine the structure of $H^q(R/\mathbb{Z}, U)$ for general q in this case. This is due to the fact that $U(R^q)$ is no longer finite, and the analogy to the above Lemma fails in this case.

Example. $R = \mathbb{Z}[\sqrt{2}]$, where $\varepsilon = 1 + \sqrt{2}$ is a fundamental unit. $U(R^3)$ has rank 4 and contains units which can not be expressed as $\pm \varepsilon^i \otimes \varepsilon^j \otimes \varepsilon^k$. *E.g.*

$$u = 1 \otimes 1 \otimes 17(17 + 12\sqrt{2}) + \sqrt{2} \otimes \sqrt{2} \otimes 6(24 + 17\sqrt{2}).$$

References

- I. T. ADAMSON: Cohomology theory for nonnormal subgroups and nonnormal fields, Proc. Glasgow Math. Assoc. 2 (1954), 66-76.
- [2] A. FRÖHLICH: On the classgroup of integral grouprings of finite abelian groups, Mathematika, 16 (1969), 143-152.
- [3] A. HATTORI: On groups *Hⁿ(S, G)* and the Brauer group of commutative rings, Sci. Pap. Coll. Gen. Educ., Univ. Tokyo 28 (1978), 1-20.
- [4] A. HATTORI: On groups $H^n(S/R)$ related to the Amitsur cohomology and the Brauer group of commutative rings, Osaka J. Math. 16 (1979), 357-382.
- [5] A. HATTORI: On generalized crossed products, Sci. Pap. Coll. Gen. Educ. Univ. Tokyo 28 (1978), 143-151.
- [6] A. HATTORI: Some arithmetical applications of groups $H^{q}(R, G)$, Tôhoku Math. J. 33 (1981), 35-63.
- [7] M.-A. KNUS and M. OJANGUREN: Théorie de la descente et algèbres d'Azumaya, Springer Lecture Notes 389, 1974.
- [8] S. MACLANE: Group extensions by primary abelian groups, Trans. Amer. Math. Soc. 95 (1960), 1-16.
- [9] R. A. MORRIS: On the Brauer group of Z, Pac. J. Math. 39 (1971), 619-630.
- [10] M. ORZECH and C. SMALL: The Brauer group of commutative rings, Marcel Dekker 1975.
- [11] A. RORENBERG and D. ZELINSKY: On Amitsur's complex, Trans. Amer. Math.

Soc. 99 (1960), 327-356.

- [12] A. ROSENBERG and D. ZELINSKY: Amitsur's complex for inseparable fields, Osaka Math. J. 14 (1962), 219-240.
- [13] S. SHATZ: Profinite groups, arithmetic, and geometry, Ann. Math. Studies 67, Princeton Univ. Press 1972.
- [14] O. E. VILLAMAYOR and D. ZELINSKY: Brauer groups and Amitsur cohomology for general commutative ring extensions, J. Pure Appl. Algebra 10 (1977), 19-55.

The College of General Education University of Tokyo