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On Amitsur cohomology of rings of algebraic integers
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In connection with the study of Azumaya algebras over rings, we in-troduced in [4] certain Amitsur-type cohomology groups H^{q}(S/R) for anextension S/R of commutative rings. The present article is asupplement
to that paper, and deals with special features of groups H^{q}(S/R) in arith-metical context.

As is the case for the groups H^{q}(S, G) of group cohomology-type [3],[6], we can apply the device of mapping cones to the construction of groups
H^{q}(S/R) , thus dispensing with the intermediary of the whole category ofinvertible modules. This is done in \S 1, based upon the general foundationsin [6] \S 1. In \S 2 we deal with local fifields, and in \S 3 global fifields, wherewe proceed almost parallel to [3] \S 6. Parallel though they are, the resultsare not the same since, roughly speaking, H^{q}(S/R) almost ignores the rami-fication, while H^{q}(S, G) is essentially involved with it. The relationshipbetween these two series of cohomology groups is studied to some extentin [5], but remains to be further clarified. As an example, we show inthe final \S 4 that for the integer rings of imaginary quadratic fields theunit-valued Amitsur cohomology vanishes in every dimension.

\S 1. Groups H^{q}(S/R) via mapping cone
1. 1. Let R be a commutative ring (with unity). Let F be acovariantfunctor from the category of commutative R-algebras to the category ofabelian groups. Denote the Amitsur’s complex of F concerning an \^i-algebra

S by Am (S/R, F) , and its cohomology groups by H^{q}(S/R, F) . (F need notbe meaningful on the whole category of \^i-algebras. It is only requiredthat R is defined in a subcategory sufficient to work with Amitsur coh0-mology.) A morphism of functors f:Farrow F’ yields a complex morphismAm (S/R, F)arrow Am(S/R, F’) . We denote the mapping cone of this morphismby Am (S/R,f) . Hence we have an exact sequence
0- Am (S/R, F’)arrow Am(S/R,f)arrow Am(S/R, F)_{f}arrow 0

where fC_{f} for a cochain complex C is defined by C_{\#}^{q}=C^{q+1} , d_{\#}^{q}=-d^{q+1} .
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General constructions about mapping cones are carried out in \S 1 of [6],

and are applied in \S 2 to the group cohomology. This time, we adapt it
to Amitsur cohomology and will quickly summarize the main facts in the
following lines.

We denote the cohomology of the complex Am (S/R,f) by H^{q}(S/R,f) .
Then the above exact sequence of complexes leads to the fifirst exact sequence
associated to f :

(1. 1) \cdotsarrow H^{q}(S/R, F)arrow H^{q}(S/R, F’)

arrow H^{q}(S/R,f)arrow H^{q+1}(S/R, F)arrow\cdots

Associated to f:Farrow F’ , we have two functors kerf and coker/, together
constituting an exact sequence of functors:

(1. 2) 0arrow kerfarrow FF’arrow cokerfarrow 0\underline{f}

This gives rise to another exact sequence due to MacLane [8] :

\ldotsarrow H^{q} (S/R, kerf) arrow H^{q-1}(S/R,f)

(1. 3)
arrow H^{q-1} (S/R, cokerf) arrow H^{q+1} (S/R, kerf) arrow\cdots

which we call the second exact sequence associated to f.
Let

FF’\underline{f}

\downarrow\varphi g
\downarrow\varphi’

G-G’
be a commutative square of functor morphisms. It gives rise to a com-
mutative square of their Amitsur complexes

Am (S/R, F)-Am(S/R, F’)
(1. 4) \downarrow

\downarrow

Am (S/R, G)-Am(S/R, G’)

Following \S 1. 2 of [6], we obtain the first exact sequence associated
to \{\varphi, \varphi’\} :

(1. 5) \cdotsarrow H^{q}(Y)arrow H^{q}(S/R,f)arrow H^{q}(S/R, g)arrow H^{q+1}(Y)arrow\cdots

under suitable conditions, where Y is the center of the square (1. 4).

Let \varphi:S/Rarrow S’/R’ be a morphism of algebras ([4], \S 6), and assume
that the following square
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Am (S/R, F)-Am(S/R, F’)
(1. 6)

Am
(S’/R’, F)-Am(S’/R’, F’)\downarrow\downarrow

is meaningful and commutative, then we have the following exact sequence
for change of rings :

(1. 7) \cdotsarrow H^{q}(Y)arrow H^{q}(S/R,f)arrow H^{q}(S’/R’,f)arrow H^{q+1}(Y)arrow\cdots

under suitable conditions, where Y is the center of the square (1. 6).
1. 2. Now we assume that R is an integral domain with the field of

quotients k, and restrict our attention to the category of R-faithfully flat
R-0rders \Lambda in finite dimensional commutative separable k-algebras A. The
q-fold tensor product \Lambda^{q}=\Lambda\otimes_{R}\cdots\otimes_{R}\Lambda is an order in the separable algebra
A^{q}=A\otimes_{k}\cdots\otimes_{k}A , and the machinary of the Amitsur cohomology can be set
up in this category. Let U be the functor of units: \Lambdaarrow U(\Lambda) , while U_{k}

be the functor \Lambdaarrow U(\Lambda\otimes k)=U(A)=A^{*} . Let further I(\Lambda) be the group of
invertible \Lambda-ideals in A=\Lambda\otimes k . Then the assignment a\in A^{*}arrow(a)=a\Lambda\in I(\Lambda)

defines a morphism of functors pr:U_{k}arrow I, with the kernel U and the cokernel
denoted Pic, so that we have an exact sequence

(1. 8) 0arrow Uarrow U_{k^{arrow}}^{P^{r}}Iarrow Picarrow 0

We shall apply the construction of \S 1. 1 to (1. 8), and obtain the following
facts, which are parallel to the case of group cohomology of [6] \S 3.

We introduce the notation
H^{q}(\Lambda/R)=H^{q-1}(\Lambda/R, pr)

Then we have the fifirst exact sequence

\ldotsarrow H^{q}(A/k, U)arrow H^{q}(\Lambda/R, I)arrow H^{q+1}(\Lambda/R)

(1. 9)
arrow H^{q+1}(A/k, U)arrow\cdots

and the second exact sequence

\ldotsarrow H^{q}(\Lambda/R, U)arrow H^{q}(\Lambda/R\ranglearrow H^{q-1} ( \Lambda/R, Pic)(1. 10)
arrow H^{q+1}(\Lambda/R, U)-arrow\cdots

The latter is the exact sequence of [4] Theorem 1. 1.
Noticing that we are assuming that \Lambda is R-faithfully flat, we easily

observe that
(1. 11) H^{0}(\Lambda/R)-\sim U(R) ,

(which is [4] Proposition 2. 1). For q=1 , we have
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(1. 12) H^{1}(\Lambda/R)-- Pic (R)

([4] Theorem 2. 2). This follows from the first exact sequence:

(\{_{\backslash }
|^{\backslash }| (|

0– H^{0}(\Lambda/R)arrow H^{0}(A/k, U)arrow H^{0}(\Lambda/R, I)arrow H^{1}(\Lambda/R)-

H^{1}(A/k, U)0||

0-U(R)-k^{*--}I(R)
We quote the following isomorphism without proof ([4] Theorem 5. 2):

(1. 13) H^{2}(\Lambda/R)\sim- Br (\Lambda/R) ,

which holds when \Lambda is R-faithfully projective (cf. also [14]).
Let \varphi:\Lambda/R-arrow\Lambda’/R’ be a morphism of algebras, and assume the U-injec-

tivity and Pic-surjectivity for every \Lambda^{r}arrow\Lambda^{\prime r}(r=1,2, \cdots) (cf. [4] \S 6). Then
the exact sequence for the change of rings (1. 7) reads in the present context
as follows :

(1. 14) \cdotsarrow H^{q-1}(Y)arrow H^{q}(\Lambda/R)arrow H^{q}(\Lambda’/R’)arrow H^{q}(Y)- \cdots

([4] Theorem 6. 1), Here, Y is the center of the square

Am (A/k, U)-Am(\Lambda/R, I)

\downarrow \downarrow

Am (A’/k’, U)arrow Am(\Lambda’/R’, I)

where k’ is the field of quotients of R’ , and A’=\Lambda’\otimes k’ . Explicitly, Y^{q}

consists of [P_{ \alpha}’,](P\in I(\Lambda^{q+1}), \alpha’\in U(A^{\prime q+1})) such that P\otimes_{\Lambda^{q}}+1\Lambda^{\prime q+1}=\alpha’\Lambda^{\prime q+1} ,
where [P_{ \alpha}’,] and [Q, \beta’] are identified if their ‘difference’ equals to [\alpha\Lambda^{q\dagger 1},
\varphi(\alpha)] with some \alpha\in A^{q+1} . The boundary is defined by d[P_{ \alpha}’,]=[dP, d\alpha’] .
This agrees with the formulation in [4] (where Y is denoted as Am ( \varphi , Pic)).

\S 2. Local fields

We begin with
PROPOSITION 2. 1. If F is a C_{1}- fifield, then we have H^{q}(A/F, U)=0

(q\geq 1) for any fifinite dimensional primary algebra A.
PROOF. Let A’ be the residue class algebra of A by the radical. Then

we have H^{q}(A/F, U)-\sim H^{q}(A’/F, U) by [12] Proposition 3. 3. So we assume
that A is an extension field of F. If K/F is the maximal purely inseparable
subextension of A/F, we have the following exact sequence

\ldotsarrow H^{q-1}(A/K, U)arrow H^{q}(K/F, U)arrow H^{q}(A/F, U)
(^{*})

arrow H^{q}(A/K, U)arrow\cdots
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([12] Theorem 4. 3). Now, H^{q}(K/F, U)=0 for q\neq 2 by Berkson’s theorem,
and H^{2}(K/F, U)_{-}^{\sim}Br(K/F) also vanishes by the C_{1} -assumption. Hence
H^{q}(K/F, U) vanishes for every q\geq 1 . Next we consider the separable exten-
sion A/K. Let L be a finite Galois extension of K, containing A. Let
G=Ga1(L/K) and H=Ga1(L/A) . Then H^{q}(A/K, U) is isomorphic to the
relative Galois cohomology group H^{q}([G:H], L^{*}) by [11] Theorem 1. Now
we have H^{q}(D, L^{*})=0 for every subgroup D of G and q\geq 1 , since the
fixed subfield of D, being a finite extension of F, is likewise a C_{1} -field (cf.
e . g. [13] Chap. IV \S 3). In this case, there is an exact sequence [1] :

0arrow H^{q} ([G:H] , L^{*})arrow H^{q}(G, L^{*})arrow H^{q}(H, L^{*})

from which follows that H^{q}([G:H], L^{*})=0 , i . e . H^{q}(A/K, U)=0(q\geq 1) .
Applying these facts to the above exact sequence (^{*}) , we obtain H^{q}(A/F, U)

=0(q\geq 1) .
Conjecture. The triviality of H^{q}(A/F, U) will hold for all A without

the assumption of primary-ness.
We apply the above Proposition to prove the following result.
PROPOSITION 2. 2. Let \mathfrak{o} be a complete discrete valuation ring, k its

fifield of quotients. Let K/k be a fifinite extension, and \mathfrak{O} the integral closure
of \mathfrak{o} in K. Assume that the residue fifield F=\mathfrak{d}/\mathfrak{p} is a Crfield’ Then the
Amitsur cohomology H^{q}(\mathfrak{O}/0, U) vanishes for q\geq 1 .

PROOF. Put A=\mathfrak{O}/\mathfrak{p}\mathfrak{O} , which is a finite dimensional primary algebra
over F. Let t be a uniformizing parameter in k:\mathfrak{p}=(t) , and introduce a
filtration of U(\mathfrak{O}) by

V^{(j)}(\mathfrak{O})=\{u\in U(\mathfrak{O})|u\equiv 1 mod t^{j}\mathfrak{O}\} , j=0,1,2, \cdots

Putting W^{(j)}(\mathfrak{O})=V^{(j)}(\mathfrak{O})/V^{(j+1)}(\mathfrak{O}) , we have

W^{(j)}(\mathfrak{O})--\{

U(A) (j=0)
A (additive group) (j>0)

Apply a similar construction to \mathfrak{O}^{q} for every q\geq 1 , and we have a series
of subgroups of U(\mathfrak{O}^{q}) :

V^{(j)}(\mathfrak{O}^{q})=\{u\in U(\mathfrak{O}^{q})|u\equiv 1^{q} mod t^{j}\mathfrak{O}^{q}\}

(where 1^{q} is the identity of \mathfrak{O}^{q}), and isomorphisms

W^{(j)}(\mathfrak{O}^{q})=V^{(j)}(\mathfrak{O}^{q})/V^{(j+1)}(\mathfrak{O}^{q})-\sim\{

U(A^{q}) (j=0)
A^{q} (j\geq 0)
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One immediately verifies that these yield isomorphisms of Amitsur’s com-
plexes :

Am (\mathfrak{O}/0, W^{(j)})--\{

Am (A/F, U) (j=0)
Am (A/F, additive) (j>0)

Now the preceding proposition shows that H^{q}(A/F, U)=0 for q\geq 1 , while
H^{q} (A/F, additive) =0 as is well known. It follows that if u\in U(\mathfrak{O}^{q+1}) is
such that du=1^{q+2} , we can successively find v_{j}\in V^{j}(\mathfrak{O}^{q+1}) , j=0,1 , 2, \cdots , so
that u\equiv d(v_{0}\cdots v_{j}) mod V^{(j+1)} . Clearly \{v_{0}, v_{0}v_{1^{ }},\cdots\} is a Cauchy sequence, and
the limit v= \lim v_{0}\cdots v_{j} satisfies u=dv, q . e . d .

\S 3. Global fileds

3. 1. Let k be an algebraic number field, and R the ring of integers.
Let A be a finite dimensional commutative separable algebra over k, and 41
an R order in A. k_{\mathfrak{p}} denotes the completion of k at a prime \mathfrak{p} , R_{p} the
closure of R in k_{\mathfrak{p}} , A_{\mathfrak{p}}=A\otimes_{k}k_{\mathfrak{p}} and \Lambda_{j_{J}}=\Lambda\otimes_{R}R_{p} which is an R_{\beta} order in
A_{\mathfrak{p}} . (For an archimedean \mathfrak{p} , we put R_{\mathfrak{p}}=k_{lJ} , and \Lambda_{p}=A_{\beta}. ) Let J(A) be
the idele group of A, which is defined as the restricted direct product of
U(A_{p}) with respect to U(\Lambda_{p}) , the local unit groups. J(A) is independent
of the specified order \Lambda .

An idele a=(\cdots, a_{\mathfrak{H}}, \cdots) determines an invertible \Lambda ideal P of A such
that P_{\mathfrak{p}}=a_{\mathfrak{p}}\Lambda_{p} for every \mathfrak{p} . Following Fr\"ohlich we denote this ideal P as
aA. The map a-,a\Lambda defines an epimorphism from J(A) to the group
I(\Lambda) of invertible \Lambda-ideals, and the kernel is the group of unit ideles UJ(\Lambda)=

\prod_{\beta}U(_{1}l_{p}) . Thus we have an exact sequence

(3. 1) 0arrow UJ(\Lambda)arrow J(A)arrow I(\Lambda)arrow 0w

(cf. [2] Theorem 1).
Denote by A^{q} (resp. \Lambda^{q}) the q-fold tensor product A\otimes_{k}\cdots\otimes_{k}A (resp.

\Lambda\otimes_{R}\cdots\otimes_{R}\Lambda) . \Lambda^{q} is an R-0rder in the separable algebra A^{q} , and (3. 1) gives
rise to a series of exact sequences

(3. 2) Oarrow UJ(\Lambda^{q})arrow J(A^{q})arrow I(\Lambda^{q})arrow 0 (q\geq 1)

As is easily observed, the aggregate of these sequences may be interpreted
as an exact sequence of Amitsur’s complexes. It yields a long exact sequence

...arrow H^{q}(\Lambda/R, UJ)arrow H^{q}(A/k, J)arrow H^{q}(\Lambda/R, I)w^{q}

(3. 3)
arrow H^{q+1}(\Lambda/R, UJ)arrow\cdots
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PROPOSITION 3. 1. Let K be a fifinite extension fifield of k, and denote
by r the number of infifinite primes of k which ramify in the extension K/k.
For an R-Order S in K, we have

H^{1}(S/R, UJ)=0

H^{2}(S/R, UJ)-\sim(Z/2Z)^{r}

PROOF. For a finite prime \mathfrak{p} , the \mathfrak{p} -component H^{q}(S_{\mathfrak{p}}/R_{p}, U) of H^{q}(S/R ,

UJ) vanishes for q=1,2 . This is clear for q=1 , since H^{1}(S_{p}/R_{p}, U)_{-}^{\sim} Pic
(S_{\mathfrak{p}}/R_{\mathfrak{p}})[7] and R_{\mathfrak{p}} is local. For q=2, we argue as follows. Put F=R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{H}}

and \mathfrak{A}=S_{\mathfrak{d}}/\mathfrak{p}S_{\mathfrak{p}} . Then F is a finite field and \mathfrak{A} is a finite dimensional F-
algebra. Hence we have H^{2}(\mathfrak{A}/F, U)_{-}^{\sim}Br(\mathfrak{A}/F)[11] , and this vanishes clearly.
Then, applying the standard arguments as in the proof of Proposition 2. 2, we
obtain H^{2}(S_{D}/R_{\mathfrak{p}}, U)=0 . Therefore we have H^{q}(S/R, UJ)_{-_{D}}^{\sim} \prod_{\inf inite}H^{q}(S_{\mathfrak{h}}/R_{p} ,

U) for q=1,2 . Since H^{1}(C/R, U)=0 and H^{2}(C/R, U)\sim-Br (C/R)-\sim Z/2Z, we
have the results as described in the Proposition.

PROPOSITION 3. 2. H^{1}(S/R, I)=0 .
PROOF. We make use of the exactness of (3. 3). First, we have H^{1}(K/k,

J)=0. This follows immediately from the local triviality H^{1}(K_{\beta}/k_{D}, U)=0 ,
H^{1}(S_{\mathfrak{p}}/R_{\mathfrak{p}}, U)=0 . Next, any P\in I(S^{2}) can be represented as aS^{2} with a
such that a_{p}=1 for every infinite prime \mathfrak{p} . Then da satisfies the same
condition. Since H^{2}(S_{\mathfrak{p}}/R_{\mathfrak{p}}, U)=0 for finite primes, this means that the map
H^{1}(S/R, I)arrow H^{2}(S/R, UJ) in (3. 3) is a 0-map. It follows that H^{1}(S/R, I)=0 .

3. 2. Let C(A) be the idele class group J(A)/U(A) . Then we have
the following basic diagram, analogous to the one in [6] \S 4.

PROPOSITION 3. 3. There are homomorphisms \omega^{q} : Hq(S/R, C)arrow H^{q+1}

(\Lambda/R)(q=0,1,2, \cdots) such that the following diagram is commutative:
\ldotsarrow H^{q}(A/k, U)arrow H^{q}(A/k, J)arrow H^{q}(A/k, C)arrow H^{q+1}(A/k, U)– \ldots

|| \downarrow w^{q} \downarrow\omega^{q} ||

\ldotsarrow H^{q}(A/k, U)arrow H^{q}(\Lambda/R, I)arrow H^{q+1}(\Lambda/R)arrow H^{q+1}(A/k, U)arrow\cdots

where the upper exact sequence is derived from the exact sequence 0- Uarrow

Jarrow Carrow 0 , and the lower one is the fifirst exact sequence.

PROOF. This is an immediate consequence of the naturality of the first
exact sequence applied to the commutative diagram

U(A^{q})-\mathcal{J}(A^{q})

|| \downarrow

U(\Lambda^{q}\otimes k)I(\Lambda^{q})\underline{pr}
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Consider the most important case q=1 , again assuming that A=K is
an extension field of k and \Lambda=S is an R-0rder in K. Since H^{2}(K/k, U)_{-}^{\sim}

Br (K/k) by Amitsur, and H^{2}(S/R)--Br (S/R) by [14], [4], we have the fol-
lowing diagram :

Oarrow Br(K/k)arrow H^{2}(K/k, J)arrow H^{2}(K/k, C)j

0arrow Br(S/R)arrow Br(K/k)arrow H^{2}(S/R,I)arrow H^{3}(S/R)\downarrow||\downarrow w^{2}\downarrow\omega^{2}

(The left-most 0 is due to Proposition 3. 2.) The situation is quite similar
as in [3] \S 6, and Br (S/R) is isomorphic to a subgroup of H^{2}(K/k, J) which
is the simultaneous kernel of maps denoted j and w^{2} respectively in the
above diagram. For convenience, we assume that the extension K/k is
normal. Now, ker w^{2} is isomorphic to (Z/2Z)^{r} by the considerations of
\S 3. 1, and each element of it is described in terms of a system of Hasse
invariants taking value in Z/2Z at real infinite primes of k. Since the map
j is given by the sum of local invariants, we have the following result.

PROPOSITION 3. 4. Let K/k be a fifinite Galois extension, and r the
number of infifinite primes of k which ramify in the extension K/k.

1) For an R-Order S in K, the map Br (S/R)arrow Br(K/k) is injective, and

2) Br (S/R)J=0|--(Z/2Z)^{r-1} (r\geq 1)(r=0)

It follows that, if K is totally imaginary, Br (S/R) is the whole Br (R),
and we obtain the structure theorem for Br (R) as is described in [10] TheO-
rem 6. 36.

\S 4. Imaginary quadratic fields.

PROPOSITION 4. 1. For the integer ring R of an imaginary quadratic
fifield k, H^{q}(R/Z, U) vanishes for every q\geq 1 .

COROLLARY 4. 2. Under the same assumption, we have H^{q}(R/Z)_{-}^{-}

H^{q-1} (R/Z, Pic) for every q\geq 1 .
This is an immediate consequence of the exactness of (1. 10). For q=

1,2, these groups are trivial. If the conjecture of \S 2 is confirmed, we
will obtain the triviality of these groups for all q\geq 1 .

PROOF. Let k=Q(\sqrt{m}) , where m is a square-free negative integer. As
is well known, we have
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U(R)=

’
\{\pm 1\} (m\neq-1, -3)

\{\pm 1, \pm i\} (m=-1)
\backslash \{\pm 1, \pm\omega, \pm\omega^{2}\} (m=-3)

where \omega is a cubic root of unity (\neq 1) .
Lemma. U(R^{q})=\{e_{1}\otimes\cdots\otimes e_{q}|e_{i}\in U(R)\} .
PROOF OF Lemma. First, let q=2 . There is an embedding R^{2}arrow R\cross R ,

denoted \alpha[]arrow(\alpha_{1}, \alpha_{2}) , defined by the map a_{1}\otimes a_{2}-\geq(a_{1}a_{2}, a_{1}\overline{a}_{2}) , where \overline{a} denotes
the complex conjugate of a. We consider the case m=-3. Then \{1, \omega\}

is an integral basis of R. For \alpha\in U(R^{2}) , \epsilon=\alpha_{2}\alpha_{1}^{-1} must satisfy 1-\epsilon\equiv 0

(mod \mathfrak{d}), where \mathfrak{d} is the different, generated by \omega-\omega^{2} . Hence \epsilon is one of
1, \omega , \omega^{2} . If \alpha=a\otimes 1+b\otimes\omega\in U(R^{2}) , then \alpha_{1}=a+b\omega\alpha_{2}=a+b\omega^{2}, and we
easily verify that

if \epsilon=1 , then \alpha=a\otimes 1 , a\in U(R) ,

if \epsilon=\omega , then \alpha=b\otimes\omega , b\in U(R) , and

if \epsilon=\omega^{2}, then \alpha=a\otimes 1+a\otimes\omega=(-a)\otimes\omega^{2}, - a\in U(R) .
This proves the assertion for m=-3. Other cases are easier and we omit
the verification of these cases. Now we proceed by induction on q. Let

\varphi_{q} : R^{q}arrow R^{q-1}\cross R^{q-1} ; \alpha|arrow(\alpha_{1}, \alpha_{2})

be defined by a_{1}\otimes a_{2}\otimes\beta\vdasharrow(a_{1}a_{2}\otimes\beta, a_{1}\overline{a}_{2}\otimes\beta) (where q\geq 3 , and a_{1} , a_{2}\in R , \beta\in

R^{q-2}) . We observe that

(4. 1) \varphi_{q+1}(\alpha\otimes a)=(\alpha_{1}\otimes a, \alpha_{2}\otimes a) (where q\geq 2 , and \alpha\in R^{q}, a\in R)

Again we consider the case m=-3. Then, our task is to show the follow-
ing fact:

(4. 2) If \epsilon=\alpha\otimes 1+\beta\otimes\omega\in U(R^{q+1}) , then \beta=0 , or \alpha=0 , or \alpha=\beta

By (4. 1), we have

\varphi_{q+1}(\epsilon)=(\alpha_{1}\otimes 1+\beta_{1}\otimes\omega, \alpha_{2}\otimes 1+\beta_{2}\otimes.\omega)

We may assume that (4. 2) holds for these two units of R^{q} in the right
hand side. If \beta_{1}=0 , then \beta_{2} is a non-unit since \beta_{1}-\beta_{2}\in \mathfrak{d}\otimes R^{q-1} . Hence
\alpha_{2}\neq 0 . The case \alpha_{2}=\beta_{2} is also excluded, since this should imply that \beta_{2} is
a unit. Hence, only the case \beta_{2}=0 remains. This means that \beta=0 . Simi-
larly, if \alpha_{1}=0 , then we have \alpha=0 . Further, if \alpha_{1}=\alpha_{2} we have \alpha_{2}=\beta_{2} , which
means \alpha=\beta . Thus (4. 2) is verified, and the Lemma is true for m=-3.
Other values of m can be dealt with more easily.
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Now return to the proof of Proposition. Write u\in U(R^{q}) as u=
\pm e_{1}\otimes\cdots\otimes e_{q}, e_{i}\in U’(R) , where U’(R)=\{1\} , \{1, i\} , \{1, \omega, \omega^{2}\} according as m\neq

-1, -3, m=-1, m=-3. Then

du= \int_{1_{e_{1}^{-}}}\pm 1\bigotimes_{e_{1}}e_{1}e_{2}\otimes 1\otimes e_{3}1\otimes\otimes e_{3}^{-1}\otimes e_{3}\otimes\cdots\otimes^{e_{4}\otimes\cdots\otimes e_{q}}e_{q}^{-1}\otimes e_{q}-1e_{q}\otimes 1

(q even)

(q odd)

Noticing that e_{1}\otimes\cdots\otimes e_{q}=e_{1}’\otimes\cdots\otimes e_{q}’ for e_{i} , e_{i}’\in U’(R) implies e_{i}=e_{i}’ for every
i, we immediately observe that any u such that du=1 can be expressed
as u=dv, q. e . d .

Remark. Morris [9] shows that H^{2}(R/Z, U)=0 even when R is the
integer ring of a real quadratic field. We can not yet determine the structure
of H^{q}(R/Z, U) for general q in this case. This is due to the fact that U(R^{q})

is no longer finite, and the analogy to the above Lemma fails in this case.
Example. R=Z[\sqrt{2}] , where \epsilon=1+\sqrt{2} is a fundamental unit. U(R^{3})

has rank 4 and contains units which can not be expressed as \pm\epsilon^{i}\otimes\epsilon^{j}\otimes\epsilon^{k} .
E. g.

u=1\otimes 1\otimes 17(17+12\sqrt{2})+\sqrt{2}\otimes\sqrt{2}\otimes 6(24+17\sqrt{2})

References
[1] I. T. ADAMSON : Cohomology theory for nonnormal subgroups and nonnormal

fields, Proc. Glasgow Math. Assoc. 2 (1954), 66-76.
[2] A. FR\"OHLICH: On the classgroup of integral grouprings of finite abelian groups,

Mathematika, 16 (1969), 143-152.
[3] A. HATTORI: On groups H^{n} (S, G) and the Brauer group of commutative rings,

Sci. Pap. Coll. Gen. Educ, Univ. Tokyo 28 (1978), 1-20.
[4] A. HATTORI: On groups H^{n}(S/R) related to the Amitsur cohomology and the

Brauer group of commutative rings, Osaka J. Math. 16 (1979), 357-382.
[5] A. HATTORI: On generalized crossed products, Sci. Pap. Coll. Gen. Educ. Univ.

Tokyo 28 (1978), 143-151.
[6] A. HATTORI: Some arithmetical applications of groups H^{q}(R,G), T\^ohoku

Math. J. 33 (1981), 35-63.
[7] M.-A. KNUS and M. OJANGUREN: Th\’eorie de la descente et alg\‘ebres d’Azumaya,

Springer Lecture Notes 389, 1974.
[8] S. MACLANE: Group extensions by primary abelian groups, Trans. Amer. Math.

Soc. 95 (1960), 1-16.
[9] R. A. MORRIS: On the Brauer group of Z, Pac. J. Math. 39 (1971), 619-630.
[10] M. ORZECH and C. SMALL: The Brauer group of commutative rings, Marcel

Dekker 1975.
[11] A. RORENBERG and D. ZELINSKY: On Amitsur’s complex, Trans. Amer. Math.



56 A. Hattori

Soc. 99 (1960), 327-356.
[12] A. ROSENBERG and D. ZELINSKY: Amitsur’s complex for inseparable fields,

Osaka Math. J‘ 14 (1962), 219-240.
[13] S. SHATZ: Profinite groups, arithmetic, and geometry, Ann. Math. Studies 67,

Princeton Univ. Press 1972.
[14] O. E. VILLAMAYOR and D. ZELINSKY: Brauer groups and Amitsur cohomology

for general commutative ring extensions, J. Pure Appl. Algebra 10 (1977),

19-55.

The College of General Education
University of Tokyo


	\S 1. Groups H^{q}(S/R) ...
	\S 2. Local fields
	\S 3. Global fileds
	\S 4. Imaginary quadratic ...
	References

