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Double integral theorem of Haar measures

By Hidegoro NAKANO*
(Received July 10, 1980)

On a group G we consider only those uniformities U for which the
right transformation group R_{G} is equi-continuous, i . e. , for any U\in U there
is V\in U such that xVy\subset xyU for every x, y\in G . A set A\subset G is said to
be totally bounded for U if for any U\in U we can find a finite system
x_{\nu}\in G(\nu=1,2, \cdots, n) for which we have A\subset\cup nx_{\nu}U. The linear lattice \Phi

\nu=1

of all uniformly continuous functions \varphi on G for which \{x:\varphi(x)\neq 0\} are
totally bounded for U is called the trunk of U. A positive linear functional
\mu on \Phi is called a measure on \Phi and its value is denoted by\downarrow.\varphi(x)\mu(dx)

for \varphi\in\Phi .
For a transformation T on G, if both T and T^{-1} are uniformly continuous

for U, then for any \varphi\in\Phi , setting \psi(x)=\varphi(xT) for x\in G , we obtain \psi\in\Phi .
A measure \mu on \Phi is called a Haar measure of G for U if \mu\neq 0 and \mu is
invariant by R_{G} , i . e. ,

\int\varphi(xy)\mu(dx)=\int\varphi(x)\mu(dx) for \varphi\in\Phi and y\in G

A uniformity U on G is said to be locally totally bounded if there is
U\in U such that xU is totally bounded for every x\in G . According to the
Theorem of Existence in [3], if U is locally totally bounded, then there is
a Haar measure of G for U. If every left transformation L_{x}(X\in G) is
uniformly continuous for U in addition, then we can apply the Theorem of
Uniqueness in [3], and we have that the Haar measures are uniquely deter-
mined except for constant multiplication, i . e. , for any two Haar measures
\mu and \rho there is a positive number \alpha such that

\int\varphi(x)\mu(dx)=\alpha\int\varphi(x)\rho(dx) for every \varphi\in\Phi t

For a topological group G we defined the proper uniformity on G in
[6]. For the proper uniformity the right transformation group R_{G} is equi-
continuous and every left transformation L_{x}(x\in G) is uniformly continuous.
Therefore for a locally compact topological group G there exists a Haar

* This paper was completed by the auther about 1971.
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measure that is uniquely determined except for constant multiplication, as
well known.

For a set S of a group G, the relative uniformity of U on S is denoted
by U^{S}, i . e. , U^{S}=\{U^{S} : U\in U\} where xU^{S}=xU\cap S for x\in S. If S is a sub-
group of G, then it is clear by definition that the right transformation group
R_{S} is equi-continuous on S for U^{S} .

For two subgroups S and H of G, if G=SH and S\cap H=\{e\} , then we
can consider G the product space of S and H because ux=vy for u, v\in S

and x, y\in H implies u=v and x=y. In [6] we proved the
PRODUCT MEASURE THEOREM For two subgroups S and H of a group

G, if G=SH, S\cap H=\{e\} , U=U^{S}\cross U^{H} for the relative uniformities U^{S} and
U^{H}, and every L_{x}(x\in G) is uniformly continuous for U, then for Haar
measures \mu_{S} and \mu_{H} of S and H respectively, the product measure \mu_{S}\cross\mu_{H}

is a Haar measure of G for U;i. e. , for the trunk \Phi and \Phi_{H} of U and
U^{H} respectively, setting

\psi(x)=\int\varphi(ux)\mu_{S}(du) for \varphi\in\Phi and x\in H ,

we have \psi\in\Phi_{B}, and setting

\int\varphi(x)\mu_{S}\cross\mu_{H}(dx)=\int\psi(x)\mu_{H}(dx)

we obtain a Haar measure \mu_{S}\cross\mu_{H} of G for U.
Let S be a subgroup of a group G. Considering each coast Sx(x\in G)

an element, we obtain a space. This space is called the coset space of S
and is denoted by S_{G} , i . e. , S_{G}=\{Sx;x\in G\} . Setting xM_{S}=Sx for x\in G ,

we obtain a mapping M_{S} from G onto S_{G} . This mapping M_{S} is called the
coset mapping. We define the coset uniformity U_{S} on S_{G} by the strongest
uniformity for which M_{S} is uniformly continuous.

Setting (Sx) C_{y}=Sxy for x, y\in G, we obtain a transformation group
C_{G} on S_{G} . This transformation group C_{G} is called the coset transformation
group of S. If the coset mapping M_{S} is uniformly open, then C_{G} is equi-
continuous. If U is locally totally bounded in addition, then the coset
uniformity U_{S} also is locally totally bounded, and there exists an invariant
measure \mu_{S} by C_{G} . If the system L_{x}(x\in S) is equi-continuous on G for
U, then M_{S} is uniformly open. In this paper we will prove the

DOUBLE INTEGRAL THEOREM Let S be a subgroup of a group G. For
a uniformity U on G we suppose that every left transformation L_{x}(x\in G)

is uniformly continuous, the system L_{x}(x\in S) is equi-continuous, A^{-1} is
totally bounded for any totally bounded set A\subset G (this condition is satisfied
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if U is complete), and U is locally totally bounded. For an invariant
measure \mu_{0} by the coset transformation group C_{G} for the coset uniformity
U_{S} on S_{G} and a Haar measure \mu_{S} of S for the relative uniformity U^{S}

and for the trunks \Phi and \Phi_{0} of U and U_{S} respectively, setting

\psi(Sx)=\int\varphi(ux)\mu_{S}(du) for \varphi\in\Phi and x\in G,\cdot

we have \psi\in\Phi_{0} , and setting

.| \varphi(x)\mu(dx)=\int\psi(Sx)\mu_{0}(dSx) ,

we obtain a Haar measure \mu of G for U.
For two subgroups S and H of a group G such that G=SH and

S\cap H=\{e\} , setting xP_{H}=Sx for x\in H, we obtain a one-t0-0ne mapping
P_{H} from H onto S_{G} , and for the representation T_{G} of G on H defined in
[5], we have xP_{H}C_{z}=xT_{z}P_{H} for x\in H and z\in G . Setting uxM_{H}=x for
u\in S and x\in H, we obtain a mapping M_{H} from G onto H. If M_{H} is uni-
formly continuous for the relative uniformity U^{H} of U on H, then P_{H} is
a unimorphism from H with U^{H} to S_{G} with the coset uniformity U_{S}. For
the trunk \Phi_{H} of U^{H}, setting \varphi(Sx)=\varphi(x) for x\in H, we can consider \Phi_{H} the
trunk of U_{S} . Since Tx=R_{x} for x\in H by definition, every invariant measure
\mu_{H} by T_{G} is a Haar measure of H for U^{H} . Conversely, because of the
uniqueness of Haar measures, a Haar measure \mu_{H} of H for U^{H} is invariant
by T_{G} . Thus, considering \mu_{H} on the trunk \Phi_{0} of U_{S}, \mu_{H} is invariant by
C_{G} . Therefore, applying the Double Integral Theorem, we obtain another
product measure theorem.

If S is an invariant subgroup of a group G, then the coset space S_{G}

forms the quotient group G/S, and C_{x}=R_{Sx} for every x\in G . Therefore,
every invariant measure \mu_{S} by C_{G} is a Haar measure of G/S for U_{S} .

We already proved the Double Integral Theorem generally for a transitive
transformation group G on a space S in [3]. If we set S=G and G=R_{G} ,
then as a special case we obtain a double integral theorem for an invariant
subgroup, but under the stronger condition that the left transformation group
L_{G} is equi-continuous for U.

In this paper we construct an algebraic theory of coset transformation
groups and develop it with uniformities in order to establish the Double
Integral Theorem. Many papers are listed in refereces for those who are
interested in this field.
1. Coset Transformation Groups Let G be a group. For any subgroup
S\subset G , the space of all cosets Sx (x\in G) is called the coset space of S and
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is denoted by S_{G} ; i . e. , S_{G}=\{Sx: x\in G\} .
For any x\in G, setting (Su) C_{x}=Sux for every u\in G, we obtain a trans-

formation C_{x} on S_{G} , and we have

(1. 1) C_{x}C_{y}=C_{xy} and C_{x}^{-1}=C_{x^{-1}} for x, y\in G

Thus C_{x}(x\in G) form a transformation group on S_{G} that is called the coset

transformation group for a subgroup S\subset G and is denoted by C_{G} or C_{G}^{S} if
we need to indicate S.
(1. 2) C_{x}^{S}(x\in G) is a homomorphism from G to the coset transforma-

tion group C_{G}^{S} , and \bigcap_{u\epsilon G}u^{-1} Su is its kernel, i . e. ,

\bigcap_{u\epsilon G}u^{-1}Su=\{x:C^{s_{x}}=E\}

PROOF It is clear by (1. 1) that C^{s_{x}}(x\in G) is a homomorphism from
G to C_{G}^{S} . By definition C_{x}^{S}=E is equivalent to Sux=Su for every u\in G ;
i . e. , Suxu^{-1}=S for every u\in G . This is equivalent to uxu^{-1}\in S, i . e. ,
x\in u^{-1}Su for every u\in G .

We say that a subgroup S\subset G is simple if \bigcap_{u\epsilon G}u^{-1}Su=\{e\} , as defined in

[5]. By (1. 2) we have
(1. 3) C_{x}^{S}(x\in G) is an isomorphism if and only if S is simple.

For any subgroup S\subset G , setting S_{0}= \bigcap_{u\in G}u^{-1}Su , we obtain an invariant
subgroup S_{0} of G, and we have
(1. 4) S/S_{0} is a simple subgroup of the quotient group G/S_{0} .

PROOF By definition the quotient group G/S_{0} consists of cosets S_{0}x

(x\in G) , and for any u\in G we have

(S_{0}u)^{-1}(S/S_{0})(S_{0}u)=(S_{0}u^{-1})(S/S_{0})(S_{0}u)=\{S_{0}u^{-1}xu:x\in S\}

because uS_{0}=S_{0}u for every u\in G . If S_{0}y\in\{S_{0}u^{-1}xu:x\in S\} for every u\in G,
then y\in S_{0}u^{-1}Su for every u\in G . On the other hand, we have

S_{0}u^{-1}Su=u^{-1}S_{0}Su=u^{-1}Su

because S_{0}\subset S and S_{0}S=S. Therefore y \in\bigcap_{u\in G}u^{-1}Su=S_{0} , and we conclude

that S/S_{0} is a simple subgroup of G/S_{0} .
2. Congruence Let M be a transformation from a space S_{1} to another
space S_{2} ; i. e., M is a one-t0-0ne mapping from S_{1} onto S_{2} . For a trans-

formation T on S_{2}, MTM^{-1} is a transformation on S_{1} . We say that a
transformation group T_{1} on S_{1} is congruent to a transformation group T_{2}

on S_{2} by M if T_{1}=MT_{2}M^{-1} , i. e., T_{1}=\{MTM^{-1}:T\in T_{2}\} .
We also say that T_{1} is congruent to T_{2} if there is a transformation
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M from S_{1} to S_{2} such that T_{1} is congruent to T_{2} by M. It is clear that
if T_{1} is congruent to T_{2} , then T_{1} is isomorphic to T_{2} . We can easily prove
that congruence is symmetric, i . e. , if T_{1} is congruent to T_{2} , then T_{2} is
congruent to T_{1} , and congruence is transitive, i . e. , if T_{1} is congruent to T_{2}

and T_{2} is congruent to T_{3} , then T_{1} is congruent to T_{3} .
Let P be a homomorphism from a group G to another group H. For

a subgroup S\subset G we have that
(2. 1) Setting (Sx)M=(SP)(xP) for x\in G, we obtain a transformation M

from the coset space S_{G} of S in G to the coset space (SP)_{H} of
SP in H if and only if SPP^{-1}=S.

PROOF We have (SP) (xP)=(SP)(yP) if and only if w^{-1}P=(xP)(yP)^{-1}\in

SP. If SPP^{-1}=S, then xy^{-1}\in SPP^{-1}=S, and Sx=Sy whenever (SP) (xP)=
(SP)(yP) . Thus M is one-t0-0ne. Conversely, if M is one-t0-0ne, then
xP\in SP implies (Sx) M=(SP)(xP)=SP. On the other hand, we have (Se) M
=(SP)(eP)=SP because P is a homomorphism. Thus Sx=Se, i . e. , x\in S.
Therefore SPP^{-1}\subset S, and we have SPP^{-1}=S because we always have
SPP^{-1}\supset S.
(2. 2) SPP^{-1}=S if and only if S includes the kernel of P.

PROOF Let K be the kernel of P. Since xP=e\in H for every x\in K,
we have xP\in SP for every x\in K. Thus, if SPP^{-1}=S, then K\subset S. Con-
versely, we suppose that K\subset S. For any x\in G, if xP\in SP, then there is
y\in S such that xP=yP, and Kx=Ky because K is the kernel of P. Then
we have x\in Ky\subset KS=S by assumption. Therefore SPP^{-1}\subset S, and we
have SPP^{-1}=S.
(2. 3) If SPP^{-1}=S, then the coset transformation group C^{s_{G}} is congruent

to C_{H}^{SP} by M in (2. 1).

PROOF For any x, y\in G we have

(Sy) MC_{xP}^{SP}M^{-1}=(SP)(yP)(xP)M^{-1}=(SP)(yxP)M^{-1}

=Syx=(Sy)C^{s_{x}}1

Therefore C_{G}^{S}=MC_{H}^{SP}M^{-1} .
For an invariant subgroup K of a group G, setting xP=Kx for every

x\in G, we obtain a homomorphism P from G to the quotient group G/K,
and K is the kernel of P. Therefore, by (2. 1), (2. 2), and (2. 3) we have
(2. 4) For a subgroup S and an invariant subgroup K of a group G,

setting (Sx) M=(S/K)(Kx) we obtain a transformation M from S_{G}

to (S/K)_{G/K} if and only if K\subset S, and then the coset transforma-
tion group C_{G}^{S} is congruent to C_{G/K}^{S/K} by M.



188 H. Nakano

CONGRUENCE THEOREM 2. 5. For simple subgroups S and K of groups
G and H respectively, the coset transformation group C_{G}^{S} is congruent to
C_{H}^{K} if and only if there is an isomorphism P from G to H such that
SP=K.

PROOF If C_{G}^{S} is congruent to C_{H}^{K} by a transformation M from S_{G}

to K_{H}, then setting

C_{x}^{S}=MC_{xP}^{K}M^{-1} for x\in G’.
we obtain an isomorphism P from G to H by (1. 3) because both S and K
are simple by assumption and by (1. 1) we have

C_{xy}^{S}=C^{s}{}_{x}C_{y}^{S}=MC^{K}{}_{xP}C_{yP}^{K}M^{-1}=MC_{(xP)(yP)}^{K}M^{-1} and

C_{x^{-1}}^{S}=(C^{s_{x}})^{-1}=M(C_{xP}^{K})^{-1}M^{-1}=M(C_{(xP)^{-1}}^{K})M^{-1}

Since (Se) C_{x}^{S}=Se if and only if x\in S, we llave

SP=\{xP : (Se) C_{x}^{S}=Se\}=\{u : (Se) MC_{u}^{K}=(Se)M\}

Since M is a transformation from S_{G} to K_{H}, there is u_{0}\in H such that
(Se) M=Ku_{0} , and we have

SP=\{u : Ku_{0}u=Ku_{0}\}=\{u:u_{0}uu_{0}^{-1}\in K\}=u_{0}^{-1}Ku_{0} .

Setting xQ=u_{0}(xP)u_{0}^{-1} for x\in G , we obtain an isomorphism Q from G to

H, and SQ=u_{0}(SP)u_{0}^{-1}=K.
Conversely, if there is an isomorphism Q from G to H such that SQ=K,

then setting {Sx) M=K(xQ) for x\in G , we obtain a transformation M from
S_{G} to K_{H}, and for any x, y\in G we have

(Sx) MC_{yQ}^{K}M^{-1}=K(xQ)C_{yQ}^{K}M^{-1}=K((xy)Q)M^{-1}

=Sxy=(Sx)C_{y}^{S}

Therefore C_{y}^{S}=MC_{yQ}^{K}M^{-1} for every y\in G .
Referring to (1. 3) and (2. 4), by this theorem we obtain

CONGRUENCE THEOREM 2. 6. C_{G}^{S} is congruent to C_{H}^{K} if and only iffor
S_{0}= \bigcap_{x\in G}x^{-1}Sx and K_{0}= \bigcap_{u\in H}u^{-1}Ku

there is an isomorphism P from G/S_{0} to H/K_{0} such that (S/S_{0})P=K/K_{0} .

3. Representations on Subgroups Let H be an adjoint of a subgroup S
in a group G;i. e., H is a subgroup of G, S\cap H=\{e\} , and G=Sff, as
defined in [5]. It is clear by definition that S_{G}=\{Sx:x\in H\} , and setting
xP_{H}=Sx for x\in H, we obtain a transformation P_{H} from H to the coset
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space S_{G} .
Since S is an adjoint of H too, we defined the representation T_{G} of

G on H for S in [5], and we have
T_{xu}=R_{x}D_{u} , xu=(uS_{x})(xD_{u}) , uS_{x}\in S, and xD_{u}\in H

for x\in H and u\in S. For x, y\in H and u\in S we have

(Sy) C_{xu}^{S}=Syxu=S(uS_{yx})((yx)D_{u})S(yR_{x}D_{u})=S(yT_{xu})

Thus, yT_{xu}=yP_{H}C_{xu}^{S}P_{H}^{-1} for every y\in H, and we obtain T_{z}=P_{H}C_{z}^{S}P_{H}^{-1} for
z\in G . Therefore we can state

REPRESENTATION THEOREM 3. 1. For an adjoint H of S in G, setting
xP_{H}=Sx for x\in H, we obtain a transformation P_{H} from H to the coset
space S_{G} . The representation T_{G} of G on Hfor S is congruent to the coset
transformation group C_{G}^{S} by P_{H}, and

(Sx) C_{G}^{S}=S(xT_{y}) for x\in H and y\in G

As an immediate consequence of this theorem, we have
REPRESENTATION THEOREM 3.2. For two adjoints H and K of a

subgroup S in a group G, the representation of G on Hfor S is congruent
to that of G on K for S by the transformation M from H to K defined
by Sx=S(xM) for x\in H.

Referring to Congruence Theorem 2. 6, by Representation Theorem 3. 2
we obtain

REPRESENTATION THEOREM 3. 3. The representation of a group G on
a subgroup S for its adjoint S_{1} is congruent to the representation of a
group H on a subgroup K for its adjoint K_{1} if and only if for S_{0}=

\cap x^{-1}S_{1}x and K_{0}=\cap u^{-1}K_{1}u , there is an isomorphism P from G/S_{0} to
x\in G u\in H

H/K_{0} such that (S_{1}/S_{0})P=K_{1}/K_{0} .
4. Skew-Coset Transformation Groups For a subgroup S of a group G
the space of all skew-cosets uS (u\in G) is called the skew-coset space of S
and is denoted by GS;i. e., GS=\{uS:u\in G\} .

For any x\in G, setting (uS) \tilde{C}_{x}=xuS for every u\in G, we obtain a trans-
formation C_{x} on GS, and we have
(4. 1) C_{x}C_{y}=\tilde{C}_{yx} and C_{x}^{-1}=C_{x^{-1}} for x, y\in Gt

The transformations C_{x}(x\in G) form a transformation group on GS
that is called the skew-coset transformation group for a subgroup S\subset G and
is denoted by C_{G} or by C^{s_{G}} if we need to indicate S.

A mapping P from a group G onto a group H is called a skew-homO-
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morphism if (w) P=(yP)(xP) for x, y\in G . For a skew-homomorphism P
from G to H, setting S=\{x:xP=e\} , we obtain an invariant subgroup S
of G that is called the kernel of P.

By (4. 1) we have

(4. 2) C^{s_{x}}(x\in G) is a skew-homomorphism from G to C_{G}^{S} , and \bigcap_{u\in G}u^{-1}Su

is its kernel.

A skew-homomorphism is called a skew-isomorphism if it is one-t0-0ne.

By (4. 2) we have

(4. 3) C_{x}^{S}(x\in G) is a skew-isomorphism if and only if S is simple.

CONGRUENCE THEOREM 4. 4. Setting (Sx)P_{S}=x^{-1}Sfor x\in G, we obtain
a transformation P_{S} from S_{G} to GS such that C_{G}^{S} is congruent to C_{G}^{S} by
P_{S}, and P_{S}C^{S}{}_{x}P_{\overline{s}^{1}}=C_{x}^{S}-1 for every x\in G .

PROOF We have Sx=Sy if and only if w^{-1}\in S, and we have x^{-1}S=

y^{-1}S if and only if xy^{-1}\in S. Thus P_{S} is a transformation. Furthermore,

for x, y\in G we have

(Sx) P_{S}C^{S}{}_{y}P_{S}^{-1}=(yx^{-1}S)P_{S}^{-1}=Sxy^{-1}=(Sx)C_{y^{-1}}^{S}

Thus, P_{S}C_{G}^{S}P_{S}^{-1}=C^{s_{G}} .
Let S be an invariant subgroup of G;i . e. , x^{-1}Sx=S for every x\in G .

Since xS=Sx for every x\in G , we have GS=S_{G} . Furthermore, S_{G} forms
the quotient group G/S, and (Sx) (Sy)=Sxy for x, y\in G . We also have

(Sx) C_{y}=Sxy=(Sx)(Sy)=(Sx)R_{Sy} and

(Sx) C_{y}=ySx=Syx=(Sy)(Sx)=(Sx)L_{Sy}

for x, y\in G where R_{Sy} is the right transformation on G/S and L_{Sy} is the
left transformation on G/S, as defined in [3].

Now we can state

QUOTIENT GROUP THEOREM 4. 5. For an invariant subgroup S of a

group G, the coset space S_{G} forms the quotient group G/S and we have
GS=S_{G}, xS=Sx for every x\in G, and

C_{x}=R_{Sx} and C_{x}=L_{Sx} for x\in G on the quotient group G/S.
5. Strong Uniformities Let M_{\lambda}(\lambda\in\Lambda) be a mapping from a space S_{\lambda} to

a space R for each \lambda\in\Lambda , and a uniformity U_{\lambda} is defined on S_{\lambda} for each
\lambda\in\Lambda . For the trivial uniformity on R that consists of only one connector
every M_{\lambda} is uniformly continuous. Let V_{\gamma}(\gamma\in\Gamma) be the system of all uni-
formities on R for which M_{\lambda} is uniformly continuous for every \lambda\in\Lambda . For
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the weakest stronger uniformity \gamma\check{\in\Gamma}V_{\gamma} on R every M_{\lambda} is uniformly continuous

by Theorem 21. 1 in [3]. Therefore there exists the strongest among the
uniformities on R for which M_{\lambda} is uniformly continuous for every \lambda\in\Lambda .
This strongest uniformity on R is called the strong uniformity on R by
M_{\lambda}(\lambda\in\Lambda) for U_{i}(\lambda\in\Lambda) .

Let M be a full mapping from S to R;i. e. , M is a mapping from S
onto R. For uniformities U and V on S and R respectively, M is said to
be uniformly open if for any U\in U there is V\in V such that xUM\supset xMV

for every x\in S, as defined in [3].

(5. 1) If M is uniformly continuous and uniformly open, then V is the
strong uniformity by M for U.

PROOF If M is uniformly continuous for another uniformity V_{0} on R,
then for any V\in V_{0} we can find U\in U by definition such that xUM\subset xMV

for every x\in S. Since M is uniformly open for V by assumption, for this
U we can find W\in V by definition such that xUM\supset xMW for every x\in S.
Since M is full, we obtain V\geqq W, and we conclude that V_{0}\subset V. Therefore
V is the strong uniformity by definition.

Let N be a mapping from R to a space K with a uniformity W. If
both M and N are uniformly continuous, then the composed mapping MN
also is uniformly continuous by Theorem 14.3 in [3]. If M is uniformly
open and MN is uniformly continuous, then N is uniformly continuous by
Theorem 14. 4 in [3]. Thus, if M is uniformly continuous and uniformly
open, then N is uniformly continuous if and only if MN is uniformly con-
tinuous. Therefore we have

(5. 2) If a full mapping M from S to R is uniformly continuous and
uniformly open, then for a mapping N from R to a space K,
the strong uniformity on K by N is the strong uniformity on
K by the composed mapping MN.

Since M is a full mapping from S to R, for any connector U on S we
can define a connector UM^{+} on R by

(5. 3) uUM^{+}= \bigcup_{xM=u}xUM for u\in R ,

and UM^{-} on R by

\langle 5. 4) uUM^{-}= \bigcap_{xM=u}xUM for u\in R .
For any connector V on R we obviously have

(5. 5) MVM^{-1}M^{+}=MVM^{-1}M^{-}=V
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We also have

(5. 6) xM(UM^{-})\subset xUM\subset xM(UM^{+}) for x\in S .
We can easily prove

(5. 7) V\leqq U implies VM^{+}\leqq UM^{+} and VM^{-}\leqq UM^{-} .
As an immediate consequence of (5. 7), we have

(5. 8) (U\cap V)M^{+}\leqq UM^{+}\cap VM^{+} and (U\cap V)M^{-}\leqq UM^{-}\cap VM^{-}

We will prove

(5. 9) U^{-1}M^{+}=(UM^{+})^{-1} .
PROOF For u, v\in R we have u\in v(U^{-1}M^{+}) if and only if we can find

x, y\in S such that xM=u, yM=v, and x\in yU^{-1} because v(U^{-1}M^{+})=

\bigcup_{yM=v}yU^{-1}M by definition. Likewise, we have v\in u(UM^{+}) if and only if we

can find x, y\in S such that xM=u, yM=v, and y\in xU. Since we have
x\in yU^{-1} if and only if y\in xU by definition, we have u\in v(U^{-1}M^{+}) if and
only v\in u(UM^{+}) , and we obtain (5. 9) by definition.

(5. 10) (UM^{-})(VM^{-})\leqq(UV)M^{-}

PROOF We suppose that u\in v(UM^{-})(VM^{-}\grave{)} . By definition we can
find w\in v(UM^{-}) such that u\in w(VM^{-}) , and we have w\in yUM and u\in zVM

for any y, z\in S with yM=v and zM=w. We can find z\in S such that
zM=w and z\in yU, and for such z we have zVdyUV. Thus u\in yUVM

for any y\in S with yM=v, and we have u\in v((UV)M^{-}) by definition.
For uniformities U and V on S and R respectively, M is uniformly

continuous by definition if and only if for any V\in V we can find U\in U such
that xUM\subset xMV for every x\in S. On the other hand, we have xUM\subset

xMV for every x\in S if and only if u(UM^{\vdash})\subset uV for every u\in R by de-
finition. Therefore we can state

(5. 11) M is uniformly continuous if and only if for any V\in V we can
find U\in U such that UM^{+}\leqq V.

M is uniformly open by definition if and only if for any U\in U we can
find V\in V such that xUM\supset xMV for every x\in S. On the other hand,
we have xUM\supset xMV for every x\in S if and only if u(UM^{-})\supset uV for every
u\in R by definition. Therefore we have

(5. 12) M is uniformly open if and only if for any U\in U we can find
V\in V such that UM^{-}\geqq V.

It is clear by definition that
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(5. 13) UM^{+}\leqq VM^{-} if and only if xM=yM implies xUM\subset yVM.
STRONG UNIFORMITY THEOREM 5. 14. For the strong uniformity V on

R by a full mapping Mfrom S with a uniformity U to R, M is uniformly
open if and only iffor any U\in U we can find V\in U such that VM^{+}\leqq UM^{-},\cdot

and then UM^{+}(U\in U) form a basis of V.
PROOF If M is uniformly open for V on R, then UM^{-}\in V for every

U\in U by (5. 12). Since M is uniformly continuous by definition, for any
U\in U we can find V\in U by (5. 11) such that VM^{+}\leqq UM^{-} .

Conversely, we suppose that for any U\in U there is V\in U such that
VM^{+}\leqq UM^{-} For any U\in U we can find V\in U by definition such that
VV\leqq U. Referring to (5. 7), for such V we can find a symmetric W\in U

by assumption such that WM^{+}\leqq VM^{-} Then, by (5. 9), (5. 10), (5. 7), and
(5. 6) we have

(WM^{+})(WM^{+})^{-1}=(WM^{+})(WM^{+})\leqq(VM^{-})(VM^{-})

\leqq(VV)M^{-}\leqq UM^{-}\leqq UM^{+}

Thus, by (5. 8) we conclude that there exists a unique uniformity V_{0} on R
such that UM^{+}(U\in U) form a basis of V_{0} . For this uniformity V_{0} , M is
uniformly continuous by (5. 11) and uniformly open by (5. 12). Therefore
V_{0} is the strong uniformity on R by M by (5. 1).

We say that a uniformity U on a space S is unimorphic to a uniformity
V on a space R if there is a transformation P from S to R such that both
P and the inverse P^{-1} are uniformly continuous, and then P is called a
unimorphism, as defined in [3]. It is clear by definition that the inverse
P^{-1} is uniformly continuous if and only if P is uniformly open. Thus a
unimorphism P is a transformation that is uniformly continuous and uniformly
open simultaneously.

For a transformation P from S to R we have UP^{+}=UP^{-} for any
connector U on S by definitions (5. 3) and (5. 4). Thus by Strong Uniformity
Theorem 5. 14 we have

UNIMORPHISM THEOREM 5. 15. A transformation P from a space S
with a uniformity U to a space R is a unimorphism for the strong uni-
formity on R by P for U.

A transformation group G on a space S with a uniformity U is said
to be equivalent to a transformation group H on a space R with a uniformity
V if G is congruent to H by some unimorphism from S to R, as defined
in [3].

A transformation group G on S with a uniformity U is said to be
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equi-continuous if for any U\in U there is V\in U such that V\leqq TUT^{-1} for
every T\in G . With this definition, we can easily prove

EQUIVALENCE THEOREM 5. 16. When a transformation group G is
equivalent to a transformation group H, G is equi-continuous if and only

if H is equi-continuous.
6. Coset Uniformities Let G be a group. For e\in n\subset G we define a
connector U(n) on G by

(6. 1) xU(n)=nx for x\in G

As proved in [3], we have

(6. 2) AU{n)=nA for \emptyset\neq A\subset G_{j}

(6. 3) \bigcap_{\lambda\in A}U(n_{\lambda})=U(\bigcap_{\lambda\epsilon\Lambda}n_{\lambda})
,

(6. 4) U(n)\leqq U(m) if and only if n\subset m ,

(6. 5) U(m)U(n)=U(nm) , and

(6. 6) U(n)^{-1}=U(n^{-1})

A set class N of G is called a neighborhood on G if e\in n for every
n\in N;N\ni n\subset m implies N\ni m;N\ni n, m implies N\ni n\cap m ; and for any
n\in N there is m\in N such that m^{-1}m\subset n . For any neighborhood N on G,
(6. 3)-(6.6) shows that there exists a unique uniformity on G such that U(n)

(n\in N) form a basis. This uniformity on G is called the induced uniformity
on G by N and is denoted by U(N) .

For the induced uniformity U(N) the right transformation group R_{G}

is equi-continuous because xR_{y}U(n)=nxy=xU(n)R_{y} for any x, y\in G and
n\in N. Conversely, if for a uniformity U on G the right transformation
group R_{G} is equi-continuous, then there exists a unique neighborhood N
such that U=U(N), as proved in [3]. On a group G we consider only those
uniformities for which the right transformation group R_{G} is equi-continuous.

For a subgroup S\subset G we defined the coset space S_{G} . For a set \emptyset\neq A

\subset G we make use of the notation S_{A}=\{Sx:x\in A\} as a set of S_{G} in dis-
tinction from S_{A} that is a set of G. However we will use both S_{x} and
Sx as a coset.

We can easily prove

(6. 7) S_{SA}=S_{A} for \emptyset\neq A\subset G ,

(6. 8) S_{A}\subset S_{B} if and only if A\subset SB ,

(6. 9) S_{A}\subset S_{B} implies S_{AX}\subset S_{BX} , and
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(6. 10) \bigcup_{j\in\Lambda}S_{A_{\lambda}}=S_{\bigcup_{A}A_{\lambda}}\tau\lambda\epsilon

We will prove

(6. 11) For \emptyset\neq A\subset G , setting S_{x}U=S_{Ax} for x\in G, we obtain a connector
U on S_{G} if and only if AS\subset SA and A\cap S\neq\emptyset .

PROOF For any z\in A\cap S we have z\in A and z^{-1}\in S, and hence e=
z^{-1}z\in SA . Conversely, if \^e SA, then we can find x\in A and u\in S such
that e=ux, and x=u^{-1}\in S. Therefore we have A\cap S\neq\emptyset if and only if
e\in SA .

If U is a connector on S_{G}, then S_{e}\in S_{Ae}=S_{Au} for every u\in S. Thus
e\in SA and SA\supset Au for every u\in S by (6. 8). Then SA\supset AS and A\cap S\neq\emptyset .
Conversely, if SA\supset AS and A\cap S\neq\emptyset , then SA\supset Au and SAu\supset A for u\in S,
and S_{A}=S_{Au} for every u\in S by (6. 8). Since \^e SA, we have S_{x}\in S_{Ax}=S_{Aux}

for u\in S and x\in G by (6. 9). Therefore U is a connector on S_{G} .
For \emptyset\neq A\subset G we have ASS=AS\subset SAS. Thus, by (6. 11) we have

(6. 12) For e\in n\subset G , setting S_{x}U_{n}=S_{nSx} for x\in G, we obtain a connector
U_{n} on S_{G} .

Such a connector U_{n} is called a proper connector on S_{G} . A uniformity
U on S_{G} is said to be proper if U has a basis that consists of proper con-
nectors.

For a transformation group G on a space S, a connector U on S is said
to be invariant by G if XUX^{-1}=U for every X\in G, i . e. , xXU=xUX for
all x\in S and X\in G . A transformation group G on a space S with a uni-
formity U is equi-continuous if and only if U has a basis that consists of
invariant connectors. This is Theorem 32.5 in [3],

PROPER CONNECTOR THEOREM 6. 13. A connector U on S_{G} is invariant
by the coset transformation group C_{G} if and only if U is a proper connector.

PROOF For any proper connector U_{n} on S_{G} we have
S_{x}C_{y}U_{n}=S_{nSxy}=S_{nSx}C_{y}=S_{x}U_{n}C_{y}

for every x, y\in G . Therefore U_{n} is invariant by C_{G} .
Conversely, if a connector U on S_{G} is invariant by C_{G}, then setting

n=\{x:S_{x}\in S_{e}U\} , we have e\in n\subset G, and for any x\in G we have

S_{x}U=S_{e}C_{x}U=S_{e} UC_{x}=S_{n}C_{x} .
Since S_{u}=S_{e} for every u\in S, we have S_{n}=S_{u}U=S_{n}C_{u}--S_{nu} for every u\in S,

and S_{n}=S_{nS} by (6. 10). Therefore, we have

S_{x}U=S_{nSx}=S_{x}U_{n} for every x\in G ,
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i . e. , U is a proper connector.

PROPER UNIFORMITY THEOREM 6. 14. The coset transformation group
C_{G} is equi-continuous on S_{G} for a uniformity U on S_{G} if and only if U
is proper.

PROOF If U is proper, then for any U\in U there is a proper connector
U_{n}\in U by definition such that U_{n}\leqq U. Then by Proper Connector Theorem
6. 13 we have

U_{n}=C_{x}U_{n}C_{x}^{-1}\leqq C_{x}UC_{x}^{-1} for every x\in G\tau

Therefore C_{G} is equi-continuous for U.
Conversely, if C_{G} is equi-continuous for U, then for any U\in U there is

V\in U such that V\leqq C_{x}UC_{x}^{-1} for every x\in G . Setting

U^{c}= \bigcap_{x\in G}C_{x}UC_{x}^{-1}

we obtain a connector U^{c}\in U, and C_{x}U^{c}C_{x}^{-1}=U^{c} for every x\in G . Thus
U^{c} is a proper connector by Proper Connector Theorem 6. 13. Since U^{c}\leqq U

by definition, U^{c}(U\in U) form a basis of U. Therefore U is proper by
definition.

Setting xM_{S}=S_{x} for x\in G , we obtain a full mapping M_{S} from G to
the coset space S_{G} . This mapping M_{S} is called the coset mapping for a
subgroup S\subset G .

For e\in n\subset G the connector U(n) defined by (6. 1) is invariant by the
right transformation group R_{G} because

xR_{y}U(n)R_{y}^{-1}=nxyy^{-1}=nx=xU(n)

for every x, y\in G . For U(n) and the coset mapping M_{S} for a subgroup
S\subset G we have

S_{x}(U(n)M_{S}^{+})= \bigcup_{yM_{S}=s_{x}}nyM_{S}=\bigcup_{u\epsilon s}nuxM_{S}=(\bigcup_{u\in S}nu)xM_{S}

=nSxM_{S}=S_{nSx}=S_{x}U_{n}

for every x\in G . So we have

(6. 15) U(n)M_{S}^{+}=U_{n} for e\in n\subset G

For the coset mapping M_{S} we also have

(6. 16) U(n)M_{S}^{+}\leqq U(m)M^{-} if and only if nS\subset Sm

PROOF For any x\in G, by definition (5. 4) we have

S_{x}(U(m)M_{S}^{-})= \bigcap_{yM_{S}=s_{x}}yU(m)M_{S}=\bigcap_{u\in S}muxM_{S}=\bigcap_{u\in S}S_{mux} .
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If U(n)M_{S}^{+}\leqq U(m)M_{S}^{-} , then by (6. 15) we have
S_{nS}=S_{e}U_{n}\subset S_{mu} for every u\in S .

Referring to (6. 8), we obtain nSdSmu, and nS=nSu^{-1}\subset Sm .
Conversely, if nSdSm, then nSx=nSux\subset Smux for u\in S and x\in G.

Thus we have S_{nSx}\subset S_{mux} for u\in S and x\in G by (6. 8), and for any x\in G

we have

S_{x}(U(n)M^{+})=S_{nSx} \subset\bigcap_{u\in S}S_{mux}=S_{x}(U(m)M^{-})

Let N be a neighborhood on a group G. For a subgroup S\subset G, the
strong uniformity U_{S} on the coset space S_{G} by the coset mapping M_{S} for
the induced uniformity U(N) is called the coset uniformity on S_{G} for N.

Referring to Strong Uniformity Theorem 5. 4, by (6. 16) we have
COSET UNIFORMITY THEOREM 6. 17. For the coset uniformity U_{S} on

S_{G} for a neighborhood N on G, the coset mapping M_{S} is uniformly open
if and only if for any m\in N there is n\in N such that nSdSm, and then
U_{S} is proper.

If left transformations L_{u}(u\in S) are equi-continuous on G for U(N),
then for any m\in N there is n\in N such that U(n)\leqq L_{u}U(m)L_{u}^{-1} for every
u\in S. Thus we have

n=eU(n)\subset eL_{u}U(m)L_{u}^{-1}=muL_{u^{-1}}=u^{-1}mu for u\in S_{r}

and nu^{-1}\subset u^{-1}m\subset Sm for every u\in S. Therefore nSdSm, and by Coset
Uniformity Theorem 6. 17 we have

COSET UNIFORMITY THEOREM 6. 18. If left transformations L_{u}(u\in S)

are equi-continuous on G for N, then the coset uniformity U_{S} on S_{G} is
uniformly open and proper.
7. Skew-Coset Uniformities For a subgroup S of a group G we defined
the skew-coset space GS. For \emptyset\neq A\subset G we make use of the notation

AS= {xS: x\in A\}

as a set of GS. However, we will use both xS and xS as a skew-coset.
We can easily prove

(7. 1) As^{S=S}A ,

(7. 2) AS\subset_{B}S if and only if A\subset BS,\cdot

(7. 3) AS\subset_{B}S implies xAS\subset_{XB}S ,

(7. 4) \bigcup_{\lambda\in 4}A_{\lambda}S=_{\lambda\in 4^{\wedge}}S1\lrcorner A_{7} ’
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(7. 5) For \emptyset\neq A\subset G , setting xSU=xAS fcr x\in G , we obtain a connector
\tilde{U} on GS if and only if SA\subset AS and A\cap S\neq\emptyset , and

(7. 6) For e\in n\subset G, setting x,S\tilde{U}nxSn=S for x\in G , we obtain a connector
O_{n} on GS.

Such a connector \tilde{U}_{n} is called a skew-proper connector on GS. A uni-
formity U on GS is said to be skew-proper if U has a basis that consists
of skew-proper connectors.

We defined a transformation P_{S} from S_{G} to GS by S_{x}P_{S}=_{x^{-1}}S for x\in G

in Congruence Theorem 4. 4. For this transformation P_{S} we have

(7. 7) P_{S}O_{n}P_{S}^{-1}=U_{n^{-1}} and P_{S}^{-1}U_{n}P_{S}=O_{n^{-1}}

PROOF For any x\in G we have
S_{x}P_{s}\sigma_{n}P_{S}^{-1}=_{x^{-1}}S\tilde{U}_{n}P_{S}^{-1}=_{x^{-1}Sn}SP_{\overline{s}^{1}}=S_{n}-1sx=S_{x}U_{n^{-1}}

by (6. 12) and (7. 6).
By Congruence Theorem 4. 4 we also have

(7. 8) P_{S}C_{x}P_{S}^{-1}=C_{x}-1 and P_{S}^{-1}C_{x}P_{S}=\tilde{C}_{x^{-1}}

It is clear by definition that a connector U on S_{G} is invariant by C_{x}

if and only if P_{S}^{-1}UP_{S} is invariant by P_{S}^{-1}C_{x}P_{s} . Therefore, referring to Proper
Connector Theorem 6. 13, by (7. 7) and (7. 8) we have

SKEW-PROPER CONNECTOR THEOREM 7. 9. A connector U on GS is
invariant by the skew-coset transformation group \tilde{C}_{G} if and only if U is
a skew-proper connector.

For a uniformity \tilde{U} on GS we have a uniformity

P_{S}\tilde{U}P_{S}^{-1}=\{P_{S}UP_{S}^{-1} : U\in\theta\}

on S_{G} , and it is clear by definition that P_{S} is a unimorphism from S_{G} to
GS for those uniformities. Referring to (7. 7), we can easily prove

(7. 10) A uniformity \tilde{U} on GS is skew-proper if and only if P_{S}\tilde{U}P_{S}^{-1} is
proper on S_{G} .

Referring to proper Uniformity Theorem 6. 14, by (7. 10) we obtain
SKEW-PROPER UNIFORMITY THEOREM 7. 11. The skew-coset trans-

formation group \tilde{C}_{G} is equi-continuous for a uniformity \sigma on GS if and
only if \sigma is skew-proper.

A full mapping \overline{M}_{S} from G to GS defined by x\overline{M}_{S}=_{x^{-1}}S for x\in G is
called the skew-coset mapping for a subgroup S\subset G . With this definition,

we obviously have



Double integral theorem of Haar measures 199

(7. 11) \overline{M}_{S}=M_{S}P_{S} and M_{S}=\overline{M}_{S}P_{\overline{s}^{1}\cap}

We will prove that

(7. 12) P_{S}(U(n)\overline{M}_{S}^{+})P_{S}^{-1}=U(n)M_{S}^{+} for e\in n\subset G

PROOF If y\overline{M}_{S}=_{x^{-1}}S, then yM_{S}=y\overline{M}_{S}P_{S}^{-1}=_{x^{-1}}SP_{S}^{-1}=S_{x} by (7. 11) ; and
if yM_{S}=S_{x} , then y\overline{M}_{S}=yM_{S}P_{S}=S_{x}P_{S}=_{x^{-1}}S. Thus, we have y\overline{M}_{S}=_{x^{-1}}S if
and only if yM_{S}=S_{x} .

For any x\in G, by definition (5. 4) we have

S_{x}P_{S}(U(n) \overline{M}_{S}^{+})P_{S}^{-1}=_{x^{-1}}S(U(n)\overline{M}_{S}^{+})P_{S}^{-1}=\bigcup_{sy\tilde{M}_{S_{x}^{=-1}}}yU(n)\overline{M}_{S}P_{S}^{-1}

= \bigcup_{yM_{S}=s_{x}}yU(n)M_{s}=S_{x}(U(n)M_{S}^{+)}

Furthermore, we have

S_{x}P_{S}(U(n) \overline{M}_{S}^{-})P_{S}^{-1}=_{x^{-1}}S(U(n)\overline{M}_{S}^{-})P_{S}^{-1}=\bigcap_{s_{x}y\tilde{M}=-1S}yU(n)\overline{M}_{S}P_{S}^{-1}

= \bigcap_{yM_{S}=s_{x}}yU(n)M_{S}=S_{x}(U(n)M_{S}^{-)}

for every x\in G . Therefore we also have

(7. 13) P_{S}(U(n)\overline{M}_{S}^{-})P_{S}^{-1}=U(n)M_{S}^{-} for e\in n\subset G .

Let N be a neighborhood on a group G. For a subgroup S\subset G the
strong uniformity \tilde{U}_{S} on the skew-coset space GS by the skew-coset mapping
\tilde{M}_{S} for the induced uniformity U(N) is called the skew-coset uniformity on
GS for N.

For the coset uniformity U_{S} on S_{G} we have

(7. 14) P_{S}\tilde{U}_{S}P_{S}^{-1}=U_{S} .

PROOF For U_{S} on S_{G} and P_{\overline{s}^{1}}U_{S}P_{S} on GS, since P_{S} is uniformly con-
tinuous and \overline{M}_{S}=M_{S}P_{S} by (7. 11), \overline{M}_{S} is uniformly continuous, and we have
P_{\overline{s}^{1}}U_{S}P_{S}\subset\tilde{U}_{S} because \tilde{U}_{S} is the strong uniformity on GS by \overline{M}_{S} . Thus we
have U_{S}\subset P_{S}\sigma_{S}P_{S}^{-1} . For \tilde{U}_{S} on GS and P_{S}^{-1}\tilde{U}_{S}P_{S} on S_{G} , since P_{S}^{-1} is uni-
formly continuous and M_{S}=\overline{M}_{S}P_{\overline{s}^{1}} by (7. 11), M_{S} is uniformly continuous,
and we have P_{S}\tilde{U}_{S}P_{S}^{1}\subset U_{S} because U_{S} is the strong uniformity on S_{G} for
M_{S} . Therefore we obtain (7. 14).

Referring to Strong Uniformity Theorem 5. 14, by (7. 12) and (7. 13)
we obtain
(7. 15) The skew-coset Mapping \overline{M}_{S} is uniformly open for the skew-

coset uniformity \theta_{S} if and only if the coset mapping M_{S} is uni-
o nly open for_{A}^{\sim}the coset uniformity U_{S}.
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Referring to Coset Uniformity Theorem 6. 17, by (7. 10) and (7. 14) we
have

(7. 16) If the skew-coset mapping \tilde{M}_{S} is uniformly open for the skew-
coset uniformity U_{S}, then U_{S} is skew-proper.

Now we suppose that S is an invariant subgroup of G. Since xS=Sx
for every x\in G by definition, the coset space S_{G} forms the quotient group
G/S, and the coset mapping M_{S} is a homomorphism from G to G/S whose
kernel is S. Since for f4\neq n\subset G we have Sn=nS, by Coset Uniformity
Theorem 6. 17 we conclude that for any neighborhood N on G the hom0-
morphism M_{S} is uniformly open for the coset uniformity U_{S}.

For \emptyset\neq n\subset G we make use of the notation n/S=S_{n}=nM_{S} and
N/S=NM_{S} for a set class N of G. Then we have

(7. 17) U_{n}=U(n/S) for e\in n\subset G

because S_{x}U_{n}=S_{nSx}=(n/S)S_{x}=S_{x}U(n/S) for every x\in G . Furthermore, we
can easily prove that N/S forms a neighborhood on G/S for any neigh-
borhood N on G. Therefore, by (7. 17) we conclude that the coset uniformity
U_{S} is the induced uniformity by N/S, and we can state

INVARIANT SUBGROUP THEOREM 7. 18. If S is an invariant subgroup
of a group G, then the coset mapping M_{S} is a homomorphism from G to
the quotient group G/S ; for any neighborhood N on G, N/S forms a neigh-
borhood on G/S ; the coset uniformity U_{S} is the induced uniformity U(N/S) ;
and M_{S} is uniformly open for U_{S} .

If S is an invariant subgroup of G, then GS=S_{G} , and P_{S} is a trans-
formation on G/S. Furthermore, P_{S} is the inversion on G/S because

S_{x}P_{S}=x^{-1}S=Sx^{-1}=S_{x}^{-1} for every x\in G

Thus we have P_{S}^{-1}=P_{S} .
For the skew-coset uniformity \tilde{U}_{S} we have

(7. 19) P_{S} is uniformly continuous as a transformation on G/S for U_{S} if
and only if \tilde{U}_{S}=U_{S} .

PROOF If \tilde{U}_{S}=U_{S}, then P_{S}U_{S}P_{S}^{-1}=U_{S} by (7. 14) and P_{S} is uniformly
continuous as a transformation on G/S by definition. Conversely, if P_{S} is
uniformly continuous as a transformation on G/S for U_{S}, then P_{S}U_{S}P_{S}^{-1}\subset U_{S}

by definition that implies U_{S}\subset P_{S}^{-1}U s. Since P_{S}^{-1}=P_{S}, we obtain U_{S}=

P_{S}U_{S}P_{S}^{-1}=U_{S} by (7. 14).

(7. 20) P_{S} is uniformly continuous as a transformation on G/S for U_{S}



Double integral theorem of Haar measures 201

if and only if the left transformation group L_{G/S} is equi-continuous
for U_{S}.

Generally we will prove
INVERSION THEOREM 7. 21. The inversion Iv on a group G is uniformly

continuous for an induced uniformity U_{\backslash }^{(}N) if and only if the left trans-
formation group L_{G} is equi-continuous for U(N).

PROOF The inversion Iv is uniformly continuous for U(N) by definition
if and only if for any m\in N there is n\in N such that (nx) Iv\subset m(xIv) for
x\in G;i . e. , x^{-1}n^{-1}\subset mx^{-1} for x\in G . The left transformation group L_{G} is
equi-continuous for U(N) by definition if and only if for any m\in N there
is n\in N such that (nx) L_{y}\subset m(xL_{y}) for x, y\in G;i . e. , yn\subset my for y\in G .
Since n\in N implies n^{-1}\in N, we obtain Inversion Theorem 17. 20.

As an immediate consequence of Invariant Subgroup Theorem 7. 17,
we have

HOMOMORPHISM THEOREM 7. 22. Let M be a homomorphism from
a group G to another group H. For a neighblrhood N on G, NMforms
a neighborhood on H, and the induced uniformity U(NM) on H is the
strong uniformity on H by M for the induced uniformity U(N) on G,
and M is uniformly open.
8. Relative Uniformities on Adjoints Let H be an adjoint of a subgroup
S in a group G;i. e., S\cap H=\{e\} and G=SH. Since for u, v\in S and x,
y\in H we have ux=vy if and only if u=v and x=y, setting (ux) M_{H}=x

for u\in S and x\in H, we obtain a full mapping M_{H} from G to H. This
mapping M_{H} is called the adjoint mapping for an adjoint H of S.

Concerning the adjoint mapping M_{H}, we can easily prove

(8. 1) (AB) M_{H}=BM_{H} for \emptyset\neq A\subset S and \emptyset\neq B\subset Gr
,

(8. 2) (AX) M_{H}=X for \emptyset\neq A\subset S and \emptyset\neq X\subset H ,

(8. 3) (AX) M_{H}=AM_{H}X for \emptyset\neq A\subset G and \emptyset\neq X\subset H ,

(8. 4) XM_{H}^{-1}=SX for \emptyset\neq X\subset H,\cdot and
(8. 5) AM_{H}M_{H}^{-1}=SA for \emptyset\neq A\subset G\tau

Let N be a neighborhood on a group G. Setting

N^{H}=\{n^{H}:n\in N\} where n^{H}=n\cap H for n\in N ,

we obtain a neighborhood N^{H} on H, and we can easily prove that the
induced uniformity U(N^{H}) on H is the relative uniformity of the induced
uniformity U(N) on G. The neighborhood N^{H} on H is called the relative
neighborhood of N on H.
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ADJOINT MAPPING THEOREM 8. 6. The adjoint mapping M_{H} is uni-
formly continuous for the relative neighborhood N^{H} if and only iffor any
m\in N there is n\in N such that nS\subset Sm^{H}, and then M_{H} is uniformly open.

PROOF M_{H} is uniformly continuous if and only if for any m\in N there
is n\in N by definition such that (nux) M_{H}\subset m^{H}((ux)M_{H}) for u\in S and x\in H ;
i . e. , (nu) M_{H}\subset m^{H} for every u\in S because (nux) M_{H}=(nu)M_{H}x by (8. 3).

If (nu) M_{H}\subset m^{H} for every u\in S, then nu\subset Sm^{H} for every u\in S by (8. 4),

and we obtain nS\subset Sm^{H}. Conversely, if nS\subset Sm^{H}, then nu\subset Sm^{H} for every
u\in S, and (nu) M_{H}\subset(Sm^{H})M_{H}=m^{H} by (8. 2). Therefore, M_{H} is uniformly
continuous if and only if for any m\in N there is n\in N such that nS\subset Sm^{H}

Furthermore, since n^{H}\subset n and m^{H}\subset m , nS\subset Sm^{H} implies n^{H}S\subset S_{m} , and
n^{H}\subset Smu for every u\in S. Thus, referring to definition (5. 4), by (8. 2) and
(8. 3) we have

n^{H}x\subset\cap(mux)M_{H}=u\in Sx(U(m)M_{H}^{-})

for every x\in H. Therefore M_{H} is uniformly open by (5. 12).

We defined a transformation P_{H} from H to S_{G} by xP_{H}=S_{x} for x\in H

in Representation Theorem 3. 1. For the coset mapping M_{S} from G to S_{G} ,

by definition we have

(8. 7) M_{S}=M_{H}P_{H} .
Since m^{H}\subset m , we have that nS\subset Sm^{H} implies nS\subset Sm . Thus, by Ad-

joint Mapping Theorem 8. 6 and Coset Uniformity Theorem 6. 17 we conclude
that if M_{H} is uniformly continuous for N^{H}, then the coset mapping M_{S} is
uniformly open for the coset uniformity U_{S} on S_{G} , and P_{H} is a unimorphism
by (5. 2) and Unimorphism Theorem 5. 15. Therefore we have

ADJOINT MAPPING THEOREM 8. 8. If the adjoint mapping M_{H} is uni-
formly continuous for the relative neighborhood N^{H}, then the coset mapping
M_{S} is uniformly open for the coset uniformity U_{S} on S_{G} for which P_{H} is
a unimorphism from H to S_{G} .

According to Representation Theorem 3. 1, the representation T_{G} of
a group G on its subgroup H is congruent to the coset transformation group
C_{G} on S_{G} . Referring to Equivalence Theorem 5. 16, Coset Uniformity
Theorem 6. 17, and Proper Uniformity Theorem 6. 14, we obtain

REPRESENTATION THEOREM 8. 9. If the adjoint mapping M_{H} is uni-
formly continuous for the relative neighborhood N^{H}, then the representation
T_{G} of a group G on its subgroup H is equi-continuous for N^{H}.

Since G=SH and S\cap H=\{e\} , we can consider G the product space
of S and H, and then M_{H} is the projection of G on H. Thus, if U=
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U^{S}\cross U^{H} for the relative uniformities of U on S and H respectively, then
M_{H} is uniformly continuous by Theorem 24. 2 in [3]. Therefore, Represen-
tation Theorem 8. 9 is a generalization of the Deviation Theorem in [6].

9. Double Integral Theorem Let N be a neighborhood on a group G.
If N is regular, i. e., each left transformation L_{x}(x\in G) is uniformly con-
tinuous for the induced uniformity U(N) , then the inversion Iv is continuous
by Theorem 41. 11 in [3]. If N is complete in addition, i. e., the induced
uniformity U(N) is complete, then for any totally bounded set A\subset G for
U(N) , the closure A^{-} is compact, and A^{-}Iv also is compact because Iv is
continuous. Since AIv\subset A^{-}Iv , AIv is totally bounded and A^{-1}=AIv by
definition. Therefore we have

(9. 1) If N is regular and complete, then for any totally bounded set
A\subset G for U(N) , A^{-1} also is totally bounded for U\langle N) .

A set A\subset G is said to be right totally bounded for N if for any n\in N

we can find a finite system x_{\nu}\in G(\nu=1,2, \cdots, n) such that A\subset\cup nnx_{\nu} .
\nu=1

It is clear by definition that a set A\subset G is right totally bounded if and
only if A is totally bounded for the induced uniformity U(N) .

A neighborhood N is said to be right totally bounded if there is a set
n\in N that is right totally bounded for N. According to Theorem 40.3 in
[3], N is right totally bounded if and only if the induced uniformity U(N)
is locally totally bounded; i . e. , there is U_{0}\in U(N) such that xU_{0} is totally
bounded for U(N) for every x\in G .

If N is locally uniformly regular, i . e. , N is regular and there is n\in N

such that the left transformations L_{x}(x\in n) are equi-continuous for U(N) ,
then by Theorem 4. 11 in [3], Iv is locally uniformly continuous for U(N) ;
i . e. , there is n\in N such that Iv is uniformly continuous on xU(n) for every
x\in G . Thus, for any totally bounded set A\subset G for U(N), Iv is uniformly
continuous on A, and A^{-1} also is totally bounded for U(N) . Therefore
we have
(9. 2) If N is locally uniformly regular, then for any totally bounded

set A\subset G for U(N), A^{-1} also is totally bounded for U(N) .
Now we suppose that for any right totally bounded set A\subset G, A^{-1}

also is right totally bounded for N, and N is regular and right totally
bounded. Let S be a subgroup of G such that left transformations L_{u}

(u\in S) are equi-continuous for the induced uniformity U(N);i . e. , for any
m\in N there is n\in N such that nu\subset um for every u\in S. Since nu\subset um

for every u\in S implies nStzSm, the coset mapping M_{S} is uniformly open
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for the coset uniformity U_{S} on S_{G} by Coset Uniformity Theorem 6. 17,
and the coset transformation group C_{G} is equi-continuous on S_{G} for U_{S} by
Proper Uniformity Theorem 6. 14. Since N is right totally bounded by
assumption, there is m_{0}\in N by definition such that m_{0} is right totally bounded
for N. Since M_{S} is uniformly open, there is U_{0}\in U_{S} such that xM_{S}U_{0}\subset

xU(m_{0})M_{S} for every x\in G . Since xU(m_{0})=m_{0}s by definition and m_{0}x is
totally bounded for U(N), xU(m_{0})M_{S} is totally bounded for U_{S} because
M_{S} is uniformly continuous. Therefore xM_{S}U_{0} is totally bounded for U_{S}

for every x\in G , and hence U_{S} is locally totally bounded by definition.
According to the Theorem of Existence in [3], there exists a measure

\mu_{0} on S_{G} that is invariant by C_{G} ; i . e. , for the trunk \Phi_{0} of U_{S} we have

\int\varphi(S_{x}C_{y})\mu_{0}(dS_{x})=\int\varphi(S_{x})\mu_{0}(dS_{x}) for \varphi\in\Phi_{0} and y\in G

The relative neighborhood N^{S} also is right totally bounded by definition,
and the induced uniformity U(N^{s}) on S is regular and locally totally bounded.
Thus, there exists a Haar measure \mu_{s} of S;i. e. , for the trunk \Phi_{S} of U(N^{S})

we have

\int\varphi(xy)\mu_{S}(dx)=\int\varphi(x)\mu_{S}(dx) for \varphi\in\Phi_{S} and y\in S\Gamma

Let \Phi be the trunk of U(N) . We can consider \Phi\subset\Phi_{S} by definition.
For any \varphi\in\Phi we have

\int\varphi(uvx)\mu_{S}(du)=\int\varphi(ux)\mu_{S}(du) for v\in S and x\in G

Thus, setting

\psi(S_{x})=\int\varphi(ux)\mu_{S} (du) for x\in G ,

we obtain a function \psi on S_{G} . We will prove \psi\in\Phi_{0} .
The set A_{0}=\{x:\varphi(x)\neq 0\} is right totally bounded for N by definition,

and \varphi(x)=0 for every x\overline{\in}A_{0} . Since m_{0}\in N is right totally bounded by
assumption, setting A=m_{0}A_{0} and B=S\cap AA^{-1} , we obtain right totally
bounded sets A and B by Theorem 40.6 in [3], and B\overline{\ni}u\in S implies
uA\cap A=\emptyset because for any x\in uA\cap A where u\in S we have u^{-1}x\in A ,
x\in A , and

u=x(u^{-1}x)^{-1}\in S\cap AA^{-1}=B

Therefore \varphi(ux)=0 for B\overline{\ni}u\in S and x\in A because A\supset A_{0} .
According to Theorem 19.1 in [3], there is a uniformly continuous
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function \varphi_{0} on G for U(N) such that \varphi_{0}(\mu)=1 for u\in B, 1\geqq\varphi_{0}\geqq 0 , and
\varphi_{0}(x)=0 for x\overline{\in}m_{0}B=BU(m_{0}) . Since m_{0}B is right totally bounded for N
by Theorem 40.6 in [3], we have \varphi_{0}\in\Phi .

Since \varphi is uniformly continuous on G for U(N) , for any \epsilon>0 there
is m\in N such that mm\subset m_{0} and

|\varphi(x)-\varphi(y)|<\epsilon for x\in my

For such m\in N there is n\in N such that un\subset mu for every u\in S because
L_{u}(u\in S) are equi-continuous for U(N) by assumption. Then, x\in ny implies
ux\in uny\subset muy for every u\in S, and we have

|\varphi(ux)-\varphi(uy)|<\epsilon for u\in S and x\in ny

Since \varphi(ux)=\varphi(uy)=0 for B\overline{\ni}u\in S and x, y\in A , we have

|\varphi(ux)-\varphi(uy)|<\epsilon\varphi_{0}(u) for u\in S, x\in ny , and x, y\in A ,

and we obtain

| \psi(S_{x})-\psi(S_{n})|\leqq\epsilon\int\varphi_{0}(u)\mu_{S} (du) for x\in ny and x, y\in A

Since M_{S} is uniformly open, there is a symmetric U\in U_{S} such that
xM_{S}U\subset nxM_{S} for every x\in G, and we have S_{x}U\subset S_{nx} for every x\in G . If
S_{x}\in S_{y}U and S_{y}\in S_{nA_{0}} , then we can find y_{0}\in G such that S_{y}=S_{y_{0}} and
y_{0}\in nA_{0} , and x_{0}\in G such that S_{x}=S_{x_{0}} and x_{0}\in ny_{0} . Since nn\subset m_{0} , we have
y_{0}\in m_{0}A_{0}=A and x_{0}\in nnA_{0}\subset m_{0}A_{0}=A . Thus we have

| \psi(S_{x})-\psi(S_{y})|\leqq\epsilon\int\varphi_{0}(u)\mu_{S} (du) for S_{x}\in S_{y}U and S_{y}\in S_{nA_{0}} .

If S_{y}\overline{\in}S_{nA_{0}} , they y\overline{\in}SnA_{0} by (6. 8), and uy\overline{\in}SnA_{0}\supset A_{0} for every u\in S.
Therefore \varphi(uy)=0 for every u\in S, and \psi(S_{y})=0 . If S_{y}\overline{\in}S_{nA_{0}} and S_{x}\in S_{y} U,
then, since S_{nA_{0}}\cap S_{A_{0}}U, we have S_{A_{0}}\cap S_{y}U^{-1}=\emptyset . Since U is symmetric by
assumption, we obtain S_{x}\overline{\in}S_{A_{0}} , and ux\overline{\in}A_{0} for every u\in S. Thus we have
\psi(S_{x})=0 for S_{x}\in S_{y}U and S_{y}\overline{\in}S_{nA_{0}} . Therefore \psi is uniformly continuous.
Since M_{S} is uniformly continuous and nA_{0} is totally bounded for U(N) ,
S_{nA_{0}} is totally bounded for U_{S} . Therefore \psi\in\Phi_{0} by definition.

Setting\downarrow.\varphi(x)\mu(dx)=\downarrow.\psi(S_{x})\mu_{0}(dS_{x}) for \varphi\in\Phi we obtain a measure \mu on
\Phi , and for any z\in G we have

\psi(S_{xz})=\int\varphi(uxz)\mu_{S} (du), \psi(S_{xz})=\psi(S_{x}C_{z}) , and

\int\psi(S_{x}C_{z})\mu_{0}(dS_{x})=\int\psi(S_{x})\mu_{0}(dS_{x}) .
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Thus we have\downarrow.\varphi(xz)\mu(dx)=J\varphi(x)\mu(dx) for \varphi\in\Phi;i . e. , \mu is a Haar measure
of G for U(N) .

Now we can state

DOUBLE INTEGRAL THEOREM 9. 3. Let N be a neighborhood on a group
G such that for the induced uniformity U(N) every left transformation
L_{x}(x\in G) is uniformly continuous, A^{-1} is totally bounded for any totally
bounded set A\subset G, and U(N) is locally totally bounded. Let S be a sub-
group of G such that left transformations L_{x}(x\in S) are equi-continuous
for U(N) . Then, for the coset uniformity U_{S} on the coset space S_{G} the
coset mapping M_{S} is uniformly open and the coset transformation group
C_{G} is equi-continuous. Let \Phi be the trunk of U(N) on G and \Phi_{0} the trunk
of U_{S} on S_{G} . For a Haar measure \mu_{S} of S for the relative neighborhood
N^{S} and an invariant measure \mu_{0} by C_{G} on S_{G}, setting

\psi(S_{x})=\int\varphi(ux)\mu_{S}(du) for x\in G and \varphi\in\Phi j

we have \psi\in\Phi_{0}, and setting

\int\varphi(x)\mu(dx)=\int\psi(S_{x})\mu_{0}(dS_{x}) ,

we obtain a Haar measure \mu of G for U(N) .
10. Skew-Double Integral Theorem If the coset mapping M_{S} is uniformly
open for the coset uniformity U_{S} on S_{G} , then the skew-coset mapping
\overline{M}_{S} is uniformly open for the skew-coset uniformity \sigma_{S} on GS by (7.15),
P_{S} is a unimorphism from S_{G} to GS by (7. 14), and C_{G} is equi-continuous
by Skew-Proper Uniformity Theorem 7. 11 and (7. 16).

Let \tilde{\Phi}_{0} be the trunk of \tilde{U}_{S} on GS. For functions \varphi and \tilde{\varphi} on S_{G} and
GS respectively, if \tilde{\varphi}(_{x}S)=\varphi(S_{x^{-1}}) for every x\in G, then we have \tilde{\varphi}\in\tilde{\Phi}_{0} if
and only if \varphi\in\Phi_{0} because P_{S} is a unimorphism. If U_{S} is locally totally
bounded, then so is U_{S}, and for any invariant measure \tilde{\mu}_{0} by C_{G} on \tilde{\Phi}_{0} ,
setting

\int\varphi(S_{x})\mu_{0}(dS_{x})=\int\tilde{\varphi}(_{x}S)\tilde{\mu}_{0}(d_{x}S)

for \varphi\sim(_{x}S)=\varphi(S_{x^{-1}}) for x\in G , we obtain an invarinat measure \mu_{0} by C_{G} on
\Phi_{0} because

\varphi(S_{x^{-1}}C_{y})=\varphi(S_{x^{-1}y})=\tilde{\varphi}(_{y^{-1}x}S)=\tilde{\varphi}(_{x}SC_{y^{-1}})

for every x\in G and

\int\varphi(S_{x}C_{y})\mu_{0}(dS_{x})=\int\tilde{\varphi}(_{x}SC_{y^{-1}})\tilde{\mu}_{0}(d_{x}S)=\int\tilde{\varphi}(_{x}S)\tilde{\mu}_{0}(d_{x}S)=\int\varphi(S_{x})\mu_{0}(dS_{x})1
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Furthermore, for any \varphi\in\Phi , setting

\tilde{\psi}(_{x}S)=\int\varphi(ux^{-1})\mu_{S} {du) and \psi(S_{x})=\int\varphi(ux)\mu_{s} {du)

for x\in G , we have \tilde{\psi}(_{x}S)=\psi(S_{x^{-1}}) for every x\in G , and

\int\tilde{\psi}(_{x}S)\tilde{\mu}_{0}(d_{x}S)=\int\psi(S_{x})\mu_{0}(dS_{x}) .

Therefore by Double Integral Theorem 9. 3 we have
SKEW-DOUBLE INTEGRAL THEOREM 10. 1. Under the same assumption

as Double Integral Theorem 9. 3, for the skew-coset uniformity \sigma_{S} on GS,
the skew-coset mapping \overline{M}_{S} is uniformly open and the skew-coset transfor-
mation group \tilde{C}_{G} is equi-continuous. Let \Phi be the trunk of U(N) on G
and \tilde{\Phi}_{0} the trunk of \tilde{U}_{S} on GS. For a Haar measure \mu_{S} of Sfor the relative
neighborhood N^{S} and an invariant measure \tilde{\mu}_{0} by C_{G} on GS, setting

\tilde{\psi}(_{x}S)=\int\varphi(ux^{-1})\mu_{S}(du) for x\in G and \varphi\in\Phi ,

we have \tilde{\psi}\in\tilde{\Phi}_{0}, and setting

\int\varphi(x)\mu(dx)=\int\tilde{\psi}(_{x}S)\tilde{\mu}_{0}(d_{x}S) ,

we obtain a Haar measure \mu of G for U(N) .
If S is an invariant subgroup of G, then S_{G} is the quotient group G/S

and the coset transformation group C_{G} is the right transformation group
R_{G/S} by Quotient Group Theorem 4. 5. Furthermore, the coset uniformity
U_{S} is the induced uniformity U(N/S) by the neighborhood N/S on G/S.
Therefore, every invariant measure \mu_{0} by C_{G} on G/S for U_{S} is a Haar
measure of G/S for U(N/S) . Consequently, we can state

INVARIANT SUBGROUP THEOREM 10. 2. In Double Integral Theorem
9. 3, if S is an invariant subgroup of G, then \mu_{0} is a Haar measure of the
quotient group G/S for the induced uniformity U(N/S) .

Now we suppose that S has an adjoint H in G and the adjoint mapping
M_{H} is uniformly continuous for the relative neighborhood N^{H} on H. Ac-
cording to Adjoint Mapping Theorem 8. 8, P_{H} is a unimorphism from H
to S_{G} , and the representation T_{G} of G on H is congruent to C_{G} by P_{H}

by Representation Theorem 3. 1. For any function \psi on H, setting \psi(xP_{H})

=\psi(x) for x\in H, we can consider \psi a function on S_{G} . Since P_{H} is a uni-
morphism, the trunk \Phi_{H} of U(N^{H}) coincides with \Phi_{0} , and we have

\psi(S_{x}C_{z})=\psi(xT_{z}P_{H})=\psi(xT_{z}) for x\in H and z\in G
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Since \Phi_{0}=\Phi_{H}, any measure on \Phi_{H} is a measure on \Phi_{0} . If a measure \mu_{H}

on \Phi_{H} is invariant by T_{G}, then \mu_{H} is invariant by C_{G} . On the other hand,
if \mu_{H} is invariant by T_{G}, then \mu_{H} is a Haar measure of H for the induced
uniformity U(N^{H}) because T_{x}=R_{x} for x\in H by definition. Since every left
transformation L_{z}(z\in G) is uniformly continuous by assumption, we can
easily prove that every L_{x}(x\in H) is uniformly continuous for U(N^{H}) . Thus,

we can apply the Theorem of Uniqueness in [3], and we conclude that the
Haar measures of H for U(N^{H}) arq uniquely determined except for constant
multiplication. Therefore, any Haar measure \mu_{H} of H for U(N^{H}) is invariant
by T_{G} .

Now we have another
PRODUCT MEASURE THEOREM 10. 3. Under the same assumption as

Double Integral Theorem 9. 3, if S has an adjoint H in G such that the
adjoint mapping M_{H} is uniformly continuous for the relative neighborhood
N^{H} on H, then for the trunk \Phi_{H} of U(N^{H}) and a Haar measure \mu_{H} of H
for U(N^{H}) , setting

\psi(x)=\int\varphi(ux)\mu_{S}(du) for \varphi\in\Phi ,

we have \psi\in\Phi_{H}, and setting

\int\varphi(x)\mu(dx)=\int\psi(x)\mu_{H}(dx) ,

we obtain a Haar measure \mu of G for U(N).
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