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Convexity of nodes of discrete Sturm-
Liouville functions
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1. Let f be a real function defined on a set of consecutive integers \{a , a+l ,
\ldots , b\} . If the points (k,f(k)) , a\leq k\leq b, are joined by straight line segments

to form a broken line, then this broken line gives a representation of a
continuous function, henceforth denoted by f^{*}(t) , such that f^{*}(k)=f(k) for
a\leq k\leq b . The zeros of f^{*}(t) are called the nodes of f(k) . This paper is
concerned with the convexity of nodes of functions which satisfy the follow-
ing second order difference equation

(1) \Delta^{2}x(k-1)+q(k)x(k)=0

where q(k) is a real function defined on a set of consecutive integers to be
considered. Specifically, if a nontrivial solution of (1) has three consecutive
nodes t_{1} , t_{2} and t_{3} , we shall be interested in the relation between the two

distances t_{2}-t_{1} and t_{3}-t_{2} when q(k) decreases over a set of consecutive
integers \{a, a+1, \cdots, b\} such that a\leq t_{1}\leq t_{3}\leq b .

Our work is motivated by a result of Makai [1] which states that if
x(t) is a nontrivial solution of the differential equation

(2) x’+q(t)x=0, a<x<b
with three consecutive zeros t_{1} , t_{2} and t_{3} in (a, b) and if q(t) is positive,
continuous and decreasing in (a, b) , then

(3) |x(t_{2}-s)|\leq|x(t_{2}+s)|

for 0\leq s\leq t_{2}-t_{1} . As can easily be seen, (3) implies the well known convexity
of the zeros, i. e.

(4) t_{2}-t_{1}\leq t_{3}-t_{2} .
In view of the obvious similarity between equations (1) and (2), one is

tempted to conjecture that the inequality (4) also holds for the nodes of
a nontrivial solution of (1) if q(k) decreases over \{a, \cdots, b\} . This, however,
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is not true in general as can be seen from the following example.
EXAMPLE. Let q(1)=1\cap\cup and q(2)=9. . Then the function x(k) defined

by

x(0)=31 , x(1)=-4, x(2)=1 , x(3)=-3
satisfies (1) for k=1,2 . The nodes of x(k) are

t_{1}=31/35 , t_{2}=9/5 , t_{3}=9/4 .

Thus
32/35=t_{2}-t_{1}>t_{3}-t_{2}=9/20 .

which shows that t_{2}-t_{1}\leq t_{3}-t_{2} does not hold.
In spite of the above example, we can, however, show that

t_{3}-t_{2}>t_{2}-t_{1}-1

and other results of similar nature. These shall be illustrated in the last
section after we have developed the necessary tools in the following section.
2. In the sequel, the smallest integer which is larger than or equal to the
real number t will be denoted by t^{+} . We first state the following lemma,
the proof of which is extracted from the proof of a result of Moulton [2],

Lemma 1. Let f and g be real functions defined on a set of consecu-
tive integers \{a, a+1, \cdots, b\} . Iff(c+1)>0 , f(c)\leq 0 and g (c+1)>0 for some
c in \{a, \cdots, b-1\} , and if W(k)=f(k+1)g (k)-g(k+1)f(k)\leq 0 at k=c, then
g(k) has a node in [\alpha, c+1) , where \alpha is the node of f(k) in [c, c+1) .

PROOF. Assume to the contrary that g (k) does not have a node in
[\alpha, c+1) , then either g (c)>0 or g (k) has a node \delta in [c, \alpha) . If g(c)>0 ,
then clearly W(c)=f(c+1)g (c)-g(c+1)f(c)>0 which is a contradiction.
If g (k) has a node \delta in [c, \alpha) , then

W(c)=[ \frac{g(c)}{g(c+1)}-\frac{f(c)}{f(c+1)}]g(c+1)f(c+1)

= \frac{c-\delta}{c+1-\delta}+\frac{\alpha-c}{c+1-\alpha}g(c+1)f(c+1)

= \frac{(\alpha-\delta)g(c+1)f(c+1)}{(c+1-\delta)(c+1-\alpha)}

>0
This contradiction concludes the proof.

Similarly, we can show that if f and g are real functions defined on
a set of consecutive integers \{a, \cdots, b\} , if f(d)>0 , g (d)>0 and f(d+1)\leq 0

for some d in \{a, \cdots, b-1\} and if W(k)=f(k+1)g(k)-g(k+1)f(k)\geq 0 at
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k=d, then g(k) has a node in (d, \beta] where \beta is the node of f(k) in (d, d+1] .
LEMMA 2. Suppose x(k)andy\backslash (k) , a\leq k\leq b, are respectively nontrivial

solutions of the equations

(5) \Delta^{2}x(k-1)+f(k)x(k)=0

and

(6) \Delta^{2}y(k-1)+g(k)y(k)=0

for a+1\leq k\leq b-1 . If x(k) has two consecutive nodes \alpha and \beta in [a, b]

and if g(k)\geq f(k) for a+1\leq k\leq b-1 , then y(k) has a node in (\alpha, \beta] .
PROOF. We may assume without loss of generality that a\leq\alpha<a+1 ,

b-1<\beta\leq b and that x^{*}(t)>0 for \alpha<t<\beta . If we assume to the contrary
that y*(t)>0 for \alpha<t\leq\beta then clearly x(k)y(k)>0 for a+1\leq k\leq b-1 .
Moreover, in view of Lemma 1, the function W(k)=x(k+1)y(k)-y(k+1)x(k)
is non-negative at k=a and is negative at k=b-1 . However, as can be
verified easily, W(k) satisfies

\Delta W(k)=(g(k+1)f-(k+1))x(k+1)y(k+1)\geq 0

for a\leq k\leq b-2 . But then

0>W(b-1)=W(a)+ \sum_{k=a}^{b-2}\Delta W(k)\geq 0

which is the desired contradiction.
LEMMA 3. Suppose x(k) and y(k) , a\leq k\leq b, are respectively positive

solutions of the equations (5) and (6). Suppose g(k)\geq f(k) for a+1\leq k\leq b-1 .
If x(a)\geq y(a) and x(a+1)y(a)-y(a+1)x(a)\geq 0 , then x(k)\geq y(k) for a\leq

k\leq b .
PROOF. As already pointed out in the proof of Lemma 2, the function

W(k)=x(k+1)y(k)-y(k+1)x(k) satisfies

\Delta W(k)=(g(k+1)-f(k+1))x(k+1)y\backslash (k+1)

for a\leq k\leq b-2 . Since x(k) and y(k) are positive for a\leq k\leq b, \Delta W(k)\geq 0

for a\leq k\leq b-2 . Moreover, since W(a)\geq 0 ,

W(k)=W(a)+ \sum_{j=a}^{-}k-1\triangle W(\mathfrak{j})\geq 0

for a+1\leq k\leq b-1 . It follows that
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\triangle(\frac{x(k)}{y(k)})=\frac{x(k+1)y(k)-y(k+1)x(k)}{y(k)y(k+1)}

=W(k)/y(k)y(k+1)
\geq 0

for a+1\leq k\leq b-1 . But then

1\leq\frac{x(a)}{y(a)}\leq\frac{x(a+1)}{y(a+1)}\leq\cdots\leq\frac{x(b)}{y(b)}

as required.
The final result which we shall need is the following comparison theorem.
Lemma 4. Suppose x(k) and y(k) , a\leq k\leq b, are nontrivial solutions

of (5) and (6) respectively. Suppose g(k)\geq f(k) for a+1\leq k\leq b-1 . Suppose
x(a+1)\geq y(a+1)>0 , x(a+1)y(a)-y(a+1)x(a)\geq 0 and that \beta is the first
node of x(k) in (a+1, b] . Then y(k) has a node in (a+1, \beta] and x^{*}(t)\geq

y^{*}(t) for a+1<t<\delta where \delta is the first node of y(k) in (a+1, \beta] .
PROOF. The proof of the fact that y(k) has a node in (a+1, \beta] is

similar to the proof of Lemma 2 and is thus omitted. Since x(a+1)\geq

y(a+1)>0 , if \delta is the first node of y(k) in (a+1, \beta] , then x(k) and y(k)
are positive for a+1\leq k\leq\delta^{+}-1 . Consequently, by Lemma 3, x(k)\geq y(k)

for a+1\leq k\leq\delta^{+}-1 . Furthermore, since \delta\leq\beta and since x(\delta^{+}-1)\geq y(\delta^{+}-1) ,
x^{*}(t)\geq y^{*}(t) for \delta^{+}-1\leq t\leq\delta . This concludes the proof.
3. We have shown by an example that the convexity of nodes of solutions
of (1) does not hold in general. We can, however, establish the convexity
in certain special cases.

THEOREM 1. Suppose x(k) , a\leq k\leq b, is a nontrivial solution of (1)
which has three consecutive nodes t_{1} , t_{2} and t_{3} in [a, b] . Suppose q(k)\geq

q(k+1) for a+1\leq k\leq b-2 . If t_{2} is an integer or midway between two
consecutive itegers in [ a, \cdots, b\} , then |x^{*}(t_{2}-s)|\leq|x^{*}(t_{2}+s)| for 0\leq s\leq t_{2}-t_{1} .

PROOF. The geometrical interpretation of the assertion of Theorem 1
is as follows. Let C_{1} be the graph of x^{*}(t) lying between t_{1} and t_{2} , and
let C_{2} be the graph of x^{*}(t) lying between t_{2} and t_{3} . Now turn the graph
C_{1} by 180^{O} around its endpoint (t_{2},0) and denote its new position by C^{I}..
Then the graph C^{I}. lies in the area bounded by the t axis and the graph C_{2} .

We shall assume t_{2}\in\{a, \cdots, b\} . The proof of the other case is similar
and will be omitted. Without loss of generality, we may assume that
a\leq t_{1}<a+1<t_{2}<b-1<t_{8}\leq b and that x^{*}(t)<0 for t_{1}<t<t_{2} . For t_{2}\leq j\leq

2t_{2}-a, let y(\mathfrak{j})=-x(2t_{2}-j) . Then the function y(k) satisfies

\Delta^{2}y(k-1)+q(2t_{2}-k)y(k)=0
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for t_{2}+1\leq k\leq 2t_{2}-a-1 . Moreover, the point \delta=2t_{2}-t_{1} is the first node of
y(k) in (t_{2},2t_{2}-a] . We assert that \delta\leq t_{3} . Suppose to the contrary that
\delta>t_{3} . Note first that x(t_{2})=y(t_{2})=0 , furthermore, since x(t_{2})=0 ,

0=\Delta^{2}x(t_{2}-1)+q(t_{2})x(t_{2})=x(t_{2}-1)+x(t_{2}+1),\cdot

so that y(t_{2}+1)=x(t_{2}+1) . Finally, we note that

q(k)\leq q(2t_{2}-k)

for t_{2}\leq k\leq t_{3}^{+} since q(k) decreases over \{a, \cdots, b\} . According to Lemma 4,
y(k) would have a node in (t_{2}, t_{3}] which is a contradiction. We may now
apply Lemma 4 again to conclude that x^{*}(t)\geq y*(t) for t_{2}\leq t\leq\delta . Con-
sequently, letting t=t_{2}-s , we have

|x^{*}(t_{2}-s)|\leq|x^{*}(t_{2}+s)|

for 0\leq s\leq t_{2}-t_{1} as required.
We now establish the main result of our investigation.
THEOREM 2. Suppose x(k) , a\leq k\leq b, is a nontrivial solution of (1)

which has three consecutive nodes t_{1} , t_{2} and t_{3} in [a, b] . Suppose q(k)\geq

q(k+1) for a+1\leq k\leq b-2 . Then

(7) t_{3}-2t_{2}+t_{1}>-1

PROOF. If t_{2} is an integer or midway between two consecutive integers
in \{a, \cdots, b\} , then Theorem 1 implies t_{3}-t_{2}\geq t_{2}-t_{1} . We may therefore assume

that t_{2}\in(c, c+ \frac{1}{2}) or t_{2} \in(c+\frac{1}{2}, c+1) for some integer c in \{a, \cdots, b-1\} .

Suppose t_{2} \in(c+\frac{1}{2} , c+1) first. For c\leq k\leq 2c-a+1 , let y(k)=-x(2c+1-k) .

Then the function y(k) satisfies
\Delta^{2}y(k-1)+q(2c+1-k)y(k)=0

for c+1\leq k\leq 2c-a . Moreover, the point \delta=2c+1-t_{1} is the first node of
y(k) in [t_{2}, b] . We assert that \delta\leq t_{3} . Assume to the contrary that \delta>t_{3} .
Since q(k) decreases over \{a, \cdots, b\} ,

q(2c+1-k)\geq q(k)

for c\leq k\leq t_{3}^{+}-1 . According to Lemma 2, y(k) would have a node in [t_{2}, t_{3}]

which is a contradiction. Now that

2c+1-t_{1}=\delta\leq t_{3} ,

hence
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2c+1-t_{2}-t_{1}\leq t_{3}-t_{2} .
But since

t_{2}<c+1 .
thus

t_{2}-1<2c+1-t_{2}

so that
t_{2}-1-t_{1}<2c+1-t_{2}-t_{1}\leq t_{3}-t_{2} .

Next suppose t_{2}\in(c, c+ \frac{1}{2}). For c\leq k\leq 2c-a , let y(k)=-x(2c-k) .

The function y(k) satisfies
\Delta^{2}y(k-1)+q(2c-k)y(k)=0

for c+1\leq k\leq 2c-a-1 . The point \beta=2c-t_{1} is the first node of y(k) in

(c, b] . We may now proceed as in the proof of first case to show that

2c-t_{1}=\beta\leq t_{3} .
Futhermore, since

t_{2}<c+ \frac{1}{2}’
’

thus
t_{2}-1<2c-t_{2} .

Accordingly,
t_{3}-t_{2}\geq 2c-t_{1}-t_{2}>t_{2}-1-t_{1}

as required. Q. E. D.
We remark that the constant -1 in (7) is the best possible. For suppose

0< \delta<\frac{1}{2} and let x(k) , 0\leq k\leq 3 , be defined by

x(0)=2(1-\delta)/\delta^{2}-1

x(1)=(\delta-1)/\delta

x(2)=1
x(3)=(\delta-1)/\delta t

Then the function x(k) satisfies equation (1) for 1\leq k\leq 2 where

q(1)=q(2)=2/\delta .

Futhermore, x_{\backslash }^{(}k) has three consecutive nodes
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t_{1}= \frac{2-4\delta+\delta^{2}}{2-3\delta} , t_{2}=2-\delta , t_{3}=2+\delta

It can easily be checked that

t_{3}-2t_{2}-t_{1}= \frac{-8\delta^{2}+8\delta-2}{2-3\delta}

is greater than -1 and can be made arbitrarily close to -1 by taking \delta

sufficiently small.
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