On some exact sequences concerning with H-separable extensions

Dedicated to Prof. Kentaro Murata on his 60th birthday

By Kozo SUGANO (Received December 10, 1980)

Introduction

In his paper [5] K. Hirata showed an exact sequence concerning with an H-separable extension A of B as follows

 $1 \longrightarrow \operatorname{Inn} (A | B) \longrightarrow \operatorname{Aut} (A | B) \longrightarrow P(A)$

where P(A) is the group of isomorphism classes of some type of A-A-modules. But if we follow the same method as Azumaya algebras we can obtain also the following exact sequence

$$1 \longrightarrow \operatorname{Inn} (A | B) \longrightarrow \operatorname{Aut} (A | B) \longrightarrow \operatorname{Pic} (C)$$

where Pic (C) is the Picard group of the center C of A. Being stimulated by these facts the author tried to obtain some additional sequences. In this paper we will show that if A is an H-separable extension of B (*i.e.*, ${}_{A}A \otimes_{B}A_{A} \langle \bigoplus_{A} (A \bigoplus A \bigoplus \cdots \bigoplus A)_{A} \rangle$ such that $V_{A}(B) \subset B$, there exists an exact sequence of group homomorphisms

 $1 \longrightarrow \operatorname{Inn} (A | B) \longrightarrow \operatorname{Aut} (A | B) \longrightarrow \operatorname{Pic} (C) \longrightarrow \operatorname{Pic} (B')$

where $B' = V_A(V_A(B))$. From this we can induce an exact sequence

 $1 \longrightarrow \operatorname{Inn} (A|S) \longrightarrow \operatorname{Aut} (A|S) \longrightarrow \operatorname{Pic} (C) \longrightarrow \operatorname{Pic} (S)$

in the case where A is an Azumaya C-algebra and S is a maximal commutative subring of A such that A is left S-projective, that is, A is an S/C-Azumaya algebra.

Sequence of group homomorphisms

Throughout this paper A is a ring with the identity 1 and B is a subring of A such that $1 \in B$. Aut (A|B) denotes the group of all automorphisms of A which fix all elements of B and Inn (A|B) denotes the

subgroup of Aut (A|B) consisting of all inner automorphisms. For an A-A-module M and an automorphism σ of A we denote by ${}_{\sigma}M$ a new A-A-module such that ${}_{\sigma}M=M$ as right module and $am=\sigma(a)m$ for $m\in_{\sigma}M$ and $a\in A$ as left A-module. Similarly we can define M_{σ} . For each A-A-module M set $M^{A} = \{m\in M | ma=am \text{ for all } a\in A\}$. Then we have $({}_{\sigma}M)^{A} = (M_{\sigma^{-1}})^{A}$. Especially we will set ${}_{\sigma}J = ({}_{\sigma}A)^{A}$ and $(A_{\sigma})^{A} = J_{\sigma}$.

The most part of the next lemma have already been known and appeared in the proofs of Prop. 3 [11] Prop. 5 [12] and in [5], though they are not stated as lemmas. But here we will state them definitely

LEMMA 1. Let A be an H-separable extension of B, C the center of A and $D = V_A(B)$, the centralizer of B in A. Then we have

(1) For each $\sigma \in \operatorname{Aut}(A|B)$ the map g_{σ} of $D \otimes_{c} J_{\sigma}$ to D such that $g_{\sigma}(d \otimes d_{\sigma}) = dd_{\sigma}$ for $d \in D$ and $d_{\sigma} \in J_{\sigma}$ is an isomorphism

(2) J_{σ} is a C-finitely generated projective module of rank 1, and ${}_{c}J_{\sigma} < \bigoplus_{c}D$, (a C-direct summand of D).

 $(3) \quad J_{\sigma}J_{\tau} = J_{\tau\sigma} \cong J_{\sigma} \otimes_{C} J_{\tau}, \text{ and } J_{\sigma}J_{\sigma^{-1}} = C \text{ for any } \sigma, \ \tau \in \operatorname{Aut}(A|B)$

(4) σ is inner if and only if $J_{\sigma} = Cv$ for some $v \in J_{\sigma}$.

(5) Aut (A|B) = Aut (A|B') and Inn (A|B) = Inn (A|B'), where $B' = V_A(V_A(B))$.

PROOF. Since A is H-separable over B, D is C-finitely generated projective, and consequently $_{c}C < \bigoplus_{c}D$ (See Th. 2.1 [4] or Th. 1.2 [8]). (1). We can apply Th. 1.2 (c) [8] to an A-A-module A_{σ} , and we have $D \otimes_{c} J_{\sigma} = D \otimes_{c} (A_{\sigma})^{A} \cong (A_{\sigma})^{B} = D. \quad (2). \quad \text{Since } cC < \bigoplus_{c} D, \ C \otimes_{c} J_{\sigma} < \bigoplus_{c} D \otimes_{c} J_{\sigma} \text{ as}$ C-module. But $g_{\sigma}(C \otimes_{c} J_{\sigma}) = J_{\sigma}$. Hence ${}_{c}J_{\sigma} < \bigoplus_{c} D$. Then J_{σ} is C-finitely generated projective. $D \otimes_c J_{\sigma} \cong D$ shows that J_{σ} is of rank 1. (3). Let σ , $\tau \in \operatorname{Aut}(A|B)$. Clearly $J_{\sigma}J_{\tau} \subset J_{\tau\sigma}$, and $J_{\sigma}J_{\sigma^{-1}} \subset C$. But by (1) we have $DJ_{\sigma} =$ D, $DJ_{\sigma}J_{\sigma^{-1}} = DJ_{\sigma^{-1}} = D$. Then since $_{c}C < \bigoplus_{c}D$, $J_{\sigma}J_{\sigma^{-1}} = DJ_{\sigma}J_{\sigma^{-1}} \cap C = D \cap C = C$ $(=J_{\sigma^{-1}}J_{\sigma})$. Now there exist x_i in J_{σ} any y_i in $J_{\sigma^{-1}}$ such that $\sum x_i y_i = 1$. Then for any d in $J_{\tau\sigma}$, $y_i d \in J_{\sigma^{-1}} J_{\tau\sigma} \subset J_{\tau}$ and $d = \sum x_i y_i d \in J_{\sigma} J_{\tau}$. Thus we have $J_{\tau\sigma} \subset J_{\sigma}J_{\tau}$, and $J_{\sigma}J_{\tau} = J_{\tau\sigma}$. Thus the map μ of $J_{\sigma} \bigotimes_{c} J_{\tau}$ to $J_{\tau\sigma}$ such that $\mu(d_{\sigma}\otimes d_{\tau}) = d_{\sigma}d_{\tau}$ for $d_{\sigma} \in J_{\sigma}$ and $d_{\tau} \in J_{\tau}$ is a C-epimorphism. Then μ splits, since $J_{\tau\sigma}$ is C-projective. But both $J_{\sigma} \otimes_{C} J_{\tau}$ and $J_{\tau\sigma}$ are of rank 1. Hence μ is an isomorphism. (4). If $J_{\sigma} = Cv(v \in J_{\sigma})$, $D = DJ_{\sigma} = J_{\sigma}D = Dv = vD$. Hence v is a unit, and $\sigma(x) = v^{-1}xv$ for all $x \in A$. The converse is also clear. (5) is due to Th. 1 [11].

Let P(A) be the group of isomorphism classes of A-A-modules M such that M is a left A-progenerator and $A \cong \text{Hom}(_{A}M, _{A}M)$, and denote by |M| the class to which M belongs.

THEOREM 1. Let A be an H-separable extension of B, $C = V_A(A)$ and $B' = V_A(V_A(B))$. Then we have the following sequence of group maps

$$1 \xrightarrow{} \operatorname{Inn} (A | B) \xrightarrow{} i \operatorname{Aut} (A | B) \xrightarrow{} j \operatorname{P} (C) \xrightarrow{} t \operatorname{P} (B')$$

such that $i(\sigma) = \sigma$, $j(\sigma) = |_{\sigma}J| = |J_{\sigma^{-1}}|$ and $t(|E|) = |B' \otimes_{c} E|$ for $\sigma \in \operatorname{Aut}(A|B)$ and $|E| \in P(C)$. Furthermore we have

(1) Ker j = Im i and Ker $t \subset \text{Im } j$

(2) If furthermore $B \supset V_A(B)$ (i.e., $V_A(B) =$ the center of B), then the above sequence is exact.

PROOF. By Lemma 1 j is a group homomorphism. It is also clear that t is a group homomorphism. (1). That Im i = Ker j is also obvious by Lemma 1 (4). As for the rest we can assume that B=B', since Aut (A|B)=Aut (A|B') and Inn (A|B) = Inn (A|B') by Lemma 1 and A is also H-separable over B' by Th. 1.3' [8]. Now let E be any rank 1 C-projective module such that $B \otimes_c E \cong B$ as B - B-module. Denote this isomorphism by φ . φ induces $B^{B}\otimes_{C}E = (B\otimes_{C}E)^{B} \simeq B^{B}$, since E is C-projective (See Lemma 2.1 [10]). Set $C' = B^B$, the center of B. Then we have $A \otimes_c E = A \otimes_{c'} C' \otimes_c E = A \otimes_{c'} C'$ $\cong A$ as $A - V_A(C')$ -module. Denote this isomorphism also by φ . Thus $\varphi(x \otimes m) = x \varphi(1 \otimes m)$ for $x \in A$ and $m \in E$. Let $E = \sum C m_i$ (finite). Then there exist $c_i \in C'$ such that $\varphi(\sum c_i \otimes m_i) = 1$. Hence for each x in A there exists a unique element, say $\sigma(x)$, in A such that $\sum c_i x \otimes m_i = \sum \sigma(x) c_i \otimes m_i$. But $\sum c_i x \otimes m_i = x^{(r)} (\sum c_i \otimes m_i)$, where $x^{(r)}$ is the left A-endomorphism of the right multiplication of an A - A-module $A \otimes_c E$ by x. Hence we have $\sigma(xy)$ $=\sigma(x) \sigma(y)$ for x, $y \in A$. Thus σ is a ring-endomorphism of A which fixes all elements of B. Then σ is an automorphism by Th. 1 [11] (or Th. 2 [13]). Now set $K = [\sigma(A \otimes_C E)]^A = \{\sum x_j \otimes n_j \in A \otimes_C E \mid \sum \sigma(x) x_j \otimes n_j = \sum x_j x \otimes n_j \}$ for all $x \in A$. Then by Theorem 1.2 (c) [8], $D \cong D \otimes_c E = [(A \otimes_c E)]^B =$ $D \otimes_{c} [(A \otimes_{c} E)]^{4} = D \otimes_{c} K$, where $D = V_{A}(B)$. Hence K is rank 1 C-projective. Next since $1 \in \varphi(K)$ and $_{c}C < \bigoplus_{c}D$, we have $_{c}C < \bigoplus_{c}\varphi(K)$. Hence $\varphi(K) = C$. On the other hand since $c_{\sigma}J < \bigoplus_{c}D$, $J \otimes_{c}E < \bigoplus_{c}D \otimes_{c}E$ as C-module. Hence $_{c}\varphi(_{\sigma}J\otimes_{c}E) < \bigoplus_{c}\varphi(D\otimes_{c}E) = D.$ But we have $_{\sigma}J\otimes_{c}E \subset K.$ Hence $\varphi(_{\sigma}J\otimes_{c}E) = D.$ $\varphi(K) = C$. Thus we have $|E| = |_{\mathfrak{g}} J|^{-1} = |J_{\mathfrak{g}}|$. Therefore Ker $t \subset \text{Im } j$. (2). Suppose D=C'. Then for each $\sigma \in \operatorname{Aut}(A|B)$, the isomorphism g_{σ} of $D \otimes_{c} J_{\sigma}$ to D induces a B-B-isomorphism of $B\otimes_c J_a$ to B, since $J_a \subset D \subset B$. Hence Im $j \subset \text{Ker } t$.

COROLLARY 1. Let A be an Azumaya C-algebra, and S a maximal commutative subalgebra of A such that A is a left S-projective. Then we

K. Sugano

have the following exact sequence defined by the same way as Theorem 1.

$$1 \longrightarrow \operatorname{Inn} (A|S) \longrightarrow \operatorname{Aut} (A|S) \longrightarrow P(C) \longrightarrow P(S)$$

PROOF. Set B=S. Since $V_A(S)=S$, D=B=B'=S. By Prop. 2. 4 [2], $D\otimes_{c}A^{0}\cong \text{Hom}({}_{s}A, {}_{s}A)$. Since A is left S-finitely generated projective and S-faithful, A is a left S-generator and ${}_{s}S < \bigoplus_{s}A$. Hence D is C-finitely generated projective. Then by Cor. 3 [9], A is an H-separable extension of S. Now we can apply Theorem 1.

We can replace P(B') by P(C') in Theorem 1. Because $C' \otimes_c E \cong C'$ induces $A \otimes_c E \cong A$ as $A - V_A(C')$ -module, and we can follow the same lines as Theorem 1 for the rest. Note that Ker $f \subset j(\operatorname{Aut}(A|V_A(C')))$, since $\sum c_i x \otimes m_i = \sum x c_i \otimes m_i$ for all x in $V_A(C')$. Conversely let $\tau \in \operatorname{Aut}(A|V_A(C'))$. Then since $\tau | D =$ identity, J_{τ} and $J_{\tau^{-1}}$ are contained in C' by Prop. 5 [12]. Hence $C' J_{\tau} \supset J_{\tau^{-1}} J_{\tau} \supseteq 1$, and we have $C' J_{\tau} = C'$. Then $C' \otimes_c J_{\tau} \cong C'$, since both are rank 1 C'-projective. Therefore we have

PROPOSITION 1. Let A be an H-separable extension of B, and C' the center of $V_A(B)$. Then we have the following exact sequence

 $1 \longrightarrow \operatorname{Inn} (A | V_{A}(C')) \longrightarrow \operatorname{Aut} (A | V_{A}(C')) \longrightarrow P(C) \longrightarrow P(C')$

Remark. By Prop. 2.13 [2] and Cor. 1 we have the following exact sequence in the case where A is an S/R-Azumaya algebra

 $1 \longrightarrow \operatorname{Inn} (A|S) \longrightarrow \operatorname{Aut} (A|S) \longrightarrow P(R) \longrightarrow P(S) \longrightarrow A(S, R) \longrightarrow B(S/R) \longrightarrow 1$ See for detail [2].

REMARK. In [3], S. Elliger proved the exactness of i and j under a different conditions. He added the condition that ${}_{c}C < \bigoplus_{c}A$. But we did not need this condition in this paper. He also defined Azumaya extension. But from his definition we can easily induce that A is an Azumaya extension of B if and only if $A = B \bigotimes_{c} D$ with an Azumaya C-algebra D and $C = V_{B}(B) = V_{A}(A)$ and ${}_{c}C < \bigoplus_{c}B$. Hence this is a special case of H-separable extensions.

References

- S. U. CHASE, D. K. HARRISON and Alex ROSENBERG: Galois theory and Galois cohomology of commutative rings, Memoirs Amer. Math. Soc., 52 (1965), 15-33.
- [2] S. U. CHASE and Alex ROSENBERG: Amitsur cohomology and the Brauer group, Memoirs Amer. Math. Soc., 52 (1965), 34-79.

- [3] S. ELLIGER: Über Automorphismen und Derivationen von Ringen, J. reine und angew. Math., 277 (1975), 155-177.
- [4] K. HIRATA: Some types of separable extensions of rings, Nagoya Math. J., 33 (1968), 107-115.
- [5] K. HIRATA: Some remarks on separable extensions, to appear in Hokkaido Math. J..
- [6] T. KANZAKI: On Galois algebras over a commutative ring, Osaka J. Math., 2 (1965), 309-317.
- [7] T. NAKAMOTO and K. SUGANO: Note on H-separable extensions, Hokkaido Math. J., 4 (1975), 295-299.
- [8] K. SUGANO: Note on semisimple extensions and separable extensions, Osaka J. Math., 4 (1967), 265-270.
- [9] K. SUGANO: Note on separability of endomorphism rings, J. Fac. Sci. Hokkaido Univ., 21 (1971), 196-208.
- [10] K. SUGANO: On projective H-separable extensions, Hokkaido Math. J., 5 (1976), 44-54.
- [11] K. SUGANO: Note on automorphisms in separable extension of non commutative ring, Hokkaido Math. J., 9 (1980), 268-274.
- [12] K. SUGANO: On a special type of Galois extensions, Hokkaido Math. J., 9 (1980), 123-128.
- [13] K. SUGANO: Note on cyclic Galois extension, Proc. Japan Acad., 57 (1981), 60-63.

Department of Mathematics Hokkaido University