On some exact sequences concerning with H-separable extensions

Dedicated to Prof. Kentaro Murata on his 60th birthday

By Kozo Sugano

(Received December 10, 1980)

Introduction

In his paper [5] K. Hirata showed an exact sequence concerning with an H-separable extension A of B as follows

$$
1 \longrightarrow \operatorname{Inn}(A \mid B) \longrightarrow \operatorname{Aut}(A \mid B) \longrightarrow P(A)
$$

where $P(A)$ is the group of isomorphsm classes of some type of $A-A$ modules. But if we follow the same method as Azumaya algebras we can obtain also the following exact sequence

$$
1 \longrightarrow \operatorname{Inn}(A \mid B) \longrightarrow \operatorname{Aut}(A \mid B) \longrightarrow \operatorname{Pic}(C)
$$

where $\operatorname{Pic}(C)$ is the Picard group of the center C of A. Being stimulated by these facts the author tried to obtain some additional sequences. In this paper we will show that if A is an H-separable extension of B (i.e., ${ }_{A} A \otimes{ }_{B} A_{A}\left\langle\oplus_{A}(A \oplus A \oplus \cdots \oplus A)_{A}\right)$ such that $V_{A}(B) \subset B$, there exists an exact sequence of group homomorphisms

$$
1 \longrightarrow \operatorname{Inn}(A \mid B) \longrightarrow \operatorname{Aut}(A \mid B) \longrightarrow \operatorname{Pic}(C) \longrightarrow \operatorname{Pic}\left(B^{\prime}\right)
$$

where $B^{\prime}=V_{A}\left(V_{A}(B)\right)$. From this we can induce an exact sequence

$$
1 \longrightarrow \operatorname{Inn}(A \mid S) \longrightarrow \operatorname{Aut}(A \mid S) \longrightarrow \operatorname{Pic}(C) \longrightarrow \operatorname{Pic}(S)
$$

in the case where A is an Azumaya C-algebra and S is a maximal commutative subring of A such that A is left S-projective, that is, A is an S / C-Azumaya algebra.

Sequence of group homomorphisms

Throughout this paper A is a ring with the identity 1 and B is a subring of A such that $1 \in B$. Aut $(A \mid B)$ denotes the group of all automorphisms of A which fix all elements of B and $\operatorname{Inn}(A \mid B)$ denotes the
subgroup of Aut $(A \mid B)$ consisting of all inner automorphisms. For an $A-A$-module M and an automorphism σ of A we denote by ${ }_{\circ} M$ a new $A-A$-module such that ${ }_{o} M=M$ as right module and $a m=\sigma(a) m$ for $m \in_{o} M$ and $a \in A$ as left A-module. Similarly we can define M_{c}. For each $A-A$ module M set $M^{A}=\{m \in M \mid m a=u m$ for all $a \in A\}$. Then we have $\left({ }_{0} M\right)^{A}$ $=\left(M_{\sigma^{-}-1}\right)^{4}$. Especially we will set ${ }_{\sigma} J=\left({ }_{\sigma} A\right)^{A}$ and $\left(A_{o}\right)^{A}=J_{\sigma}$.

The most part of the next lemma have already been known and appeared in the proofs of Prop. 3 [11] Prop. 5 [12] and in [5], though they are not stated as lemmas. But here we will state them definitely

Lemma 1. Let A be an H-separable extension of B, C the center of A and $D=V_{A}(B)$, the centralizer of B in A. Then we have
(1) For each $\sigma \in \operatorname{Aut}(A \mid B)$ the map $g_{\text {o }}$ of $D \otimes_{\sigma} J_{o}$ to D such that $g_{\sigma}\left(d \otimes d_{o}\right)=d d_{\sigma}$ for $d \in D$ and $d_{o} \in J_{\sigma}$ is an isomorphism
(2) J_{o} is a C-finitely generated projective module of rank 1 , and ${ }_{c} J_{o}<\oplus_{c} D$, (a C-direct summand of D).
(3) $J_{\sigma} J_{\tau}=J_{\tau q} \cong J_{o} \otimes_{c} J_{\tau}$, and $J_{\sigma^{\prime}} J_{\sigma^{-1}}=C$ for any $\sigma, \tau \in \operatorname{Aut}(A \mid B)$
(4) σ is inner if and only if $J_{o}=C v$ for some $v \in J_{o}$.
(5) $\operatorname{Aut}(A \mid B)=\operatorname{Aut}\left(A \mid B^{\prime}\right)$ and $\operatorname{Inn}(A \mid B)=\operatorname{Inn}\left(A \mid B^{\prime}\right)$, where $B^{\prime}=$ $V_{A}\left(V_{A}(B)\right)$.

Proof. Since A is H-separable over B, D is C-finitely generated projective, and consequently ${ }_{c} C<\oplus_{c} D$ (See Th. 2.1 [4] or Th. 1.2 [8]]).
(1). We can apply Th. 1.2 (c) [8] to an $A-A$-module A_{o}, and we have $D \otimes_{c} J_{\sigma}=D \otimes_{c}\left(A_{o}\right)^{A} \cong\left(A_{\sigma}\right)^{B}=D$. (2). Since ${ }_{c} C<\oplus_{c} D, C \otimes_{c} J_{o}<\oplus_{\sigma} \otimes_{c} J_{o}$ as C-module. But $g_{\sigma}\left(C \otimes_{c} J_{o}\right)=J_{\sigma}$. Hence ${ }_{c} J_{\sigma}<\oplus_{c} D$. Then J_{σ} is C-finitely generated projective. $D \otimes_{\sigma} J_{o} \cong D$ shows that J_{o} is of rank 1. (3). Let σ, $\tau \in \operatorname{Aut}(A \mid B)$. Clearly $J_{o} J_{\tau} \subset J_{\tau}$, and $J_{o} J_{o}-1 \subset C$. But by (1) we have $D J_{o}=$ $D, D J_{o} J_{o^{-1}}=D J_{\sigma^{-1}}=D$. Then since ${ }_{c} C<\oplus_{c} D, J_{o} J_{o^{-1}}=D J_{o} J_{\sigma^{-1}} \cap C=D \cap C=C$ $\left(=J_{\sigma^{-1}} J_{\sigma}\right)$. Now there exist x_{i} in J_{σ} any y_{i} in $J_{\sigma^{-1}}$ such that $\sum x_{i} y_{i}=1$. Then for any d in $J_{r o}, y_{i} d \in J_{\sigma}-J_{\tau o} \subset J_{\tau}$ and $d=\sum x_{i} y_{i} d \in J_{o} J_{r}$. Thus we have $J_{\tau o} \subset J_{o} J_{\tau}$, and $J_{o} J_{\tau}=J_{\tau \sigma}$. Thus the map μ of $J_{o} \otimes_{\sigma} J_{\tau}$ to $J_{z o}$ such that $\mu\left(d_{o} \otimes d_{\tau}\right)=d_{o} d_{\tau}$ for $d_{\sigma} \in J_{\sigma}$ and $d_{\tau} \in J_{z}$ is a C-epimorphism. Then μ splits, since $J_{\tau \sigma}$ is C-projective. But both $J_{0} \otimes_{\sigma} J_{\tau}$ and $J_{\tau \sigma}$ are of rank 1. Hence μ is an isomorphism. (4). If $J_{o}=C v\left(v \in J_{o}\right), D=D J_{o}=J_{o} D=D v=v D$. Hence v is a unit, and $\sigma(x)=v^{-1} x v$ for all $x \in A$. The converse is also clear. (5) is due to Th. 1 [11].

Let $P(A)$ be the group of isomorphism classes of $A-A$-modules M such that M is a left A-progenerator and $A \cong \operatorname{Hom}\left({ }_{A} M,{ }_{A} M\right)$, and denote by $|M|$ the class to which M belongs.

Theorem 1. Let A be an H-separable extension of $B, C=V_{A}(A)$ and $B^{\prime}=V_{A}\left(V_{A}(B)\right)$. Then we have the following sequence of group maps

$$
1 \longrightarrow \operatorname{Inn}(A \mid B) \longrightarrow \operatorname{Aut}(A \mid B) \underset{j}{\longrightarrow} P(C) \longrightarrow \underset{t}{\longrightarrow} P\left(B^{\prime}\right)
$$

such that $i(\sigma)=\sigma, j(\sigma)=\left|{ }_{o} J\right|=\left|J_{\sigma^{-1}}\right|$ and $t(|E|)=\left|B^{\prime} \otimes_{c} E\right|$ for $\boldsymbol{\sigma} \in \operatorname{Aut}(A \mid B)$ and $|E| \in P(C)$. Furthermore we have
(1) $\operatorname{Ker} j=\operatorname{Im} i$ and $\operatorname{Ker} t \subset \operatorname{Im} j$
(2) If furthermore $B \supset V_{A}(B)$ (i.e., $V_{A}(B)=$ the center of $\left.B\right)$, then the above sequence is exact.

Proof. By Lemma $1 j$ is a group homomorphism. It is also clear that t is a group homomorphism. (1). That $\operatorname{Im} i=\operatorname{Ker} j$ is also obvious by Lemma 1 (4). As for the rest we can assume that $B=B^{\prime}$, since Aut $(A \mid B)=$ Aut $\left(A \mid B^{\prime}\right)$ and $\operatorname{Inn}(A \mid B)=\operatorname{Inn}\left(A \mid B^{\prime}\right)$ by Lemma 1 and A is also H-separable over B^{\prime} by Th. $1.3^{\prime}[8]$. Now let E be any rank $1 C$-projective module such that $B \bigotimes_{c} E \cong B$ as $B-B$-module. Denote this isomorphism by φ. φ induces $B^{B} \bigotimes_{c} E=\left(B \otimes_{c} E\right)^{B} \simeq B^{B}$, since E is C-projective (See Lemma 2.1 [10]). Set $C^{\prime}=B^{B}$, the center of B. Then we have $A \otimes_{c} E=A \otimes_{c^{\prime}} C^{\prime} \otimes_{c} E=A \otimes_{c^{\prime}} C^{\prime}$ $\cong A$ as $A-V_{A}\left(C^{\prime}\right)$-module. Denote this isomorphism also by φ. Thus $\varphi(x \otimes m)=x \varphi(1 \otimes m)$ for $x \in A$ and $m \in E$. Let $E=\Sigma C m_{i}$ (finite). Then there exist $c_{i} \in C^{\prime}$ such that $\varphi\left(\sum c_{i} \otimes m_{i}\right)=1$. Hence for each x in A there exists a unique element, say $\sigma(x)$, in A such that $\sum c_{i} x \otimes m_{i}=\sum \boldsymbol{\sigma}(x) c_{i} \otimes m_{i}$. But $\sum c_{i} x \otimes m_{i}=x^{(r)}\left(\sum c_{i} \otimes m_{i}\right)$, where $x^{(r)}$ is the left A-endomorphism of the right multiplication of an $A-A$-module $A \otimes_{c} E$ by x. Hence we have $\sigma(x y)$ $=\boldsymbol{\sigma}(x) \boldsymbol{\sigma}(y)$ for $x, y \in A$. Thus $\boldsymbol{\sigma}$ is a ring-endomorphism of A which fixes all elements of B. Then σ is an automorphism by Th. 1 [11] (or Th. 2 [13]). Now set $K=\left[{ }_{0}\left(A \otimes_{c} E\right)\right]^{4}=\left\{\sum x_{j} \otimes n_{j} \in A \otimes{ }_{c} E \mid \sum \boldsymbol{\sigma}(x) x_{j} \otimes n_{j}=\sum x_{j} x \otimes n_{j}\right.$ for all $x \in A\}$. Then by Theorem 1.2 (c) [$[8], D \cong D \otimes_{c} E=\left[{ }_{0}\left(A \otimes_{c} E\right)\right]^{B}=$ $D \otimes_{c}\left[{ }_{o}\left(A \otimes_{c} E\right)\right]^{A}=D \otimes_{c} K$, where $D=V_{A}(B)$. Hence K is rank $1 C$-projective. Next since $1 \in \varphi(K)$ and ${ }_{c} C<\oplus_{c} D$, we have ${ }_{c} C<\oplus_{c} \varphi(K)$. Hence $\varphi(K)=C$. On the other hand since ${ }_{~_{o}} J<\oplus_{c} D,{ }_{\sigma} J \otimes_{c} E<\oplus D \otimes_{c} E$ as C-module. Hence ${ }_{c} \varphi\left({ }_{\sigma} J \otimes_{c} E\right)<\oplus_{c} \varphi\left(D \otimes_{c} E\right)=D$. But we have ${ }_{o} J \otimes_{C} E \subset K$. Hence $\varphi\left({ }_{o} J \otimes_{C} E\right)=$ $\varphi(K)=C$. Thus we have $|E|=\left.\left.\right|_{o} J\right|^{-1}=\left|J_{o}\right|$. Therefore $\operatorname{Ker} t \subset \operatorname{Im} j$. (2). Suppose $D=C^{\prime}$. Then for each $\sigma \in \operatorname{Aut}(A \mid B)$, the isomorphism g_{σ} of $D \otimes_{\sigma} J_{\sigma}$ to D induces a $B-B$-isomorphism of $B \otimes_{\sigma} J_{\sigma}$ to B, since $J_{\sigma} \subset D \subset B$. Hence $\operatorname{Im} j \subset \operatorname{Ker} t$.

Corollary 1. Let A be an Azumaya C-algebra, and S a maximal commutative subalgebra of A such that A is a left S-projective. Then we
have the following exact sequence defined by the same way as Theorem 1.

$$
1 \longrightarrow \operatorname{Inn}(A \mid S) \underset{i}{\longrightarrow} \operatorname{Aut}(A \mid S) \underset{j}{\longrightarrow} P(C) \underset{t}{\longrightarrow} P(S)
$$

Proof. Set $B=S$. Since $V_{A}(S)=S, D=B=B^{\prime}=S$. By Prop. 2. 4 [2], $D \otimes_{c} A^{0} \cong \operatorname{Hom}\left({ }_{s} A,{ }_{s} A\right)$. Since A is left S-finitely generated projective and S-faithful, A is a left S-generator and ${ }_{s} S<\oplus_{s} A$. Hence D is C-finitely generated projective. Then by Cor. 3 [9], A is an H-separable extension of S. Now we can apply Theorem 1.

We can replace $P\left(B^{\prime}\right)$ by $P\left(C^{\prime}\right)$ in Theorem 1. Because $C^{\prime} \otimes{ }_{c} E \cong C^{\prime}$ induces $A \otimes_{c} E \cong A$ as $A-V_{A}\left(C^{\prime}\right)$-module, and we can follow the same lines as Theorem 1 for the rest. Note that $\operatorname{Ker} f \subset j\left(\operatorname{Aut}\left(A \mid V_{A}\left(C^{\prime}\right)\right)\right.$, since $\sum c_{i} x \otimes m_{i}=\sum x c_{i} \otimes m_{i}$ for all x in $V_{A}\left(C^{\prime}\right)$. Conversely let $\tau \in \operatorname{Aut}\left(A \mid V_{A}\left(C^{\prime}\right)\right)$. Then since $\tau \mid D=$ identity, J_{τ} and $J_{\tau^{-1}}$ are contained in C^{\prime} by Prop. 5 [12]. Hence $C^{\prime} J_{\tau} \supset J_{\tau}-1 J_{\tau} \ni 1$, and we have $C^{\prime} J_{\tau}=C^{\prime}$. Then $C^{\prime} \otimes_{d} J_{\tau} \cong C^{\prime}$, since both are rank $1 C^{\prime}$-projective. Therefore we have

Proposition 1. Let A be an H-separable extension of B, and C^{\prime} the center of $V_{A}(B)$. Then we have the following exact sequence

$$
1 \longrightarrow \operatorname{Inn}\left(A \mid V_{A}\left(C^{\prime}\right)\right) \longrightarrow \operatorname{Aut}\left(A \mid V_{A}\left(C^{\prime}\right)\right) \longrightarrow P(C) \longrightarrow P\left(C^{\prime}\right)
$$

Remark. By Prop. 2.13 [2] and Cor. 1 we have the following exact sequence in the case where A is an S / R-Azumaya algebra

$$
1 \longrightarrow \operatorname{Inn}(A \mid S) \longrightarrow \operatorname{Aut}(A \mid S) \longrightarrow P(R) \longrightarrow P(S) \longrightarrow A(S, R) \longrightarrow B(S / R) \longrightarrow 1
$$

See for detail [2].
Remark. In [3], S. Elliger proved the exactness of i and j under a different conditions. He added the condition that ${ }_{c} C<\oplus_{c} A$. But we did not need this condition in this paper. He also defined Azumaya extension. But from his definition we can easily induce that A is an Azumaya extension of B if and only if $A=B \otimes_{d} D$ with an Azumaya C-algebra D and $C=V_{B}(B)=V_{A}(A)$ and ${ }_{c} C<\oplus_{c} B$. Hence this is a special case of H-separable extensions.

References

[1] S. U. Chase, D. K. Harrison and Alex Rosenberg: Galois theory and Galois cohomology of commutative rings, Memoirs Amer. Math. Soc., 52 (1965), 15-33.
[2] S. U. Chase and Alex Rosenberg: Amitsur cohomology and the Brauer group, Memoirs Amer. Math. Soc., 52 (1965), 34-79.
[3] S. Elliger: Über Automorphismen und Derivationen von Ringen, J. reine und angew. Math., 277 (1975), 155-177.
[4] K. Hirata: Some types of separable extensions of rings, Nagoya Math. J., 33 (1968), 107-115.
[5] K. Hirata: Some remarks on separable extensions, to appear in Hokkaido Math. J..
[6] T. KANZAKI: On Galois algebras over a commutative ring, Osaka J. Math., 2 (1965), 309-317.
[7] T. Nakamoto and K. Sugano: Note on H-separable extensions, Hokkaido Math. J., 4 (1975), 295-299.
[8] K. Sugano: Note on semisimple extensions and separable extensions, Osaka J. Math., 4 (1967), 265-270.
[9] K. SUGANO: Note on separability of endomorphism rings, J. Fac. Sci. Hokkaido Univ., 21 (1971), 196-208.
[10] K. Sugano: On projective H-separable extensions, Hokkaido Math. J., 5 (1976), 44-54.
[11] K. SUGANO: Note on automorphisms in separable extension of non commutative ring, Hokkaido Math. J., 9 (1980), 268-274.
[12] K. Sugano: On a special type of Galois extensions, Hokkaido Math. J., 9 (1980), 123-128.
[13] K. Sugano: Note on cyclic Galois extension, Proc. Japan Acad., 57 (1981), 60-63.

Department of Mathematics
Hokkaido University

