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Linear parabolic equations in regions

with re-entrant edges

By Ali Azzam and Erwin KREYSZIG
(Received October 6, 1980; Revised January 12, 1981)

In a recent paper [1] we studied solutions of the parabolic equation

(1) Lu(x, t)=a_{ik}(x)u_{x_{i}x_{k}}+a_{i}(x, t)u_{x_{i}}+a(x, t)u-u_{t}=f(x, t) ,

x=(X_{1}^{ },\cdots, x_{n}) , in a simply connected, bounded region \Omega=G\cross J\subset R^{n+1}, n\geqq 2 ,
J=\{t|0<t\leqq T\} , satisfying the conditions

(2 a) u(x, 0)=0, x\in\overline{G} ,

(2 b) u|_{\partial G\cross\overline{J}}=\phi(x, t)j

under the following assumptions.
(A) a_{ik}\in C^{a}(\overline{G}) , a_{i} , a, f\in C^{\alpha}(\overline{\Omega}) , 0<\alpha<1-,

(B) \phi(x, 0)=0 , \phi\in C^{2+\alpha}[\partial G\backslash E)\cross\overline{J}]\cap C^{0}(\partial G\cross\overline{J}) ,

(C) \omega(P)<\pi for all P\in E .
Here E=\cup E_{i} , where E_{1} , \cdots , E_{m} are (n-2) -dimensional edges (the intersec-

tions of po^{irtions} of hypersurfaces \Gamma_{1} , \cdots , \Gamma_{m} constituting the boundary \partial G of
G) , and \omega(P) is the angle between the images of the two \Gamma_{j}’s corresponding

to a point P:x^{0} of E under the transformation of

a_{ik}(x^{0})u_{x_{i}x_{k}}^{*}=0

to canonical form.
Condition (C) means that the edges of the image of G are non-re-

entrant. The question arises whether this restriction can be removed. This
would be of practical importance, for the following reason.

It is well known that in physical and other applications, a great majority

of boundary value or initial value problems are such that the given data or

the boundaries of the domains have singularities (corners or edges) ; cf. [3],

Chaps. V, VI, [4], [10], [13]. Not infrequently, some of those edges are
re-entrant; for typical examples, see [5], Chap. 3, [7], Sees. 24. 3-24.7, [8],

Chap. 24, and [14], Chap. 8. In each such case, it is desirable to have
knowledge about the kind of singularities of solutions and derivatives one
has to expect, as a consequence of the singularities of the boundary.

The knowledge just mentioned is even more mandatory in finite differ-
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ence, finite element or other numerical methods. For a general characteri-
zation of the problems, difficulties and theoretical and numerical results in
this area, see G. E. Forsythe and W. R. Wasow [7], Sec. 23, and G. Strang
and G. J. Fix [14], Chap. 8, and the given references; cf. also I. Babuska
[2].

To improve convergence near singularities, for instance, by local “polar
grids” (cf. [15]), reduction of mesh size, local use of series, or addition of
suitable singular functions (cf. [14], p. 268), one must know the kind of
possible singularities of solutions at edges. In this way, one can see that
certain methods (e.g. [9]) are rather useless since they presuppose greater
smoothness than would be achievable, whereas others (e.g. [11], [12]) do
not extend to more than two dimensions since they are based on complex
analysis. In all those investigations, re -entrant edges are worse than others
and have attracted particular attention. For instance, the method in [11]
fails to give best bounds in the re -entrant case. See also L. Fox [8], p .
304. Moreover, whereas for exact solutions, edges constitute a local smooth-
ness problem, for approximate solutions, in the case of re -entrant edges,
there is numerical evidence (obtained by Forsythe and others) which seems
to indicate a global change of the order of magnitud of the discretization
error.

All those facts point to a basically different situation for re-entrant
edges.

In the present paper we shall indeed succeed in removing condition (C),
that is, in extending our results obtained in [1] to the case of re-entrant
edges. It is remarkable that this can be done simply by extending the
previous method of proof, and that for this purpose we can use a barrier
function which is even simpler than that used before.

In [1] we proved
THEOREM 1. Let u be a bounded solution of the first boundary value

problem (1), (2) in \Omega . Assume that {A) , (B), (C) hold. Then u, considered
as a function of x, satisfies

u\in C^{\mu}(\overline{\Omega}) , where \mu=\{

2 if \omega_{0}<\pi/2 ,

\frac{\pi}{\omega_{0}}-\epsilon otherwise,

with \omega_{0}=\max_{P\epsilon E}\omega(P) and arbitrarily small \epsilon>0 .
We shall now obtain the extension of this result to the re-entrant case.

We shall refer to [1] for those parts of the proof which remain practically
unchanged. In particular, to avoid misunderstandings, we point to the fact
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that our general “strategy” is similar to that in [1], that is, in the special
setting (below) we introduce an additional condition, and later we define
suitable auxiliary functions which also satisfy that additional condition if the
solution satisfies the others. Thus that additional condition is not imposed

on the solution itself. Furthermore, all this is done so that we can later
return to the solution without losing boundedness or smoothness properties.

THEOREM 2. The conclusion of Theorem 1 continues to hold without
assumption (C).

PROOF. Since the case \omega_{0}<\pi was considered in [1], we can assume
that \omega_{0}\geqq\pi . We first consider the special case of a cylindrical sector

G=\{(r, \theta, x’)|r<\sigma , \beta<\theta<\beta+\omega_{0}, |x_{i}|<\sigma if i>2\} ,

where \sigma>0 , \beta>0 and sufficiently small, and

x_{1}=r cos \theta . x_{2}=r sin \theta , x’=(X_{3}^{ },\cdots, X_{n})

The case of an arbitrary f2 will then follow by the mapping used in [1].

Accordingly, we first introduce notations corresponding to our present special

setting :
\Pi_{1} and \Pi_{2} denote the two portions of the hyperplanes

x_{2}=x_{1} tan \beta , x_{2}=x_{1} tan (\beta+\omega_{0})

bounding G laterally,

N_{k}=\{x|x\in G, |x|<k\}’. 0<k\leqq\sigma ,

S_{k}=\partial N_{k}\cap(\Pi_{1}\cup\Pi_{2}) :

R_{k}=\Pi_{1}\cap\Pi_{2}\cap\overline{N}_{k} .
Then we state our modified problem

(3) Lu=f in N_{\sigma}\cross J,\cdot

(4 a) u|_{t=0}=0 ,

(4 b) u|S_{\sigma}=\psi(x, t) ,

and assumptions :
(A’) a_{ik}\in C^{\alpha}(\overline{N}_{\sigma}) , a_{ik}(0)=\delta_{ik} for i, k=1,2 ,

a_{ik} (i>2 or k>2), a_{i} , a, f\in C^{\alpha}(\overline{N}_{\sigma}\cross J) ,

(B’) \psi\in C^{2+a}((S_{\sigma}\backslash R_{\sigma})\cross J)\cap C^{0}(S_{\sigma}\cross J) , \psi(x, 0)=0



32 A. Azzam and E. Kreyszig

Note that the condition a_{ik}(0)=\delta_{ik} , i, k=1,2, is a consequence of the
transformation which we use (as in [1]) in order that the new setting cor-
respond to the setting in Theorem 1.

In the proof we shall also use the following assumption.

(B^{*}) \psi|R_{\sigma}=0 .

This assumption is not a restriction of generality, because the function
u^{*} defined by

u^{*}(x, t)=u(x_{1}, x_{2}, x’, t)-\psi(o, o_{ x,t)}’,

satisfies all the conditions of the theorem, and the function \psi^{*}=u^{*}|_{\partial G} satisfies
all the conditions which \psi satisfies, as well as assumption (B^{*}) .

We prove that under assumptions (A’) , (B’) and (B^{*}) , for a bounded
solution u of (3), (4) there exists a number c\in(0, \sigma) such that
(5) u\in C^{\mu}(\overline{N}_{c}\cross J) , \mu=\pi/\omega_{0}-\epsilon with arbitrarily small \epsilon>0l

To prove (5) we first derive a bound

(6) |u(x, t)|\leqq Kr^{\mu} with \mu as in (5)

in \overline{N}_{r_{0}}\cross J, where r_{0}<\sigma is suitable. Without restriction we assume that u is
zero outside a hypersphere of radius r_{0} about 0. We can accomplish this
if we replace n by a function w, where w=\xi u , with \xi\in C^{\infty}. \xi(|x|)=1

when |x|\leqq r_{0} and \xi(|x|)=0 when |x|\geqq 2r_{0} . Note that then w=u when
|x|\leqq r_{0} and w=0 when |x|\geqq 2r_{0} . For the simplicity of writing we shall
use u and r_{0} rather than w and 2r_{0} . Let

v(x)=-Kr^{\mu} sin \lambda\theta ,

where K>0 is constant, r^{2}=x_{1}^{2}+x_{2}^{2} and

\pi/\omega_{0}-\epsilon=\mu<\lambda=\pi/(\omega_{0}+2\beta)

with sufficiently small \beta>0 . For sufficiently small r_{0}>0 and sufficiently
large K one can show that

Lv(x\grave{)}\geqq f(x, t) in \Omega_{0}=N_{r_{0}}\cross J

Hence in \Omega_{0} ,

L(u(x, t)-v(x))\leqq 0 .

On the other hand, since sin \lambda\theta>\sin\lambda\beta for \beta<\theta<\beta+\omega_{0} , by taking K large
we can make u-v nonnegative on \partial\Omega_{0} . Hence by the maximum principle,
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u(x, t)-v(x)\geqq 0 in \overline{\Omega}_{0} ,

so that

u(x, t)\geqq-Kr^{\mu} sin \lambda\theta\geqq-Kr^{\mu} .

The other part of (6) can be proved similarly. From (6) we obtain (5) by
a Schauder type estimate as in [1]. Theorem 2 now follows by the mapping
used in [1] which maps the general region in Theorems 1 and 2 onto the
cylindrical sector. This completes the proof.

Furthermore, along the lines of [1] it is not difficult to prove
THEOREM 3. For u as in Theorems 1 and 2, under assumptions (A),

(B),

\eta^{\delta}D_{x}u\in C^{\chi}(\overline{\Omega}) ,

where \chi=\delta+\mu-1,1-\mu<\delta<2-\mu , 0_{\backslash }’\chi<1 , and \eta is the distance from (x, t)

to E.
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