An example of a certain Kaehlerian manifold

By Masaru Seino
(Received April 28, 1980 ; Revised October 13, 1980)

Kubo [5] proved that a real $n(\geqq 4)$-dimensional Kaehlerian manifold with constant scalar curvature and vanishing Bochner curvature tensor is a space of constant holomorphic sectional curvature if a certain inequality for the Ricci tensor and the scalar curvature holds. In connection with this, Hasegawa and Nakane [3] remarked that a real 4-dimensional Kaehlerian manifold with non-zero constant scalar curvature and vanishing Bochner curvature tensor is of constant holomorphic sectional curvature. Then, it is natural to ask whether a real 4-dimensional Kaehlerian manifold with zero scalar curvature and vanishing Bochner curvature tensor is locally flat. The answer is negative. The purpose of the present paper is to give a counter example to the above question.

Correspondingly, we also give an example of a 5 -dimensional Sasakian manifold with constant scalar curvature -4 and vanishing contact Bochner curvature tensor which is not of constant ϕ-holomorphic sectional curvature -3 . The theorems corresponding to the above of Kubo and Hasegawa and Nakane in Sasakian manifolds have been obtained in [3].

We give preliminaries in $\S 1$ and examples described above in $\S \S 2$ and 3, respectively.
§ 1. Preliminaries. In this section, we recall some well-known facts for later use.

Let M be a Riemannian manifold. A set (P, Q) of two linear transformation fields P and Q on M is called an almost product structure on M if P and Q satisfy

$$
P^{2}=P, Q^{2}=Q, P Q=Q P=0 \quad \text { and } \quad P+Q=I
$$

where I and 0 denote the identity and zero transformation fields on M, respectively.

Lemma 1 ([8]). A Riemannian manifold M with an almost product structure (P, Q) is locally Riemannian product of two integral manifolds of two distributions determined by P and Q if and only if

$$
\nabla(P-Q)=0
$$

where ∇ denotes the Riemannian connection.

We denote by $H(X, Y)$ the sectional curvature for the 2 -plane spanned by two mutually orthogonal unit vectors X and Y in the Riemannian manifold M. In the rest of this section, we only consider a Kaehlerian manifold M.

Lemma 2 ([1]). In M, the Bochner curvature tensor vanishes if and only if there exists a hybrid quadratic form L such that

$$
H(X, F X)=-8 L(X, X)
$$

for any unit vector X, where F is the complex structure on M.
An orthonormal basis $\left\{e_{i}, e_{i^{*}}=F e_{i}\right\}\left(i=1,2, \cdots, \frac{1}{2} \operatorname{dim} M ; i^{*}=\frac{1}{2} \operatorname{dim} M\right.$ $+i)$ is called an F-basis.

Lemma 3 ([4]). In M of real dimension $\geqq 4$, if the Bochner curvature tensor vanishes, then we obtain

$$
H\left(e_{i}, e_{i^{*}}\right)+H\left(e_{j}, e_{j^{*}}\right)=+8 H\left(e_{i}, e_{j}\right),(i \neq j),
$$

for every F-basis $\left\{e_{i}, e_{i^{*}}\right\} \quad\left(i, j=1,2, \cdots, \frac{n}{2} ; i^{*}=\frac{n}{2}+i, j^{*}=\frac{n}{2}+j\right)$.
Lemma 4 ([6]). In M with constant scalar curvature, if the Bochner curvature tensor vanishes, then the Ricci tensor is parallel.

Note that, in this case, each eigenvalue of the Ricci tensor is locally constant.
§2. A counter example in a Kaehlerian case. (a) Let $M(F, g)$ be a real 4 -dimensional Kaehlerian manifold with zero scalar curvature and vanishing Bochner curvature tensor. $\left\{e_{1}, e_{2}, e_{1^{*}}=F e_{1}, e_{2^{*}}=F e_{2}\right\}$ being an F basis of eigenvectors of the Ricci tensor, we have

$$
H\left(e_{1}, e_{1^{*}}\right)+H\left(e_{2}, e_{2^{*}}\right)=8 H\left(e_{1}, e_{2}\right),
$$

by Lemma 3, and

$$
H\left(e_{1}, e_{2}\right)=H\left(e_{1}, e_{2^{*}}\right)=H\left(e_{1^{*}}, e_{2}\right)=H\left(e_{1^{*}}, e_{2^{*}}\right),
$$

where H is the sectional curvature. Then, the Ricci tensor R is given by

$$
\begin{aligned}
& R\left(e_{1}, e_{1}\right)=R\left(e_{1^{*}}, e_{1^{*}}\right)=10 H\left(e_{1}, e_{2}\right)-H\left(e_{2}, e_{2^{*}}\right), \\
& R\left(e_{2}, e_{2}\right)=R\left(e_{2^{*}}, e_{2^{*}}\right)=2 H\left(e_{1}, e_{2}\right)+H\left(e_{2}, e_{2^{*}}\right),
\end{aligned}
$$

the other components being zero, and the scalar curvature trace R is given by

$$
0=\operatorname{trace} R=R\left(e_{1}, e_{1}\right)+R\left(e_{1^{*}}, e_{1^{*}}\right)+R\left(e_{2}, e_{2}\right)+R\left(e_{2^{*}}, e_{2^{*}}\right)=24 H\left(e_{1}, e_{2}\right) .
$$

Therefore, we have

$$
H\left(e_{1}, e_{1^{*}}\right)+H\left(e_{2}, e_{2^{*}}\right)=0
$$

We may put $c=H\left(e_{1}, e_{1}\right) \geqq 0$. Then, we have

$$
R\left(e_{1}, e_{1}\right)=R\left(e_{1_{1}}, e_{1^{\prime}}\right)=c, R\left(e_{2}, e_{2}\right)=R\left(e_{2^{2}}, e_{2^{\prime}} \cdot\right)=-c,
$$

that is, c and $-c$ are eigenvalues corresponding to the eigenvectors e_{1}, e_{1}. and e_{2}, e_{2}, respectively. Hence, c is constant.

We assume that M is not locally flat, so $c>0$. If we put

$$
P=\frac{1}{2}\left(\frac{1}{c} S+I\right), \quad Q=\frac{1}{2}\left(-\frac{1}{c} S+I\right),
$$

where S denotes the Ricci transformation, while I is the identity transformation, then the set (P, Q) is an almost product structure on M, and P and Q are the projectors on the eigenspaces of R corresponding to c and $-c$, respectively. Therefore, by Lemma 1, M is locally the Riemannian product of $M(c)$ and $M(-c)$ which are 2 -dimensional integral manifolds of the distributions of eigenspaces of R corresponding to c and $-c$, respectively, since we have

$$
\nabla(P-Q)=0,
$$

∇ being the Riemannian connection of g. Both $M(c)$ and $M(-c)$ admit Kaehlerian structures (F_{1}, g_{1}) and (F_{2}, g_{2}) induced from (F, g) on M and are of constant curvature c and $-c$, respectively. If (x^{1}, x^{2}) (resp. $\left.\left(y^{1}, y^{2}\right)\right)$ is a local coordinates in $M(c)$ (resp. in $M(-c)$), then we have

$$
\left(\partial / \partial x^{i}\right) F_{2}=0, \quad\left(\partial / \partial y^{i}\right) F_{1}=0(i=1,2),
$$

since $\nabla F=0$.
Conversely, given real 2-dimensional Kaehlerian manifolds $M(c)$ and $M(-c)$ of constant curvature c and $-c$, respectively, for a positive constant c, the Riemannian product $M(c) \times M(-c)$ has the naturally defined Kaehlerian structure (F, g). Then, setting

$$
L\left(\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right)\right)=\frac{c}{8}\left(g_{2}\left(Y_{1}, Y_{2}\right)-g_{1}\left(X_{1}, X_{2}\right)\right),
$$

for any vectors X_{1}, X_{2} tangent to $M(c)$ and Y_{1}, Y_{2} tangent to $M(-c)$, where g_{1} and g_{2} are Kaehlerian metrics of $M(c)$ and $M(-c)$, respectively, L is a hybrid quadratic form on $M(c) \times M(-c)$ and we have

$$
H(X, F X)=-8 L(X, X),
$$

for any unit vector X tangent to $M(c) \times M(-c)$, where H is the sectional curvature for g. Therefore, by Lemma 2, we see that $M(c) \times M(-c)$ has zero scalar curvature and vanishing Bochner curvature tensor. It is easy
to verify that g is not locally flat.
Thus, by giving real 2 -dimensional Kaehlerian manifolds $M(c)$ and $M(-c)$ of constant curvature c and $-c$, respectively, for any positive constant c, we can obtain a real 4 -dimensional Kaehlerian manifold with zero scalar curvature and vanishing Bochner curvature tensor which is not locally flat.
(b) Let M be a real 2 -dimensional Kaehlerian manifold. Then we can take a coordinate neighborhood $\left\{U ;\left(x^{1}, x^{2}\right)\right\}$ in which the complex structure F of M has the following numeral components

$$
F=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Then, the Kaehlerian metric g of M is given by

$$
g=e^{2 p}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

for a function p in M, because

$$
g(F X, F Y)=g(X, Y)
$$

for any vectors X and Y in M, that is, g is conformal to a locally flat metric. Hence, with respect to the local coordinates $\left(x^{1}, x^{2}\right)$, we have

$$
K_{k j i \hbar}=e^{2 p}\left(-\delta_{k h} C_{j i}+\delta_{j h} C_{k i}-C_{k h} \delta_{j i}+C_{j h} \delta_{k i}\right),(h, i, j, k=1,2),
$$

where $K_{k j i n}$ is the covariant components of the curvature tensor of g and

$$
C_{j i}=\partial_{j} p_{i}-p_{j} p_{i}+1 / 2 \cdot\left(\left(p_{1}\right)^{2}+\left(p_{2}\right)^{2}\right) \delta_{j i}, p_{i}=\partial_{i} p, \partial_{i}=\partial / \partial x^{i}
$$

We assume that g is of constant curvature c, c being arbitrarily given constant. Then, we have

$$
c e^{4 p}=K_{1221}=e^{2 p}\left(-C_{22}-C_{11}\right)
$$

that is,

$$
(*) \quad \partial_{1} p_{1}+\partial_{2} p_{2}=-c e^{2 p}
$$

Conversely, for a differentiable solution p of the partial differential equation (*), defining

$$
F=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right), g=e^{2 p}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

on a connected definition domain in $\left(x^{1}, x^{2}\right)$-plane, we have a real 2 -dimensional Kaehlerian manifold of constant curvature c.

Hence, we need only give a solution of the partial differential equation
(*), which is, for example, given by

$$
p=\left\{\begin{array}{ll}
\frac{1}{2} \sqrt{c} \cdot x^{1}-\log \left(1+e^{\sqrt{c} \cdot x^{1}}\right), & \text { for } c>0, \\
\frac{1}{2} \sqrt{-c} \cdot x^{1}-\log \left(1-e^{\sqrt{-c \cdot} \cdot x^{1}}\right), & \left(x^{1}<0\right),
\end{array} \quad \text { for } c<0 . ~ .\right.
$$

(c) Thus, we obtain an example of real 4-dimensional Kaehlerian mainfold $M(F, g)$ with zero scalar curvature and vanishing Bochner curvature tensor which is not locally flat; R being a 1 -dimensional manifold consisting of all real numbers, M is defined by

$$
M=\left\{\left(x^{1}, x^{2}, x^{3}, x^{4}\right) ; x^{1}, x^{2}, x^{3}, x^{4} \in R, x^{3}<0\right\}
$$

and the Kaehlerian structure (F, g) is given by

$$
F=\left(\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right), g=\left(\begin{array}{cccc}
a & 0 & 0 & 0 \\
0 & a & 0 & 0 \\
0 & 0 & b & 0 \\
0 & 0 & 0 & b
\end{array}\right),
$$

where $a=e^{2 p}, b=e^{2 q}$,

$$
p=\frac{1}{2} \sqrt{c} \cdot x^{1}-\log \left(1+e^{\sqrt{c} \cdot x^{1}}\right), q=\frac{1}{2} \sqrt{c} \cdot x^{3}-\log \left(1-e^{\sqrt{c} \cdot x^{3}}\right),
$$

for arbitrarily given positive constant c.
\S 3. A Sasakian case. We begin this section with the following lemmas.
Lemma 5 ([7]). A $(2 n+1)$-dimensional $(n \geqq 1)$ Sasakian manifold \bar{M} has a system of local corrdinate $\left(x^{i}, s\right)(i=1,2, \cdots, 2 n)$ with the following properties.
(1) Each $M=M(s)$ determined by fixing s is a Kaehlerian manifold which admits a 1 -form v satisfying

$$
\frac{1}{2} d v(X, Y)=g(F X, Y)
$$

for any vectors X and Y in $M,(F, g)$ being the Kaehlerian structure on M. The set (F, g, v) does not depend on s.
(2) With respect to the local coordinate ($\left.x^{i}, s\right)$, the Sasakian structure $(\phi, \xi, \eta, \bar{g})$ is given by

$$
\phi=\left(\begin{array}{cc}
F & 0 \\
-F * v & 0
\end{array}\right), \begin{gathered}
\xi=\left(\begin{array}{ll}
0 & 1
\end{array}\right), \quad \bar{g}=\left(\begin{array}{cc}
g+v \otimes v & v \\
\eta=\left(\begin{array}{ll}
v & 1
\end{array}\right),
\end{array}, \quad \begin{array}{cc}
v & 1
\end{array}\right), ~
\end{gathered}
$$

where $F^{*} v$ is a 1-form on M defined by

$$
F^{*} v(X)=v(F X),
$$

for any vector X in M.
Lemma 6. If a ($2 n+1$)-dimensional Sasakian manifold \bar{M} has the vanishing contact Bochner curvature tensor (resp. constant scalar curvature $-2 n$), then the Kaehlerian manifold M appearing in Lemma 5 has the vanishing Bochner curvature tensor (resp. zero scalar curvature).

Proof. Refer to [2] and [7].
Let \bar{M} be a 5 -dimensional Sasakian manifold with constant scalar curvature -4 and vanishing contact Bochner curvature tensor which is not of constant ϕ-holomorphic sectional curvature -3 . Then, \bar{M} has local coordinates $\left(x^{i}, s\right)$ as in Lemma 5 and M given in Lemma 5 is a real 4 -dimensional Kaehlerian manifold with zero scalar curvature and vanishing Bochner curvature tensor which is not locally flat ([7]), and admits a 1 -form v satisfying

$$
\frac{1}{2} d v(X, Y)=g(F X, Y)
$$

for any vectors X and Y in M, because of Lemma 6.
Thus we obtain an example of a 5 -dimensional Sasakain manifold $\bar{M}(\phi, \xi, \eta, \bar{g})$ with constant scalar curvature -4 and vanishing contact Bochner curvature tensor which is not of constant ϕ-holomorphoc sectional curvature -3 , as follows.

$$
\begin{gathered}
\bar{M}=\left\{\left(x^{1}, x^{2}, x^{3}, x^{4}, s\right) ; x^{1}, x^{2}, x^{3}, x^{4}, s \in R, x^{3}<0\right\} \\
\phi=\left(\begin{array}{rrrrr}
0 & 1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0-1 & 0 & 0 \\
v_{2} & 0 & v_{4} & 0 & 0
\end{array}\right), \bar{g}=\left(\begin{array}{ccccc}
a & 0 & 0 & 0 & 0 \\
0 & a+v_{2} v_{2} & 0 & v_{2} v_{4} & v_{2} \\
0 & 0 & b & 0 & 0 \\
0 & v_{2} v_{4} & 0 & b+v_{4} v_{4} & v_{4} \\
0 & v_{2} & 0 & v_{4} & 1
\end{array}\right) \\
\xi=(0,0,0,0,1), \eta=\left(0, v_{2}, 0, v_{4}, 1\right),
\end{gathered}
$$

where

$$
v_{2}=-\frac{2}{\sqrt{c}\left(1+e^{\sqrt{c} x^{1}}\right)}, v_{4}=\frac{2}{\sqrt{c}\left(1-e^{\sqrt{c \bar{c}} \bar{x}^{3}}\right)},
$$

for arbitrarily given positive constant c, and a and b are the functions given in $\S 2$.

References

[1] B.-Y. Chen and K. Yano: Manifolds with vanishing Weyl or Bochner curvature tensor, Math. Soc. Japan 27 (1975), 106-112.
[2] S.-S. Eum: On the cosymplectic Bochner curvature tensor, J. Korean Math. Soc. 15 (1978), 29-37.
[3] I. Hasegawa and T. Nakane: On Sasakian manifolds with vanishing contact Bocener curvature tensor, to appear.
[4] T. KASHIWADA: Some characterizations of vanishing Bochner curvature tensor, Hokkaido Math. J. 3 (1974), 290-296.
[5] Y. Kubo: Kaehlerian manifolds with vanishing Bochner curvature tensor, Kōdai math. Sem. Rep. 28 (1976), 85-86.
[6] M. Matsumoto: On Kählerian spaces with parallel or vanishing Bochner curvature tensor, Tensor, N.S. 20 (1969), 25-28.
[7] M. SEINO: On a certain class of Kaehlerian manifolds, unpublished.
[8] K. Yano: Differential geometry on complex and almost complex spaces, Pergamon Press (1965).
[9] K. Yano, S.-S. Eum and U-H. Ki: On transversal hypersurfaces of an almost contact manifold, Kōdai Math. Sem. Rep. 24 (1972), 459-470.

Department of Mathematics,
Faculty of Science,
Hokkaido University

