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An example of a certain Kaehlerian manifold

By Masaru SEINO
(Received April 28, 1980; Revised October 13, 1980)

Kubo [5] proved that a real n(\geqq 4) -dimensional Kaehlerian manifold
with constant scalar curvature and vanishing Bochner curvature tensor is
a space of constant holomorphic sectional curvature if a certain inequality
for the Ricci tensor and the scalar curvature holds. In connection with this,
Hasegawa and Nakane [3] remarked that a real 4-dimensional Kaehlerian
manifold with non-zero constant scalar curvature and vanishing Bochner
curvature tensor is of constant holomorphic sectional curvature. Then, it
is natural to ask whether a real 4-dimensional Kaehlerian manifold with
zero scalar curvature and vanishing Bochner curvature tensor is locally
flat. The answer is negative. The purpose of the present paper is to give
a counter example to the above question.

Correspondingly, we also give an example of a 5-dimensional Sasakian
manifold with constant scalar curvature -4 and vanishing contact Bochner
curvature tensor which is not of constant \phi holomorphic sectional curvature
-3. The theorems corresponding to the above of Kubo and Hasegawa
and Nakane in Sasakian manifolds have been obtained in [3].

We give preliminaries in \S 1 and examples described above in \S \S 2 and
3, respectively.

\S 1. Preliminaries. In this section, we recall some well-known facts
for later use.

Let M be a Riemannian manifold. A set (P, Q) of two linear transfor-
mation fields P and Q on M is called an almost product structure on M
if P and Q satisfy

P^{2}=P , Q^{2}=Q , PQ=QP=0 and P+Q=I.,
where I and 0 denote the identity and zero transformation fields on M,
respectively.

Lemma 1 ([8]). A Riemannian manifold M with an almost product
structure (P, Q) is locally Riemannian product of two integral manifolds of
two distributions determined by P and Q if and only if

\nabla(P-Q)=0 ,

where \nabla denotes the Riemannian connection.
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We denote by H(X, Y) the sectional curvature for the 2-plane spanned
by two mutually orthogonal unit vectors X and Y in the Riemannian manifold
M. In the rest of this section, we only consider a Kaehlerian manifold M.

Lemma 2([1]) . In M, the Bochner curvature tensor vanishes if and
only if there exists a hybrid quadratic form L such that

H(X, FX)=-8L(X, X) ,

for any unit vector X, where F is the complex structure on M.

An orthonormal basis \{e_{i}, e_{i}.=Fe_{i}\}(i=1,2, \cdots , \frac{1}{2} dim M;i^{*}= \frac{1}{2} dim M

+i) is called an F-basis.

Lemma 3 ([4]). In M of real dimension \geqq 4 , if the Bochner curvature
tensor vanishes, then we obtain

H(e_{i}, e_{i}\cdot)+H(e_{j}, e_{j^{t}})=+8H(e_{i}, e_{j}) , (i\neq j) ,

for every F basis \{e_{i}, e_{i}.\} (i,j=1,2, \cdots, \frac{n}{\underline{9}} ; i^{*}=\frac{n}{2}+i, j^{*}=\frac{n}{2}+j) .
Lemma 4 ([6]). In M with constant scalar curvature, if the Bochner

curvature tensor vanishes, then the Ricci tensor is parallel.
Note that, in this case, each eigenvalue of the Ricci tensor is locally

constant.

\S 2. A counter example in a Kaehlerian case, (a) Let M(F, g) be
a real 4-dimensional Kaehlerian manifold with zero scalar curvature and
vanishing Bochner curvature tensor. \{e_{1}, e_{2}, e_{1}\cdot=Fe_{1}, e_{2}.=Fe_{2}\} being an F-
basis of eigenvectors of the Ricci tensor, we have

H(e_{1}, e_{1}.)+H(e_{b}e_{2}\cdot)=8H(e_{1}, e_{2}) ,

by Lemma 3, and
H(e_{1}, e_{2})=H(e_{1}, e_{2}\cdot)=H(e_{1}., e_{2})=H(e_{1^{*}}, e_{2}\cdot)

,\cdot

where H is the sectional curvature. Then, the Ricci tensor R is given by

R(e_{1}, e_{1})=R(e_{1}., e_{1^{*}})=10H(e_{1}, e_{2})-H(e_{2}, e_{2}\cdot) ,
R(e_{2}, e_{2})=R(e_{2^{*}}, e_{2}\cdot)=2H(e_{1}, e_{2})+H(e_{2}, e_{2}\cdot) ,

the other components being zero, and the scalar curvature trace R is given
by

0=traceR=R(e_{1}, e_{1})+R(e_{1}\cdot, e_{1}\cdot)+R(e_{2}, e_{2})+R(e_{2}\cdot, e_{2}*)=24H(e_{1}, e_{2})

Therefore, we have
H(e_{1}, e_{1}.)+H(e_{2}, e_{2}.)=0 .
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We may put c=H(e_{1}, e_{1}\cdot)\geqq 0 . Then, we have

R(e_{1}, e_{1})=R(e_{1^{*}}, e_{1}\cdot)=c , R(e_{2}, e_{2})=R(e_{2^{5}}, e_{2}\cdot)=-c ,

that is, c and - c are eigenvalues corresponding to the eigenvectors e_{1} , e_{1}.
and e_{2}, e_{2}\cdot , respectively. Hence, c is constant.

We assume that M is not locally flat, so c>0 . If we put

P= \frac{1}{2}(\frac{1}{c}S+I) , Q= \frac{1}{2}(-\frac{1}{c}S+I) ,

where S denotes the Ricci transformation, while I is the identity transfor-
mation, then the set (P9Q) is an almost product structure on M, and P
and Q are the projectors on the eigenspaces of R corresponding to c and
-c, respectively. Therefore, by Lemma 1, M is locally the Riemannian pr0-
duct of M(c) and M(-c) which are 2-dimensional integral manifolds of the
distributions of eigenspaces of R corresponding to c and - c, respectively,
since we have

\nabla(P-Q)=0 ,

\nabla being the Riemannian connection of g . Both M(c) and M(-c) admit
Kaehlerian structures (F_{1}, g_{1}) and (F_{2}, g_{2}) induced from (F, g) on M and are
of constant curvature c and - c, respectively. If (x^{1}, x^{2}) (resp. (y^{1} , y^{2})) is
a local coordinates in M(c) (resp. in M(-c)), then we have

(\partial/\partial x^{i})F_{2}=0 , (\partial/\partial y^{i})F_{1}=0(i=1,2) .
since \nabla F=0 .

Conversely, given real 2-dimensional Kaehlerian manifolds M(c) and
M(-c) of constant curvature c and - c, respectively, for a positive constant
c, the Riemannian product M(c)\cross M(-c) has the naturally defined Kae-
hlerian structure (F, g) . Then, setting

L ((X_{1}, Y_{1}) . (X_{2}, Y_{2}))= \frac{c}{8}(g_{2} ( Y_{1}, Y_{2})-g_{1}(X_{1}, X_{2})) ,

for any vectors X_{1} , X_{2} tangent to M(c) and Y_{1} , Y_{2} tangent to M(-c) , where
g_{1} and g_{2} are Kaehlerian metrics of M(c) and M(-c) , respectively, L is
a hybrid quadratic form on M(c)\cross M(-c) and we have

H(X, FX)=-8L(X, X)j

for any unit vector X tangent to M(c)\cross M(-c) , where H is the sectional
curvature for g. Therefore, by Lemma 2, we see that M(c)\cross M(-c) has
zero scalar curvature and vanishing Bochner curvature tensor. It is easy
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to verify that g is not locally flat.
Thus, by giving real 2-dimensional Kaehlerian manifolds M(c) and

M(-c) of constant curvature c and -c, respectively, for any positive constant
c, we can obtain a real 4-dimensional Kaehlerian manifold with zero scalar
curvature and vanishing Bochner curvature tensor which is not locally flat.

(b) Let M be a real 2-dimensional Kaehlerian manifold. Then we can
take a coordinate neighborhood \{U;(x^{1}. x^{2})\} in which the complex structure
F of M has the following numeral components

F=(\begin{array}{ll}0 1-1 0\end{array})

Then, the Kaehlerian metric g of M is given by

g=e^{2p} (\begin{array}{ll}1 00 1\end{array})

for a function p in M, because

g(FX, FY)=g(X, Y) .
for any vectors X and Y in M, that is, g is conformal to a locally flat
metric. Hence, with respect to the local coordinates (x^{1}, x^{2}) , we have

K_{kjih}=e^{2p}(-\delta_{kh}C_{ji}+\delta_{jh}C_{ki}-C_{kh}\delta_{ji}+C_{jh}\delta_{ki}) , (h, i,j, k=1,2) ,

where K_{kjih} is the covariant components of the curvature tensor of g and

C_{ji}=\partial_{j}p_{i}-p_{j}p_{i}+1/2\cdot((p_{1})^{2}+(p_{2})^{2})\delta_{ji} , p_{i}=\partial_{i}p, \partial_{i}=\partial/\partial x^{i} .

We assume that g is of constant curvature c, c being arbitrarily given
constant. Then, we have

ce^{4p}=K_{1221}=e^{2p}(-C_{22}-C_{11})’’

that is,

(*) \partial_{1}p_{1}+\partial_{2}p_{2}=-ce^{2p}

Conversely, for a differentiate solution p of the partial differential equa-
tion (*) , defining

F=(\begin{array}{ll}0 1-1 0\end{array}) , g=e^{2p} (\begin{array}{ll}1 00 1\end{array}) ,

on a connected definition domain in (x^{1}, x^{2}) -plane, we have a real 2-dimen \cdot

sional Kaehlerian manifold of constant curvature c.
Hence, we need only give a solution of the partial differential equation
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(*) , which is, for example, given by

p=\{

1 -

\overline{2}\sqrt c\cdot x^{1}- log (1+e^{1\overline{c}\cdot x^{1}}) , for c>0 \dagger

\frac{1}{2}
- c\cdot x^{1}- log (1-e^{1\overline{-c}\cdot x^{1}}) , (x^{1}<0),\cdot for c<0

(c) Thus, we obtain an example of real 4-dimensional Kaehlerian
mainfold M(F, g) with zero scalar curvature and vanishing Bochner curvature
tensor which is not locally flat; R being a 1-dimensional manifold consisting
of all real numbers, M is defined by

M=\{(x^{1}, x^{2}, x^{3}, x^{4});x^{1}, x^{2}, x^{3}, x^{4}\in R , x^{3}<0\} ,

and the Kaehlerian structure (F, g) is given by

F=(\begin{array}{llll}0 1 0 0-1 0 0 00 0 0 10 0 -1 0\end{array}) , g =(\begin{array}{llll}a 0 0 00 0 00 0 b 00 0 0 b\end{array}) .

where a=e^{2p} , b=e^{2q} ,

p= \frac{1}{2}\sqrt{c}\cdot x^{1}- log (1+e^{\sqrt\overline{c}\cdot x^{1}}) , q= \frac{1}{2}\sqrt{c}\cdot x^{3}- log (1-e^{1\overline{c}\cdot x^{3}}) ,

for arbitrarily given positive constant c.
\S 3. A Sasakian case. We begin this section with the following lemmas.
LEMMA 5 ([7]). A(2n+1) -dimensional (n\geqq 1) Sasakian manifold \overline{M} has

a system of local corrdinate (x^{i}, s)(i=1,2, \cdots, 2n) with the following prop-
erties.

(1) Each M=M(s) determined by fixing s is a Kaehlerian manifold
which admits a 1 form v satisfying

\frac{1}{2}dv(X, Y)=g(FX, Y) .

for any vectors X and Y in M, (F, g) being the Kaehlerian structure on
M. The set (F, g, v) does not depend on s.

(2) With respect to the local coordinate (|x^{i}, s) , the Sasakian structure
(\phi, \xi, \eta,\overline{g}) is given by

\phi=(\begin{array}{ll}F 0-F^{*}v o_{/}\end{array}) , \xi=(0\eta=(v1)1),’\overline{g}=(_{v}^{g+v\otimes v}v1) ,
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where F^{*}v is a 1 form on M defined by

F^{*}v(X)=v(FX) .

for any vector X in M.
Lemma 6. If a(2n+1) -dimensional Sasakian manifold \overline{M} has the

vanishing contact Bochner curvature tensor (resp. constant scalar curvature
-2n), then the Kaehlerian manifold M appearing in Lemma 5 has the
vanishing Bochner curvature tensor (resp. zero scalar curvature).

PROOF. Refer to [2] and [7].
Let \overline{M} be a 5-dimensional Sasakian manifold with constant scalar cur-

vature -4 and vanishing contact Bochner curvature tensor which is not of
constant \phi-holomorphic sectional curvature -3. Then, \overline{M} has local coor-
dinates (x^{i}, s) as in Lemma 5 and M given in Lemma 5 is a real 4-dimensi0nal
Kaehlerian manifold with zero scalar curvature and vanishing Bochner cur-
vature tensor which is not locally flat ([7]), and admits a 1-form v satisfying

\frac{1}{2}dv(X, Y)=g(FX, Y)j

for any vectors X and Y in M, because of Lemma 6.
Thus we obtain an example of a 5-dimensional Sasakain manifold

\overline{M}(\phi, \xi, \eta,\overline{g}) with constant scalar curvature -4 and vanishing contact
Bochner curvature tensor which is not of constant \phi-holomorphoc sectional
curvature -3, as follows.

\overline{M}=\{(x^{1}, x^{2}, x^{3}, x^{4}, s);x^{1} , x^{2}, x^{3} , x^{4}, s\in R , x^{3}<0\} -

\phi= 0 0 0 1 0 , \overline{g}= 0 0 b 0-100v_{2}000v_{4}0-1100000 0000 000aa+v_{2}v_{2}v_{2}v_{4}v_{2}0 0000b+v_{4}v_{4}v_{2}v_{4}v_{4}0v_{4}v_{1}0)o_{2}

\xi=(0, 0, 0, 0, 1) , \eta=(0, v_{2},0, v_{4},1) ,

where

v_{2}=- \frac{2}{\sqrt\overline{c}(1+e^{\gamma\overline{c}x^{1}})},\cdot v_{4}= \frac{2}{\sqrt{c}(1-e^{1\overline{c}x^{3}})} .

for arbitrarily given positive constant c, and a and b are the functions 5^{iven}

in \S 2.
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